Mapping brain function in adults and young children during naturalistic viewing with high-density diffuse optical tomography.
brain development
feature regressor analysis
functional near‐infrared spectroscopy
movie viewing
optical neuroimaging
Journal
Human brain mapping
ISSN: 1097-0193
Titre abrégé: Hum Brain Mapp
Pays: United States
ID NLM: 9419065
Informations de publication
Date de publication:
May 2024
May 2024
Historique:
revised:
27
03
2024
received:
01
08
2023
accepted:
03
04
2024
medline:
5
5
2024
pubmed:
5
5
2024
entrez:
4
5
2024
Statut:
ppublish
Résumé
Human studies of early brain development have been limited by extant neuroimaging methods. MRI scanners present logistical challenges for imaging young children, while alternative modalities like functional near-infrared spectroscopy have traditionally been limited by image quality due to sparse sampling. In addition, conventional tasks for brain mapping elicit low task engagement, high head motion, and considerable participant attrition in pediatric populations. As a result, typical and atypical developmental trajectories of processes such as language acquisition remain understudied during sensitive periods over the first years of life. We evaluate high-density diffuse optical tomography (HD-DOT) imaging combined with movie stimuli for high resolution optical neuroimaging in awake children ranging from 1 to 7 years of age. We built an HD-DOT system with design features geared towards enhancing both image quality and child comfort. Furthermore, we characterized a library of animated movie clips as a stimulus set for brain mapping and we optimized associated data analysis pipelines. Together, these tools could map cortical responses to movies and contained features such as speech in both adults and awake young children. This study lays the groundwork for future research to investigate response variability in larger pediatric samples and atypical trajectories of early brain development in clinical populations.
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e26684Subventions
Organisme : NIH HHS
ID : U01EB027005
Pays : United States
Organisme : NIH HHS
ID : R01NS090874
Pays : United States
Organisme : NIH HHS
ID : R01MH122751
Pays : United States
Informations de copyright
© 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
Références
Arichi, T., Fagiolo, G., Varela, M., Melendez‐Calderon, A., Allievi, A., Merchant, N., Tusor, N., Counsell, S. J., Burdet, E., Beckmann, C. F., & Edwards, A. D. (2012). Development of BOLD signal hemodynamic responses in the human brain. NeuroImage, 63(2), 663–673. https://doi.org/10.1016/j.neuroimage.2012.06.054
Bartels, A., & Zeki, S. (2004). Functional brain mapping during free viewing of natural scenes. Human Brain Mapping, 21(2), 75–85. https://doi.org/10.1002/hbm.10153
Black, M. H., Chen, N. T. M., Iyer, K. K., Lipp, O. V., Bölte, S., Falkmer, M., Tan, T., & Girdler, S. (2017). Mechanisms of facial emotion recognition in autism spectrum disorders: Insights from eye tracking and electroencephalography. Neuroscience and Biobehavioral Reviews, 80(December 2016), 488–515. https://doi.org/10.1016/j.neubiorev.2017.06.016
Blasi, A., Mercure, E., Lloyd‐Fox, S., Thomson, A., Brammer, M., Sauter, D., Deeley, Q., Barker, G. J., Renvall, V., Deoni, S., Gasston, D., Williams, S. C. R., Johnson, M. H., Simmons, A., & Murphy, D. G. M. (2011). Early specialization for voice and emotion processing in the infant brain. Current Biology, 21(14), 1220–1224. https://doi.org/10.1016/j.cub.2011.06.009
Boto, E., Shah, V., Hill, R. M., Rhodes, N., Osborne, J., Doyle, C., Holmes, N., Rea, M., Leggett, J., Bowtell, R., & Brookes, M. J. (2022). Triaxial detection of the neuromagnetic field using optically‐pumped magnetometry: Feasibility and application in children. NeuroImage, 252, 119027. https://doi.org/10.1016/j.neuroimage.2022.119027
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.
Brier, L. M., Landsness, E. C., Snyder, A. Z., Wright, P. W., Baxter, G. A., Bauer, A. Q., Lee, J.‐M., & Culver, J. P. (2019). Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia. Neurophotonics., 6(3), 035002. https://doi.org/10.1117/1.nph.6.3.035002 1.
Brookes, M. J., Leggett, J., Rea, M., Hill, R. M., Holmes, N., Boto, E., & Bowtell, R. (2022). Magnetoencephalography with optically pumped magnetometers (OPM‐MEG): The next generation of functional neuroimaging. Trends in Neurosciences, 45(8), 621–634. https://doi.org/10.1016/j.tins.2022.05.008
Butler, L. K., Kiran, S., & Tager‐Flusberg, H. (2020). Functional near‐infrared spectroscopy in the study of speech and language impairment across the life span: A systematic review. American Journal of Speech‐Language Pathology, 29(3), 1674–1701. https://doi.org/10.1044/2020_AJSLP-19-00050
Cai, Q., van der Haegen, L., & Brysbaert, M. (2013). Complementary hemispheric specialization for language production and visuospatial attention. Proceedings of the National Academy of Sciences of the United States of America, 110(4), E322–E330. https://doi.org/10.1073/pnas.1212956110
Calvert, G. A., Bullmore, E. T., Brammer, M. J., Campbell, R., Williams, S. C. R., McGuire, P. K., Woodruff, P. W. R., Iversen, S. D., & David, A. S. (1997). Activation of auditory cortex during silent lipreading. Science (80‐)., 276(5312), 593–596. https://doi.org/10.1126/science.276.5312.593
Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., Shinohara, R. T., Elliott, M. A., Eickhoff, S. B., Davatzikos, C., Gur, R. C., Gur, R. E., Bassett, D. S., & Satterthwaite, T. D. (2017). Benchmarking of participant‐level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage, 154, 174–187. https://doi.org/10.1016/j.neuroimage.2017.03.020
Constantino, J. N., Kennon‐McGill, S., Weichselbaum, C., Marrus, N., Haider, A., Glowinski, A. L., Gillespie, S., Klaiman, C., Klin, A., & Jones, W. (2017). Infant viewing of social scenes is under genetic control and atypical in autism. Nature, 547(7663), 340–344. https://doi.org/10.1038/nature22999
Costanzo, V., Chericoni, N., Amendola, F. A., Casula, L., Muratori, F., Scattoni, M. L., & Apicella, F. (2015). Early detection of autism spectrum disorders: From retrospective home video studies to prospective “high risk” sibling studies. Neuroscience and Biobehavioral Reviews, 55, 627–635. https://doi.org/10.1016/j.neubiorev.2015.06.006
Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage, 54(4), 2808–2821. https://doi.org/10.1016/j.neuroimage.2010.10.069
Culver, J. P., Durduran, T., Furuya, D., Cheung, C., Greenberg, J. H., & Yodh, A. G. (2003). Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. Journal of Cerebral Blood Flow and Metabolism, 23(8), 911–924. https://doi.org/10.1097/01.WCB.0000076703.71231.BB
Cusick, S. E., & Georgieff, M. K. (2016). The role of nutrition in brain development: The Golden opportunity of the “first 1000 days.”. The Journal of Pediatrics, 175, 16–21. https://doi.org/10.1016/j.jpeds.2016.05.013
Czeszumski, A., Eustergerling, S., Lang, A., Menrath, D., Gerstenberger, M., Schuberth, S., Schreiber, F., Rendon, Z. Z., & König, P. (2020). Hyperscanning: A valid method to study neural inter‐brain underpinnings of social interaction. Frontiers in Human Neuroscience, 14, 39. https://doi.org/10.3389/fnhum.2020.00039
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface‐based analysis. NeuroImage, 9(2), 179–194. https://doi.org/10.1006/nimg.1998.0395
de Lange, P., Boto, E., Holmes, N., Hill, R. M., Bowtell, R., Wens, V., De Tiège, X., Brookes, M. J., & Bourguignon, M. (2021). Measuring the cortical tracking of speech with optically‐pumped magnetometers. NeuroImage, 233, 117969. https://doi.org/10.1016/j.neuroimage.2021.117969
Dehaene‐lambertz, G., Dehaene, S., & Hertz‐Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science (80‐), 298(5600), 2013–2016. https://doi.org/10.1126/science.1077066
Dehghani, H., Eames, M. E., Yalavarthy, P. K., Davis, S. C., Srinivasan, S., Carpenter, C. M., Pogue, B. W., & Paulsen, K. D. (2008). Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction. Communications in Numerical Methods in Engineering, 25(6), 711–732. https://doi.org/10.1002/cnm.1162
Dehghani, H., Pogue, B. W., Poplack, S. P., & Paulsen, K. D. (2003). Multiwavelength three‐dimensional near‐infrared tomography of the breast: Initial simulation, phantom, and clinical results. Applied Optics, 42(1), 135–145. https://doi.org/10.1364/ao.42.000135
Dehghani, H., White, B. R., Zeff, B. W., Tizzard, A., & Culver, J. P. (2009). Depth sensitivity analysis of high‐density imaging arrays for mapping brain function with diffuse optical tomography. Biomed Opt BIOMED 2008., 48(10), 137–143. https://doi.org/10.1364/biomed.2008.bmd27
Eggebrecht, A. T., Ferradal, S. L., Robichaux‐Viehoever, A., Hassanpour, M. S., Dehghani, H., Snyder, A. Z., Hershey, T., & Culver, J. P. (2014). Mapping distributed brain function and networks with diffuse optical tomography. Nature Photonics, 8(6), 448–454. https://doi.org/10.1038/nphoton.2014.107
Eggebrecht, A. T., White, B. R., Ferradal, S. L., Chen, C., Zhan, Y., Snyder, A. Z., Dehghani, H., & Culver, J. P. (2012). A quantitative spatial comparison of high‐density diffuse optical tomography and fMRI cortical mapping. NeuroImage, 61(4), 1120–1128. https://doi.org/10.1016/j.neuroimage.2012.01.124
Fantini, S., & Sassaroli, A. (2020). Frequency‐domain techniques for cerebral and functional near‐infrared spectroscopy. Frontiers in Neuroscience, 14(April), 1–18. https://doi.org/10.3389/fnins.2020.00300
Ferradal, S. L., Eggebrecht, A. T., Hassanpour, M., Snyder, A. Z., & Culver, J. P. (2014). Atlas‐based head modeling and spatial normalization for high‐density diffuse optical tomography: In vivo validation against fMRI. NeuroImage, 85, 117–126. https://doi.org/10.1016/j.neuroimage.2013.03.069
Ferradal, S. L., Liao, S. M., Eggebrecht, A. T., Shimony, J. S., Inder, T. E., Culver, J. P., & Smyser, C. D. (2016). Functional imaging of the developing brain at the bedside using diffuse optical tomography. Cerebral Cortex, 26(4), 1558–1568. https://doi.org/10.1093/cercor/bhu320
Feys, O., Corvilain, P., Aeby, A., Sculier, C., Holmes, N., Brookes, M., Goldman, S., Wens, V., & de Tiège, X. (2022). On‐scalp optically pumped magnetometers versus cryogenic magnetoencephalography for diagnostic evaluation of epilepsy in school‐aged children. Radiology, 304(2), 429–434. https://doi.org/10.1148/radiol.212453
Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1), 70–80. https://doi.org/10.1109/42.906426
Fishell, A. K., Arbeláez, A. M., Valdés, C. P., Burns‐Yocum, T. M., Sherafati, A., Richter, E. J., Torres, M., Eggebrecht, A. T., Smyser, C. D., & Culver, J. P. (2020). Portable, field‐based neuroimaging using high‐density diffuse optical tomography. NeuroImage, 215, 116541. https://doi.org/10.1016/j.neuroimage.2020.116541
Fishell, A. K., Burns‐Yocum, T. M., Bergonzi, K. M., Eggebrecht, A. T., & Culver, J. P. (2019). Mapping brain function during naturalistic viewing using high‐density diffuse optical tomography. Scientific Reports, 9(1), 11115. https://doi.org/10.1038/s41598-019-45555-8
Fonov, V., Evans, A., McKinstry, R., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age‐appropriate brain templates from birth to adulthood. NeuroImage, 47(Supplement 1), S102. https://doi.org/10.1016/S1053-8119(09)70884-5
Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L., & Brain Development Cooperative Group. (2011). Unbiased average age‐appropriate atlases for pediatric studies. NeuroImage, 54(1), 313–327. https://doi.org/10.1016/j.neuroimage.2010.07.033
Frijia, E. M., Billing, A., Lloyd‐Fox, S., Vidal Rosas, E., Collins‐Jones, L., Crespo‐Llado, M. M., Amadó, M. P., Austin, T., Edwards, A., Dunne, L., Smith, G., Nixon‐Hill, R., Powell, S., Everdell, N. L., & Cooper, R. J. (2021). Functional imaging of the developing brain with wearable high‐density diffuse optical tomography: A new benchmark for infant neuroimaging outside the scanner environment. NeuroImage, 225, 117490. https://doi.org/10.1016/j.neuroimage.2020.117490
Golland, Y., Bentin, S., Gelbard, H., Benjamini, Y., Heller, R., Nir, Y., Hasson, U., & Malach, R. (2007). Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cerebral Cortex, 17(4), 766–777. https://doi.org/10.1093/cercor/bhk030
Greene, D. J., Koller, J. M., Hampton, J. M., Wesevich, V., Van, A. N., Nguyen, A. L., Hoyt, C. R., Mcintyre, L., Earl, E. A., Klein, R. L., et al. (2018). Behavioral interventions for reducing head motion during MRI scans in children. NeuroImage, 171, 234–245. https://doi.org/10.1016/j.neuroimage.2018.01.023
Gregg, N. M., White, B. R., Zeff, B. W., Berger, A. J., & Culver, J. P. (2010). Brain specificity of diffuse optical imaging: Improvements from superficial signal regression and tomography. Frontiers in Neuroenergetics, 2, 14. https://doi.org/10.3389/fnene.2010.00014
Hakuno, Y., Pirazzoli, L., Blasi, A., Johnson, M. H., & Lloyd‐Fox, S. (2018). Optical imaging during toddlerhood: Brain responses during naturalistic social interactions. Neurophotonics, 5(1), 11020. https://doi.org/10.1117/1.NPh.5.1.011020
Hassanpour, M. S., Eggebrecht, A. T., Culver, J. P., & Peelle, J. E. (2015). Mapping cortical responses to speech using high‐density diffuse optical tomography. NeuroImage, 117, 319–326. https://doi.org/10.1016/j.neuroimage.2015.05.058
Hassanpour, M. S., White, B. R., Eggebrecht, A. T., Ferradal, S. L., Snyder, A. Z., & Culver, J. P. (2014). Statistical analysis of high density diffuse optical tomography. NeuroImage, 85(1), 104–116. https://doi.org/10.1016/j.neuroimage.2013.05.105
Hasson, U., Malach, R., & Heeger, D. J. (2010). Reliability of cortical activity during natural stimulation. Trends in Cognitive Sciences, 14(1), 40–48. https://doi.org/10.1016/j.tics.2009.10.011
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science (80‐)., 303(5664), 1634–1640. https://doi.org/10.1126/science.1089506
Hertrich, I., Dietrich, S., & Ackermann, H. (2020). The margins of the language network in the brain. Frontiers in Communication, 5(November), 1–26. https://doi.org/10.3389/fcomm.2020.519955
Hill, R. M., Boto, E., Holmes, N., Hartley, C., Seedat, Z. A., Leggett, J., Roberts, G., Shah, V., Tierney, T. M., Woolrich, M. W., Stagg, C. J., Barnes, G. R., Bowtell, R., Slater, R., & Brookes, M. J. (2019). A tool for functional brain imaging with lifespan compliance. Nature Communications, 10(1), 4785. https://doi.org/10.1038/s41467-019-12486-x
Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2006). A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage, 29(2), 368–382. https://doi.org/10.1016/j.neuroimage.2005.08.065
Kawakubo, Y., Kuwabara, H., Watanabe, K.‐I., Minowa, M., Someya, T., Minowa, I., Kono, T., Nishida, H., Sugiyama, T., Kato, N., & Kasai, K. (2009). Impaired prefrontal hemodynamic maturation in autism and unaffected siblings. PLoS One, 4(9), e6881. https://doi.org/10.1371/journal.pone.0006881
Kim, H., Lee, E. C., Seo, Y., Im, D. H., & Lee, I. K. (2021). Character detection in animated movies using multi‐style adaptation and visual attention. IEEE Transactions on Multimedia, 23, 1990–2004. https://doi.org/10.1109/TMM.2020.3006372
Knecht, S., Drager, B., Deppe, M., Bobe, L., Lohmann, H., Floel, A., Ringelstein, E.‐B., & Henningsen, H. (2000). Handedness and hemispheric language dominance in healthy humans. Brain, 123(12), 2512–2518. https://doi.org/10.1093/brain/123.12.2512
Le Grand, R., Mondloch, C. J., Maurer, D., & Brent, H. P. (2003). Expert face processing requires visual input to the right hemisphere during infancy. Nature Neuroscience, 6(10), 1108–1112. https://doi.org/10.1038/nn1121
Liao, S. M., Ferradal, S. L., White, B. R., Gregg, N., Inder, T. E., & Culver, J. P. (2012). High‐density diffuse optical tomography of term infant visual cortex in the nursery. Journal of Biomedical Optics, 17(8), 081414. https://doi.org/10.1117/1.JBO.17.8.081414
Lloyd‐Fox, S., Begus, K., Halliday, D., Pirazzoli, L., Blasi, A., Papademetriou, M., Darboe, M. K., Prentice, A. M., Johnson, M. H., Moore, S. E., & Elwell, C. E. (2017). Cortical specialisation to social stimuli from the first days to the second year of life: A rural Gambian cohort. Developmental Cognitive Neuroscience, 25, 92–104. https://doi.org/10.1016/j.dcn.2016.11.005
Lloyd‐Fox, S., Blasi, A., & Elwell, C. E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience and Biobehavioral Reviews, 34(3), 269–284. https://doi.org/10.1016/j.neubiorev.2009.07.008
Lloyd‐Fox, S., Blasi, A., Elwell, C. E., Charman, T., Murphy, D., & Johnson, M. H. (2013). Reduced neural sensitivity to social stimuli in infants at risk for autism. Proceedings of the Biological Sciences, 280(1758), 20123026. https://doi.org/10.1098/rspb.2016.3026
Long, X., Benischek, A., Dewey, D., & Lebel, C. (2017). Age‐related functional brain changes in young children. NeuroImage, 155(April), 322–330. https://doi.org/10.1016/j.neuroimage.2017.04.059
Mitra, A., Snyder, A. Z., Tagliazucchi, E., Laufs, H., Elison, J., Emerson, R. W., Shen, M. D., Wolff, J. J., Botteron, K. N., Dager, S., Estes, A. M., Evans, A., Gerig, G., Hazlett, H. C., Paterson, S. J., Schultz, R. T., Styner, M. A., Zwaigenbaum, L., The IBIS Network, … Raichle, M. (2017). Resting‐state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness. PLoS One, 12(11), e0188122. https://doi.org/10.1371/journal.pone.0188122
Moraczewski, D., Chen, G., & Redcay, E. (2018). Inter‐subject synchrony as an index of functional specialization in early childhood. Scientific Reports, 8(1), 2252. https://doi.org/10.1038/s41598-018-20600-0
Newbold, D. J., Laumann, T. O., Hoyt, C. R., Hampton, J. M., Montez, D. F., Raut, R. V., Ortega, M., Mitra, A., Nielsen, A. N., Miller, D. B., et al. (2020). Plasticity and spontaneous activity pulses in disused human brain circuits. Neuron, 107(3), 580–589.e6. https://doi.org/10.1016/j.neuron.2020.05.007
Otsuka, Y., Nakato, E., Kanazawa, S., Yamaguchi, M. K., Watanabe, S., & Kakigi, R. (2007). Neural activation to upright and inverted faces in infants measured by near infrared spectroscopy. NeuroImage, 34(1), 399–406. https://doi.org/10.1016/j.neuroimage.2006.08.013
Pagel, M. (2017). Q&a: What is human language, when did it evolve and why should we care? BMC Biology, 15(1), 1–6. https://doi.org/10.1186/s12915-017-0405-3
Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2020). The present and future use of functional near‐infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5–29. https://doi.org/10.1111/nyas.13948
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018
Rahn, R. M., Brier, L. M., Bice, A. R., Reisman, M. D., Dougherty, J. D., & Culver, J. P. (2022). Functional connectivity of the developing mouse cortex. Cereb Cortex, 32(8), 1755–1768. https://doi.org/10.1093/cercor/bhab312
Raschle, N., Zuk, J., Ortiz‐Mantilla, S., Sliva, D. D., Franceschi, A., Grant, P. E., Benasich, A. A., & Gaab, N. (2012). Pediatric neuroimaging in early childhood and infancy: Challenges and practical guidelines. Annals of the New York Academy of Sciences, 1252, 43–50. https://doi.org/10.1111/j.1749-6632.2012.06457.x
Redcay, E., Haist, F., & Courchesne, E. (2008). Functional neuroimaging of speech perception during a pivotal period in language acquisition. Developmental Science, 11(2), 237–252. https://doi.org/10.1111/j.1467-7687.2008.00674.x
Reh, R. K., Dias, B. G., Nelson, C. A., Kaufer, D., Werker, J. F., Kolb, B., Levine, J. D., & Hensch, T. K. (2020). Critical period regulation across multiple timescales. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23242–23251. https://doi.org/10.1073/pnas.1820836117
Ren, Y., Nguyen, V. T., Guo, L., & Guo, C. C. (2017). Inter‐subject functional correlation reveal a hierarchical organization of extrinsic and intrinsic systems in the brain. Scientific Reports, 7(1), 10876. https://doi.org/10.1038/s41598-017-11324-8
Richardson, H., Lisandrelli, G., Riobueno‐Naylor, A., & Saxe, R. (2018). Development of the social brain from age three to twelve years. Nature Communications, 9(1), 1027. https://doi.org/10.1038/s41467-018-03399-2
Richter, W., & Richter, M. (2003). The shape of the fMRI BOLD response in children and adults changes systematically with age. NeuroImage, 20(2), 1122–1131. https://doi.org/10.1016/S1053-8119(03)00347-1
Rohe, T., & Noppeney, U. (2016). Distinct computational principles govern multisensory integration in primary sensory and association cortices. Current Biology, 26(4), 509–514. https://doi.org/10.1016/j.cub.2015.12.056
Ségonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22(3), 1060–1075. https://doi.org/10.1016/j.neuroimage.2004.03.032
Sherafati, A., Snyder, A. Z., Eggebrecht, A. T., Bergonzi, K. M., Burns‐Yocum, T. M., Lugar, H. M., Ferradal, S. L., Robichaux‐Viehoever, A., Smyser, C. D., Palanca, B. J., Hershey, T., & Culver, J. P. (2020). Global motion detection and censoring in high‐density diffuse optical tomography. Human Brain Mapping, 41(14), 4093–4112. https://doi.org/10.1002/hbm.25111
Siegel, J. S., Power, J. D., Dubis, J. W., Vogel, A. C., Church, J. A., Schlaggar, B. L., & Petersen, S. E. (2014). Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high‐motion data points. Human Brain Mapping, 35(5), 1981–1996. https://doi.org/10.1002/hbm.22307
Smyser, C. D., Snyder, A. Z., & Neil, J. J. (2011). Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain. NeuroImage, 56(3), 1437–1452. https://doi.org/10.1016/j.neuroimage.2011.02.073
Sokolowski, H. M., & Levine, B. (2023). Common neural substrates of diverse neurodevelopmental disorders. Brain, 146(2), 438–447. https://doi.org/10.1093/brain/awac387
Tripathy, K., Markow, Z. E., Fishell, A. K., Sherafati, A., Burns‐Yocum, T. M., Schroeder, M. L., Svoboda, A. M., Eggebrecht, A. T., Anastasio, M. A., Schlaggar, B. L., & Culver, J. P. (2021). Decoding visual information from high‐density diffuse optical tomography neuroimaging data. NeuroImage, 226, 117516. https://doi.org/10.1016/j.neuroimage.2020.117516
Tsao, D. Y., & Livingstone, M. S. (2008). Mechanisms of face perception. Annual Review of Neuroscience, 31, 411–437. https://doi.org/10.1146/annurev.neuro.30.051606.094238
Vanderwal, T., Eilbott, J., & Castellanos, F. X. (2019). Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging. Developmental Cognitive Neuroscience, 36, 100600. https://doi.org/10.1016/j.dcn.2018.10.004
Weiss‐Croft, L. J., & Baldeweg, T. (2015). Maturation of language networks in children: A systematic review of 22 years of functional MRI. NeuroImage, 123, 269–281. https://doi.org/10.1016/j.neuroimage.2015.07.046
White, B. R., & Culver, J. P. (2010). Quantitative evaluation of high‐density diffuse optical tomography: In vivo resolution and mapping performance. Journal of Biomedical Optics, 15(2), 026006. https://doi.org/10.1117/1.3368999
Wiesel, T. N., & Hubel, D. H. (1963). Single‐cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017. https://doi.org/10.1152/jn.1963.26.6.1003, http://dinshi.com/wp-content/uploads/2014/03/Wiesel-Striate-cortex-responses-in-deprived-eye-J-Neurophys-1963.pdf
Wiesel, T. N., & Hubel, D. H. (1965). Extent of recovery from the effects of visual deprivation in kittens. Journal of Neurophysiology, 28(6), 1060–1072. https://doi.org/10.1152/jn.1965.28.6.1060
Wijeakumar, S., Huppert, T. J., Magnotta, V. A., Buss, A. T., & Spencer, J. P. (2017). Validating an image‐based fNIRS approach with fMRI and a working memory task. NeuroImage, 147, 204–218. https://doi.org/10.1016/j.neuroimage.2016.12.007
Yeung, M. K., Lee, T. L., & Chan, A. S. (2019). Frontal lobe dysfunction underlies the differential word retrieval impairment in adolescents with high‐functioning autism. Autism Research, 12(4), 600–613. https://doi.org/10.1002/aur.2082
Yu, X., Ferradal, S. L., Silva, D. D., Dunstan, J., Carruthers, C., Sanfilippo, J., Zuk, J., Zöllei, L., Boyd, E., Gagoski, B., Ou, Y., Grant, P. E., & Gaab, N. (2021). Functional connectivity in infancy and toddlerhood predicts long‐term language and preliteracy outcomes. Cerebral Cortex, 32(4), 725–736. https://doi.org/10.1093/cercor/bhab230
Yücel, M. A., Selb, J. J., Huppert, T. J., Franceschini, M. A., & Boas, D. A. (2017). Functional near infrared spectroscopy: Enabling routine functional brain imaging. Current Opinion in Biomedical Engineering, 4, 78–86. https://doi.org/10.1016/j.cobme.2017.09.011
Zeff, B. W., White, B. R., Dehghani, H., Schlaggar, B. L., & Culver, J. P. (2007). Retinotopic mapping of adult human visual cortex with high‐density diffuse optical tomography. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12169–12174. https://doi.org/10.1073/pnas.0611266104, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1924577&tool=pmcentrez&rendertype=abstract
Zhao, H., & Cooper, R. J. (2017). Review of recent progress toward a fiberless, whole‐scalp diffuse optical tomography system. Neurophotonics, 5(1), 011012. https://doi.org/10.1117/1.NPh.5.1.011012