Adjuvant-dependent impact of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 May 2024
Historique:
received: 06 10 2023
accepted: 02 04 2024
medline: 4 5 2024
pubmed: 4 5 2024
entrez: 3 5 2024
Statut: epublish

Résumé

Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.

Identifiants

pubmed: 38702297
doi: 10.1038/s41467-024-47450-x
pii: 10.1038/s41467-024-47450-x
doi:

Substances chimiques

COVID-19 Vaccines 0
Vaccines, Inactivated 0
Aluminum Hydroxide 5QB0T2IUN0
Adjuvants, Immunologic 0
SARS-CoV-2 inactivated vaccines 0
Adjuvants, Vaccine 0
Antibodies, Viral 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

3738

Subventions

Organisme : NIAID NIH HHS
ID : U19 AI100625
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI157253
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI109680
Pays : United States
Organisme : ODCDC CDC HHS
ID : K01 OD026529
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM008719
Pays : United States
Organisme : NCI NIH HHS
ID : U54 CA260543
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Johns Hopkins Coronavirus Resource Center. COVID-19 Dashboard. (Center for Systems Science and Engineering at Johns Hopkins University, 2023).
Yeyati, E. L. & Filippini, F. Social and economic impact of COVID-19. Brookings Global Working Paper #158. The Brookings Institution Global Economy and Development Program. (2021).
Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
pubmed: 30531947 doi: 10.1038/s41579-018-0118-9
Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).
pubmed: 26552008 pmcid: 4797993 doi: 10.1038/nm.3985
Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
pubmed: 26976607 pmcid: 4801244 doi: 10.1073/pnas.1517719113
Mathieu, E. et al. Coronavirus pandemic (COVID-19): coronavirus (COVID-19) vaccinations. (Our World in Data, 2023).
Hotez, P. J. & Bottazzi, M. E. Whole inactivated virus and protein-based COVID-19 vaccines. Annu. Rev. Med. 73, 55–64 (2022).
pubmed: 34637324 doi: 10.1146/annurev-med-042420-113212
Dolgin, E. Omicron thwarts some of the world’s most-used COVID vaccines. Nature 601, 311 (2022).
Organization, W.H. Status of COVID-19 Vaccines within WHO EUL/PQ Evaluation Process (World Health Organization, 2023).
Ella, R. et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet 398, 2173–2184 (2021).
pubmed: 34774196 pmcid: 8584828 doi: 10.1016/S0140-6736(21)02000-6
Gao, Q. et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369, 77–81 (2020).
pubmed: 32376603 doi: 10.1126/science.abc1932
Mallapaty, S. China’s COVID vaccines have been crucial — now immunity is waning. Nature 598, 398–399 (2021).
pubmed: 34650240 doi: 10.1038/d41586-021-02796-w
Wang, H. et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 182, 713–721 e719 (2020).
pubmed: 32778225 pmcid: 7275151 doi: 10.1016/j.cell.2020.06.008
Xia, S. et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA 324, 951–960 (2020).
pubmed: 32789505 doi: 10.1001/jama.2020.15543
Xia, S. et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 21, 39–51 (2021).
pubmed: 33069281 doi: 10.1016/S1473-3099(20)30831-8
Zhang, Y. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 21, 181–192 (2021).
pubmed: 33217362 doi: 10.1016/S1473-3099(20)30843-4
Tregoning, J. S., Flight, K. E., Higham, S. L., Wang, Z. & Pierce, B. F. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21, 626–636 (2021).
pubmed: 34373623 pmcid: 8351583 doi: 10.1038/s41577-021-00592-1
Boelen, A. et al. Both immunisation with a formalin-inactivated respiratory syncytial virus (RSV) vaccine and a mock antigen vaccine induce severe lung pathology and a Th2 cytokine profile in RSV-challenged mice. Vaccine 19, 982–991 (2000).
pubmed: 11115725 doi: 10.1016/S0264-410X(00)00213-9
Castilow, E. M., Olson, M. R. & Varga, S. M. Understanding respiratory syncytial virus (RSV) vaccine-enhanced disease. Immunol. Res. 39, 225–239 (2007).
pubmed: 17917067 doi: 10.1007/s12026-007-0071-6
Fulginiti, V. A., Eller, J. J., Downie, A. W. & Kempe, C. H. Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA 202, 1075–1080 (1967).
pubmed: 6072745 doi: 10.1001/jama.1967.03130250057008
Lambert, P. H. et al. Consensus summary report for CEPI/BC March 12-13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine 38, 4783–4791 (2020).
pubmed: 32507409 doi: 10.1016/j.vaccine.2020.05.064
Mazur, N. I. et al. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infect. Dis. 18, e295–e311 (2018).
pubmed: 29914800 doi: 10.1016/S1473-3099(18)30292-5
Mejias, A., Rodriguez-Fernandez, R., Oliva, S., Peeples, M. E. & Ramilo, O. The journey to a respiratory syncytial virus vaccine. Ann. Allergy Asthma Immunol. 125, 36–46 (2020).
pubmed: 32217187 pmcid: 7311299 doi: 10.1016/j.anai.2020.03.017
Muralidharan, A., Li, C., Wang, L. & Li, X. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies. Expert Rev. Vaccines 16, 351–360 (2017).
pubmed: 27841687 doi: 10.1080/14760584.2017.1260452
Openshaw, P. J., Culley, F. J. & Olszewska, W. Immunopathogenesis of vaccine-enhanced RSV disease. Vaccine 20, S27–S31 (2001).
pubmed: 11587806 doi: 10.1016/S0264-410X(01)00301-2
Polack, F. P. Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple. Pediatr. Res. 62, 111–115 (2007).
pubmed: 17515829 doi: 10.1203/PDR.0b013e3180686ce0
Smatti, M. K., Al Thani, A. A. & Yassine, H. M. Viral-induced enhanced disease illness. Front. Microbiol. 9, 2991 (2018).
pubmed: 30568643 pmcid: 6290032 doi: 10.3389/fmicb.2018.02991
Agrawal, A. S. et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum. Vaccin. Immunother. 12, 2351–2356 (2016).
pubmed: 27269431 pmcid: 5027702 doi: 10.1080/21645515.2016.1177688
Bolles, M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201–12215 (2011).
pubmed: 21937658 pmcid: 3209347 doi: 10.1128/JVI.06048-11
Czub, M., Weingartl, H., Czub, S., He, R. & Cao, J. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine 23, 2273–2279 (2005).
pubmed: 15755610 pmcid: 7115540 doi: 10.1016/j.vaccine.2005.01.033
Deming, D. et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med. 3, e525 (2006).
pubmed: 17194199 pmcid: 1716185 doi: 10.1371/journal.pmed.0030525
Haagmans, B. L., Kuiken, T., deLang, A. & Martina, B. E. Protective immunity induced by the inactivated SARS coronavirus vaccine. Abstract S 12-1. (X International Nidovirus Symposium, 2005).
Hashem, A. M. et al. A highly immunogenic, protective, and safe adenovirus-based vaccine expressing middle east respiratory syndrome coronavirus S1-CD40L fusion protein in a transgenic human dipeptidyl peptidase 4 mouse model. J. Infect. Dis. 220, 1558–1567 (2019).
pubmed: 30911758 doi: 10.1093/infdis/jiz137
Honda-Okubo, Y. et al. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J. Virol. 89, 2995–3007 (2015).
pubmed: 25520500 doi: 10.1128/JVI.02980-14
Iwata-Yoshikawa, N. et al. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J. Viro. 88, 8597–8614 (2014).
doi: 10.1128/JVI.00983-14
Liu, L. et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4, e123158 (2019).
pubmed: 30830861 pmcid: 6478436 doi: 10.1172/jci.insight.123158
Luo, F. et al. Evaluation of antibody-dependent enhancement of SARS-CoV infection in rhesus macaques immunized with an inactivated SARS-CoV vaccine. Virol. Sin. 33, 201–204 (2018).
pubmed: 29541941 pmcid: 6178114 doi: 10.1007/s12250-018-0009-2
Tseng, C. T. et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS ONE 7, e35421 (2012).
pubmed: 22536382 pmcid: 3335060 doi: 10.1371/journal.pone.0035421
Wang, Q. et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect. Dis. 2, 361–376 (2016).
pubmed: 27627203 pmcid: 7075522 doi: 10.1021/acsinfecdis.6b00006
Weingartl, H. et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 78, 12672–12676 (2004).
pubmed: 15507655 pmcid: 525089 doi: 10.1128/JVI.78.22.12672-12676.2004
Yasui, F. et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J. Immunol. 181, 6337–6348 (2008).
pubmed: 18941225 doi: 10.4049/jimmunol.181.9.6337
DiPiazza, A. T. et al. COVID-19 vaccine mRNA-1273 elicits a protective immune profile in mice that is not associated with vaccine-enhanced disease upon SARS-CoV-2 challenge. Immunity 54, 1869–1882 e1866 (2021).
pubmed: 34270939 pmcid: 8249710 doi: 10.1016/j.immuni.2021.06.018
Ebenig, A. et al. Vaccine-associated enhanced respiratory pathology in COVID-19 hamsters after TH2-biased immunization. Cell Rep. 40, 111214 (2022).
pubmed: 35952673 pmcid: 9346010 doi: 10.1016/j.celrep.2022.111214
Iwata-Yoshikawa, N. et al. A lethal mouse model for evaluating vaccine-associated enhanced respiratory disease during SARS-CoV-2 infection. Sci. Adv. 8, eabh3827 (2022).
pubmed: 34995117 pmcid: 8741184 doi: 10.1126/sciadv.abh3827
Cargnelutti, D. E. et al. Enhancement of Th1 immune responses to recombinant influenza nucleoprotein by Ribi adjuvant. New Microbiol. 36, 145–151 (2013).
pubmed: 23686120
Chaitra, M. G., Nayak, R. & Shaila, M. S. Modulation of immune responses in mice to recombinant antigens from PE and PPE families of proteins of Mycobacterium tuberculosis by the Ribi adjuvant. Vaccine 25, 7168–7176 (2007).
pubmed: 17709160 doi: 10.1016/j.vaccine.2007.07.026
Guo, X. et al. Monophosphoryl lipid A ameliorates radiation-induced lung injury by promoting the polarization of macrophages to the M1 phenotype. J. Transl. Med. 20, 597 (2022).
pubmed: 36517836 pmcid: 9753357 doi: 10.1186/s12967-022-03804-x
Zhao, X. Q. et al. C-type lectin receptor dectin-3 mediates trehalose 6,6’-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-kappaB activation. J. Biol. Chem. 289, 30052–30062 (2014).
pubmed: 25202022 pmcid: 4208012 doi: 10.1074/jbc.M114.588574
Dinnon, K. H. 3rd et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).
pubmed: 32854108 pmcid: 8034761 doi: 10.1038/s41586-020-2708-8
Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183, 1070–1085 e1012 (2020).
pubmed: 33031744 pmcid: 7510428 doi: 10.1016/j.cell.2020.09.050
Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020).
pubmed: 33184236 pmcid: 7775736 doi: 10.1126/science.abe8499
Konopka, K. E. et al. Diffuse alveolar damage (DAD) resulting from coronavirus disease 2019 infection is morphologically indistinguishable from other causes of DAD. Histopathology 77, 570–578 (2020).
pubmed: 32542743 pmcid: 7323403 doi: 10.1111/his.14180
Kulkarni, H. S. et al. Update on the features and measurements of experimental acute lung injury in animals: an official american thoracic society workshop report. Am. J. Respir. Cell Mol. Biol. 66, e1–e14 (2022).
pubmed: 35103557 pmcid: 8845128 doi: 10.1165/rcmb.2021-0531ST
Matute-Bello, G. et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 44, 725–738 (2011).
pubmed: 21531958 pmcid: 7328339 doi: 10.1165/rcmb.2009-0210ST
Schmidt, M. E. et al. Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection. PLoS Pathog. 14, e1006810 (2018).
pubmed: 29293660 pmcid: 5766251 doi: 10.1371/journal.ppat.1006810
Martinez, D. R. et al. Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science 373, 991–998 (2021).
pubmed: 34214046 pmcid: 8899822 doi: 10.1126/science.abi4506
Liu, M. Q. et al. Inactivated SARS-CoV-2 vaccine shows cross-protection against bat SARS-related coronaviruses in human ACE2 transgenic mice. J. Virol. 96, e0016922 (2022).
pubmed: 35343762 doi: 10.1128/jvi.00169-22
Ai, J. et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg. Microbes Infect. 11, 337–343 (2022).
pubmed: 34935594 pmcid: 8788341 doi: 10.1080/22221751.2021.2022440
Kaabi, N. A. et al. Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients in a randomized phase 2 trial. Nat. Commun. 13, 3654 (2022).
pubmed: 35760812 pmcid: 9237056 doi: 10.1038/s41467-022-31379-0
Kaabi, N. A. et al. Immunogenicity and safety of NVSI-06-07 as a heterologous booster after priming with BBIBP-CorV: a phase 2 trial. Signal Transduct. Target Ther. 7, 172 (2022).
pubmed: 35665745 pmcid: 9167817 doi: 10.1038/s41392-022-00984-2
Perez-Then, E. et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 28, 481–485 (2022).
pubmed: 35051990 pmcid: 8938264 doi: 10.1038/s41591-022-01705-6
Wang, X. et al. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerg. Microbes Infect. 11, 477–481 (2022).
pubmed: 35034583 pmcid: 8820826 doi: 10.1080/22221751.2022.2030200
Zuo, F. et al. Heterologous immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity against SARS-CoV-2 Omicron variant. Nat. Commun. 13, 2670 (2022).
pubmed: 35562366 pmcid: 9106736 doi: 10.1038/s41467-022-30340-5
Bigay, J., Le Grand, R., Martinon, F. & Maisonnasse, P. Vaccine-associated enhanced disease in humans and animal models: lessons and challenges for vaccine development. Front. Microbiol. 13, 932408 (2022).
pubmed: 36033843 pmcid: 9399815 doi: 10.3389/fmicb.2022.932408
Gartlan, C. et al. Vaccine-associated enhanced disease and pathogenic human coronaviruses. Front. Immunol. 13, 882972 (2022).
pubmed: 35444667 pmcid: 9014240 doi: 10.3389/fimmu.2022.882972
He, P., Zou, Y. & Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccin. Immunother. 11, 477–488 (2015).
pubmed: 25692535 pmcid: 4514166 doi: 10.1080/21645515.2014.1004026
Hogenesch, H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front. Immunol. 3, 406 (2012).
pubmed: 23335921
Marrack, P., McKee, A. S. & Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9, 287–293 (2009).
pubmed: 19247370 pmcid: 3147301 doi: 10.1038/nri2510
Adams, L. E. et al. Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Rep. 42, 112326 (2023).
pubmed: 37000623 pmcid: 10063157 doi: 10.1016/j.celrep.2023.112326
Mackin, S. R. et al. Fc-gammaR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. Nat. Microbiol. 8, 569–580 (2023).
pubmed: 37012355 pmcid: 10797606 doi: 10.1038/s41564-023-01359-1
Rappazzo, C. G. et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 371, 823–829 (2021).
pubmed: 33495307 pmcid: 7963221 doi: 10.1126/science.abf4830
Spruth, M. et al. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses. Vaccine 24, 652–661 (2006).
pubmed: 16214268 doi: 10.1016/j.vaccine.2005.08.055
Geng, Q. et al. Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathog. 17, e1009897 (2021).
pubmed: 34492082 pmcid: 8448314 doi: 10.1371/journal.ppat.1009897
Sheahan, T. P. et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 11, 222 (2020).
pubmed: 31924756 pmcid: 6954302 doi: 10.1038/s41467-019-13940-6
Menachery, V. D., Gralinski, L. E., Baric, R. S. & Ferris, M. T. New metrics for evaluating viral respiratory pathogenesis. PLoS ONE 10, e0131451 (2015).
pubmed: 26115403 pmcid: 4482571 doi: 10.1371/journal.pone.0131451
Andrews, S. FastQC: a quality control tool for high throughput sequence data. (Babraham Bioinformatics, 2010).
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959 pmcid: 5600148 doi: 10.1038/nmeth.4197
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).
pubmed: 26925227 doi: 10.12688/f1000research.7563.1
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Gene Ontology, C. et al. The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).
doi: 10.1093/genetics/iyad031
Thomas, P. D. et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).
pubmed: 34717010 doi: 10.1002/pro.4218

Auteurs

Jacob A Dillard (JA)

Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Sharon A Taft-Benz (SA)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Audrey C Knight (AC)

Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Elizabeth J Anderson (EJ)

Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Katia D Pressey (KD)

Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Breantié Parotti (B)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Sabian A Martinez (SA)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Jennifer L Diaz (JL)

Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Sanjay Sarkar (S)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Emily A Madden (EA)

Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Gabriela De la Cruz (G)

Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Lily E Adams (LE)

Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Kenneth H Dinnon (KH)

Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Sarah R Leist (SR)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

David R Martinez (DR)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Alexandra Schäfer (A)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

John M Powers (JM)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Boyd L Yount (BL)

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Izabella N Castillo (IN)

Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Noah L Morales (NL)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Jane Burdick (J)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Mia Katrina D Evangelista (MKD)

Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Lauren M Ralph (LM)

Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Nicholas C Pankow (NC)

Pathology Services Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Colton L Linnertz (CL)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Premkumar Lakshmanane (P)

Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Stephanie A Montgomery (SA)

Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Dallas Tissue Research, Farmers Branch, TX, USA.

Martin T Ferris (MT)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Ralph S Baric (RS)

Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Victoria K Baxter (VK)

Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. vkbaxter@txbiomed.org.
Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. vkbaxter@txbiomed.org.
Texas Biomedical Research Institute, San Antonio, TX, USA. vkbaxter@txbiomed.org.

Mark T Heise (MT)

Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. mark_heisem@med.unc.edu.
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. mark_heisem@med.unc.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH