Adjuvant-dependent impact of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus.
Animals
COVID-19 Vaccines
/ immunology
Female
COVID-19
/ prevention & control
Mice
Vaccines, Inactivated
/ immunology
SARS-CoV-2
/ immunology
Aluminum Hydroxide
/ administration & dosage
Disease Models, Animal
Adjuvants, Immunologic
/ administration & dosage
Adjuvants, Vaccine
Antibodies, Viral
/ immunology
Mice, Inbred BALB C
Humans
Severe acute respiratory syndrome-related coronavirus
/ immunology
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
03 May 2024
03 May 2024
Historique:
received:
06
10
2023
accepted:
02
04
2024
medline:
4
5
2024
pubmed:
4
5
2024
entrez:
3
5
2024
Statut:
epublish
Résumé
Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.
Identifiants
pubmed: 38702297
doi: 10.1038/s41467-024-47450-x
pii: 10.1038/s41467-024-47450-x
doi:
Substances chimiques
COVID-19 Vaccines
0
Vaccines, Inactivated
0
Aluminum Hydroxide
5QB0T2IUN0
Adjuvants, Immunologic
0
SARS-CoV-2 inactivated vaccines
0
Adjuvants, Vaccine
0
Antibodies, Viral
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3738Subventions
Organisme : NIAID NIH HHS
ID : U19 AI100625
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI157253
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI109680
Pays : United States
Organisme : ODCDC CDC HHS
ID : K01 OD026529
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM008719
Pays : United States
Organisme : NCI NIH HHS
ID : U54 CA260543
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Johns Hopkins Coronavirus Resource Center. COVID-19 Dashboard. (Center for Systems Science and Engineering at Johns Hopkins University, 2023).
Yeyati, E. L. & Filippini, F. Social and economic impact of COVID-19. Brookings Global Working Paper #158. The Brookings Institution Global Economy and Development Program. (2021).
Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
pubmed: 30531947
doi: 10.1038/s41579-018-0118-9
Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).
pubmed: 26552008
pmcid: 4797993
doi: 10.1038/nm.3985
Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).
pubmed: 26976607
pmcid: 4801244
doi: 10.1073/pnas.1517719113
Mathieu, E. et al. Coronavirus pandemic (COVID-19): coronavirus (COVID-19) vaccinations. (Our World in Data, 2023).
Hotez, P. J. & Bottazzi, M. E. Whole inactivated virus and protein-based COVID-19 vaccines. Annu. Rev. Med. 73, 55–64 (2022).
pubmed: 34637324
doi: 10.1146/annurev-med-042420-113212
Dolgin, E. Omicron thwarts some of the world’s most-used COVID vaccines. Nature 601, 311 (2022).
Organization, W.H. Status of COVID-19 Vaccines within WHO EUL/PQ Evaluation Process (World Health Organization, 2023).
Ella, R. et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet 398, 2173–2184 (2021).
pubmed: 34774196
pmcid: 8584828
doi: 10.1016/S0140-6736(21)02000-6
Gao, Q. et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369, 77–81 (2020).
pubmed: 32376603
doi: 10.1126/science.abc1932
Mallapaty, S. China’s COVID vaccines have been crucial — now immunity is waning. Nature 598, 398–399 (2021).
pubmed: 34650240
doi: 10.1038/d41586-021-02796-w
Wang, H. et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 182, 713–721 e719 (2020).
pubmed: 32778225
pmcid: 7275151
doi: 10.1016/j.cell.2020.06.008
Xia, S. et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA 324, 951–960 (2020).
pubmed: 32789505
doi: 10.1001/jama.2020.15543
Xia, S. et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 21, 39–51 (2021).
pubmed: 33069281
doi: 10.1016/S1473-3099(20)30831-8
Zhang, Y. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 21, 181–192 (2021).
pubmed: 33217362
doi: 10.1016/S1473-3099(20)30843-4
Tregoning, J. S., Flight, K. E., Higham, S. L., Wang, Z. & Pierce, B. F. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21, 626–636 (2021).
pubmed: 34373623
pmcid: 8351583
doi: 10.1038/s41577-021-00592-1
Boelen, A. et al. Both immunisation with a formalin-inactivated respiratory syncytial virus (RSV) vaccine and a mock antigen vaccine induce severe lung pathology and a Th2 cytokine profile in RSV-challenged mice. Vaccine 19, 982–991 (2000).
pubmed: 11115725
doi: 10.1016/S0264-410X(00)00213-9
Castilow, E. M., Olson, M. R. & Varga, S. M. Understanding respiratory syncytial virus (RSV) vaccine-enhanced disease. Immunol. Res. 39, 225–239 (2007).
pubmed: 17917067
doi: 10.1007/s12026-007-0071-6
Fulginiti, V. A., Eller, J. J., Downie, A. W. & Kempe, C. H. Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA 202, 1075–1080 (1967).
pubmed: 6072745
doi: 10.1001/jama.1967.03130250057008
Lambert, P. H. et al. Consensus summary report for CEPI/BC March 12-13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine 38, 4783–4791 (2020).
pubmed: 32507409
doi: 10.1016/j.vaccine.2020.05.064
Mazur, N. I. et al. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infect. Dis. 18, e295–e311 (2018).
pubmed: 29914800
doi: 10.1016/S1473-3099(18)30292-5
Mejias, A., Rodriguez-Fernandez, R., Oliva, S., Peeples, M. E. & Ramilo, O. The journey to a respiratory syncytial virus vaccine. Ann. Allergy Asthma Immunol. 125, 36–46 (2020).
pubmed: 32217187
pmcid: 7311299
doi: 10.1016/j.anai.2020.03.017
Muralidharan, A., Li, C., Wang, L. & Li, X. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies. Expert Rev. Vaccines 16, 351–360 (2017).
pubmed: 27841687
doi: 10.1080/14760584.2017.1260452
Openshaw, P. J., Culley, F. J. & Olszewska, W. Immunopathogenesis of vaccine-enhanced RSV disease. Vaccine 20, S27–S31 (2001).
pubmed: 11587806
doi: 10.1016/S0264-410X(01)00301-2
Polack, F. P. Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple. Pediatr. Res. 62, 111–115 (2007).
pubmed: 17515829
doi: 10.1203/PDR.0b013e3180686ce0
Smatti, M. K., Al Thani, A. A. & Yassine, H. M. Viral-induced enhanced disease illness. Front. Microbiol. 9, 2991 (2018).
pubmed: 30568643
pmcid: 6290032
doi: 10.3389/fmicb.2018.02991
Agrawal, A. S. et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum. Vaccin. Immunother. 12, 2351–2356 (2016).
pubmed: 27269431
pmcid: 5027702
doi: 10.1080/21645515.2016.1177688
Bolles, M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201–12215 (2011).
pubmed: 21937658
pmcid: 3209347
doi: 10.1128/JVI.06048-11
Czub, M., Weingartl, H., Czub, S., He, R. & Cao, J. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine 23, 2273–2279 (2005).
pubmed: 15755610
pmcid: 7115540
doi: 10.1016/j.vaccine.2005.01.033
Deming, D. et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med. 3, e525 (2006).
pubmed: 17194199
pmcid: 1716185
doi: 10.1371/journal.pmed.0030525
Haagmans, B. L., Kuiken, T., deLang, A. & Martina, B. E. Protective immunity induced by the inactivated SARS coronavirus vaccine. Abstract S 12-1. (X International Nidovirus Symposium, 2005).
Hashem, A. M. et al. A highly immunogenic, protective, and safe adenovirus-based vaccine expressing middle east respiratory syndrome coronavirus S1-CD40L fusion protein in a transgenic human dipeptidyl peptidase 4 mouse model. J. Infect. Dis. 220, 1558–1567 (2019).
pubmed: 30911758
doi: 10.1093/infdis/jiz137
Honda-Okubo, Y. et al. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J. Virol. 89, 2995–3007 (2015).
pubmed: 25520500
doi: 10.1128/JVI.02980-14
Iwata-Yoshikawa, N. et al. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J. Viro. 88, 8597–8614 (2014).
doi: 10.1128/JVI.00983-14
Liu, L. et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4, e123158 (2019).
pubmed: 30830861
pmcid: 6478436
doi: 10.1172/jci.insight.123158
Luo, F. et al. Evaluation of antibody-dependent enhancement of SARS-CoV infection in rhesus macaques immunized with an inactivated SARS-CoV vaccine. Virol. Sin. 33, 201–204 (2018).
pubmed: 29541941
pmcid: 6178114
doi: 10.1007/s12250-018-0009-2
Tseng, C. T. et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS ONE 7, e35421 (2012).
pubmed: 22536382
pmcid: 3335060
doi: 10.1371/journal.pone.0035421
Wang, Q. et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect. Dis. 2, 361–376 (2016).
pubmed: 27627203
pmcid: 7075522
doi: 10.1021/acsinfecdis.6b00006
Weingartl, H. et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 78, 12672–12676 (2004).
pubmed: 15507655
pmcid: 525089
doi: 10.1128/JVI.78.22.12672-12676.2004
Yasui, F. et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J. Immunol. 181, 6337–6348 (2008).
pubmed: 18941225
doi: 10.4049/jimmunol.181.9.6337
DiPiazza, A. T. et al. COVID-19 vaccine mRNA-1273 elicits a protective immune profile in mice that is not associated with vaccine-enhanced disease upon SARS-CoV-2 challenge. Immunity 54, 1869–1882 e1866 (2021).
pubmed: 34270939
pmcid: 8249710
doi: 10.1016/j.immuni.2021.06.018
Ebenig, A. et al. Vaccine-associated enhanced respiratory pathology in COVID-19 hamsters after TH2-biased immunization. Cell Rep. 40, 111214 (2022).
pubmed: 35952673
pmcid: 9346010
doi: 10.1016/j.celrep.2022.111214
Iwata-Yoshikawa, N. et al. A lethal mouse model for evaluating vaccine-associated enhanced respiratory disease during SARS-CoV-2 infection. Sci. Adv. 8, eabh3827 (2022).
pubmed: 34995117
pmcid: 8741184
doi: 10.1126/sciadv.abh3827
Cargnelutti, D. E. et al. Enhancement of Th1 immune responses to recombinant influenza nucleoprotein by Ribi adjuvant. New Microbiol. 36, 145–151 (2013).
pubmed: 23686120
Chaitra, M. G., Nayak, R. & Shaila, M. S. Modulation of immune responses in mice to recombinant antigens from PE and PPE families of proteins of Mycobacterium tuberculosis by the Ribi adjuvant. Vaccine 25, 7168–7176 (2007).
pubmed: 17709160
doi: 10.1016/j.vaccine.2007.07.026
Guo, X. et al. Monophosphoryl lipid A ameliorates radiation-induced lung injury by promoting the polarization of macrophages to the M1 phenotype. J. Transl. Med. 20, 597 (2022).
pubmed: 36517836
pmcid: 9753357
doi: 10.1186/s12967-022-03804-x
Zhao, X. Q. et al. C-type lectin receptor dectin-3 mediates trehalose 6,6’-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-kappaB activation. J. Biol. Chem. 289, 30052–30062 (2014).
pubmed: 25202022
pmcid: 4208012
doi: 10.1074/jbc.M114.588574
Dinnon, K. H. 3rd et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).
pubmed: 32854108
pmcid: 8034761
doi: 10.1038/s41586-020-2708-8
Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183, 1070–1085 e1012 (2020).
pubmed: 33031744
pmcid: 7510428
doi: 10.1016/j.cell.2020.09.050
Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020).
pubmed: 33184236
pmcid: 7775736
doi: 10.1126/science.abe8499
Konopka, K. E. et al. Diffuse alveolar damage (DAD) resulting from coronavirus disease 2019 infection is morphologically indistinguishable from other causes of DAD. Histopathology 77, 570–578 (2020).
pubmed: 32542743
pmcid: 7323403
doi: 10.1111/his.14180
Kulkarni, H. S. et al. Update on the features and measurements of experimental acute lung injury in animals: an official american thoracic society workshop report. Am. J. Respir. Cell Mol. Biol. 66, e1–e14 (2022).
pubmed: 35103557
pmcid: 8845128
doi: 10.1165/rcmb.2021-0531ST
Matute-Bello, G. et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 44, 725–738 (2011).
pubmed: 21531958
pmcid: 7328339
doi: 10.1165/rcmb.2009-0210ST
Schmidt, M. E. et al. Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection. PLoS Pathog. 14, e1006810 (2018).
pubmed: 29293660
pmcid: 5766251
doi: 10.1371/journal.ppat.1006810
Martinez, D. R. et al. Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science 373, 991–998 (2021).
pubmed: 34214046
pmcid: 8899822
doi: 10.1126/science.abi4506
Liu, M. Q. et al. Inactivated SARS-CoV-2 vaccine shows cross-protection against bat SARS-related coronaviruses in human ACE2 transgenic mice. J. Virol. 96, e0016922 (2022).
pubmed: 35343762
doi: 10.1128/jvi.00169-22
Ai, J. et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg. Microbes Infect. 11, 337–343 (2022).
pubmed: 34935594
pmcid: 8788341
doi: 10.1080/22221751.2021.2022440
Kaabi, N. A. et al. Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients in a randomized phase 2 trial. Nat. Commun. 13, 3654 (2022).
pubmed: 35760812
pmcid: 9237056
doi: 10.1038/s41467-022-31379-0
Kaabi, N. A. et al. Immunogenicity and safety of NVSI-06-07 as a heterologous booster after priming with BBIBP-CorV: a phase 2 trial. Signal Transduct. Target Ther. 7, 172 (2022).
pubmed: 35665745
pmcid: 9167817
doi: 10.1038/s41392-022-00984-2
Perez-Then, E. et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 28, 481–485 (2022).
pubmed: 35051990
pmcid: 8938264
doi: 10.1038/s41591-022-01705-6
Wang, X. et al. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerg. Microbes Infect. 11, 477–481 (2022).
pubmed: 35034583
pmcid: 8820826
doi: 10.1080/22221751.2022.2030200
Zuo, F. et al. Heterologous immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity against SARS-CoV-2 Omicron variant. Nat. Commun. 13, 2670 (2022).
pubmed: 35562366
pmcid: 9106736
doi: 10.1038/s41467-022-30340-5
Bigay, J., Le Grand, R., Martinon, F. & Maisonnasse, P. Vaccine-associated enhanced disease in humans and animal models: lessons and challenges for vaccine development. Front. Microbiol. 13, 932408 (2022).
pubmed: 36033843
pmcid: 9399815
doi: 10.3389/fmicb.2022.932408
Gartlan, C. et al. Vaccine-associated enhanced disease and pathogenic human coronaviruses. Front. Immunol. 13, 882972 (2022).
pubmed: 35444667
pmcid: 9014240
doi: 10.3389/fimmu.2022.882972
He, P., Zou, Y. & Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccin. Immunother. 11, 477–488 (2015).
pubmed: 25692535
pmcid: 4514166
doi: 10.1080/21645515.2014.1004026
Hogenesch, H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front. Immunol. 3, 406 (2012).
pubmed: 23335921
Marrack, P., McKee, A. S. & Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9, 287–293 (2009).
pubmed: 19247370
pmcid: 3147301
doi: 10.1038/nri2510
Adams, L. E. et al. Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Rep. 42, 112326 (2023).
pubmed: 37000623
pmcid: 10063157
doi: 10.1016/j.celrep.2023.112326
Mackin, S. R. et al. Fc-gammaR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. Nat. Microbiol. 8, 569–580 (2023).
pubmed: 37012355
pmcid: 10797606
doi: 10.1038/s41564-023-01359-1
Rappazzo, C. G. et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 371, 823–829 (2021).
pubmed: 33495307
pmcid: 7963221
doi: 10.1126/science.abf4830
Spruth, M. et al. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses. Vaccine 24, 652–661 (2006).
pubmed: 16214268
doi: 10.1016/j.vaccine.2005.08.055
Geng, Q. et al. Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathog. 17, e1009897 (2021).
pubmed: 34492082
pmcid: 8448314
doi: 10.1371/journal.ppat.1009897
Sheahan, T. P. et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 11, 222 (2020).
pubmed: 31924756
pmcid: 6954302
doi: 10.1038/s41467-019-13940-6
Menachery, V. D., Gralinski, L. E., Baric, R. S. & Ferris, M. T. New metrics for evaluating viral respiratory pathogenesis. PLoS ONE 10, e0131451 (2015).
pubmed: 26115403
pmcid: 4482571
doi: 10.1371/journal.pone.0131451
Andrews, S. FastQC: a quality control tool for high throughput sequence data. (Babraham Bioinformatics, 2010).
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959
pmcid: 5600148
doi: 10.1038/nmeth.4197
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).
pubmed: 26925227
doi: 10.12688/f1000research.7563.1
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651
pmcid: 3037419
doi: 10.1038/75556
Gene Ontology, C. et al. The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).
doi: 10.1093/genetics/iyad031
Thomas, P. D. et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).
pubmed: 34717010
doi: 10.1002/pro.4218