Are novel or locally adapted pathogens more devastating and why? Resolving opposing hypotheses.
chytridiomycosis
coevolution
infectious disease
local adaptation
naïve host syndrome
pathogen pollution
Journal
Ecology letters
ISSN: 1461-0248
Titre abrégé: Ecol Lett
Pays: England
ID NLM: 101121949
Informations de publication
Date de publication:
May 2024
May 2024
Historique:
revised:
27
03
2024
received:
13
06
2023
accepted:
28
03
2024
medline:
7
5
2024
pubmed:
7
5
2024
entrez:
7
5
2024
Statut:
ppublish
Résumé
There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Meta-Analysis
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14431Subventions
Organisme : Division of Environmental Biology
ID : 2109293
Organisme : Division of Environmental Biology
ID : 2017785
Organisme : Division of Integrative Organismal Systems
ID : 1754868
Informations de copyright
© 2024 John Wiley & Sons Ltd.
Références
Addis, B.R., Lowe, W.H., Hossack, B.R. & Allendorf, F.W. (2015) Population genetic structure and disease in montane boreal toads: more heterozygous individuals are more likely to be infected with amphibian chytrid. Conservation Genetics, 16, 833–844.
Aguirre, A.A., Gore, M.L., Kammer‐Kerwick, M., Curtin, K.M., Heyns, A., Preiser, W. et al. (2021) Opportunities for transdisciplinary science to mitigate biosecurity risks from the intersectionality of illegal wildlife trade with emerging zoonotic pathogens. Frontiers in Ecology and Evolution, 9, 604929.
Albert, E.M., Fernández‐Beaskoetxea, S., Godoy, J.A., Tobler, U., Schmidt, B.R. & Bosch, J. (2015) Genetic management of an amphibian population after a chytridiomycosis outbreak. Conservation Genetics, 16, 103–111.
Altmann, M.C. & Kolby, J.E. (2017) Trends in US imports of amphibians in light of the potential spread of chytrid fungus, Batrachochytrium dendrobatidis (Bd), and implications for conservation. Journal of International Wildlife Law & Policy, 20, 226–252.
Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R. & Daszak, P. (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544.
Bai, C., Liu, X., Fisher, M.C., Garner, T.W. & Li, Y. (2012) Global and endemic Asian lineages of the emerging pathogenic fungus Batrachochytrium dendrobatidis widely infect amphibians in China. Diversity and Distributions, 18, 307–318.
Banks, S.C., Scheele, B.C., Macris, A., Hunter, D., Jack, C. & Fraser, C.I. (2020) Chytrid fungus infection in alpine tree frogs is associated with individual heterozygosity and population isolation but not population‐genetic diversity. Frontiers of Biogeography, 12(1). Available from: https://doi.org/10.21425/F5FBG43875
Becker, C., Greenspan, S., Tracy, K., Dash, J., Lambertini, C., Jenkinson, T. et al. (2017) Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fungal Ecology, 26, 45–50.
Bolnick, D.I. & Stutz, W.E. (2017) Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature, 546, 285–288.
Bowe, B., Xie, Y. & Al‐Aly, Z. (2022) Acute and postacute sequelae associated with SARS‐CoV‐2 reinfection. Nature Medicine, 28, 2398–2405.
Boyle, D.G., Boyle, D.B., Olsen, V., Morgan, J.A.T. & Hyatt, A.D. (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real‐time Taqman PCR assay. Diseases of Aquatic Organisms, 60, 141–148.
Brannelly, L.A., Richards‐Zawacki, C.L. & Pessier, A.P. (2012) Clinical trials with itraconazole as a treatment for chytrid fungal infections in amphibians. Diseases of Aquatic Organisms, 101, 95–104.
Carey, C., Cohen, N. & Rollins‐Smith, L. (1999) Amphibian declines: an immunological perspective. Developmental and Comparative Immunology, 23, 459–472.
Chatfield, M.W.H. & Richards‐Zawacki, C.L. (2011) Elevated temperature as a treatment for Batrachochytrium dendrobatidis infection in captive frogs. Diseases of Aquatic Organisms, 94, 235–238.
Chavda, V.P., Bezbaruah, R., Deka, K., Nongrang, L. & Kalita, T. (2022) The Delta and Omicron variants of SARS‐CoV‐2: what we know so far. Vaccine, 10, 1926.
Chung, Y., Rabe‐Hesketh, S., Dorie, V., Gelman, A. & Liu, J. (2013) A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika, 78, 685–709.
Cohen, J.M., Civitello, D.J., Venesky, M.D., McMahon, T.A. & Rohr, J.R. (2018) Thermal mismatches explain how climate change and infectious disease drove widespread amphibian extinctions. Global Change Biology, 25, 927–937.
Cunningham, A., Daszak, P. & Rodriguez, J. (2003) Pathogen pollution: defining a parasitological threat to biodiversity conservation. The Journal of Parasitology, 89, S78–S83.
Cunningham, A.A., Daszak, P. & Wood, J.L. (2017) One health, emerging infectious diseases and wildlife: two decades of progress? Philosophical Transactions of the Royal Society, B: Biological Sciences, 372, 20160167.
Daszak, P., Cunningham, A.A. & Hyatt, A.D. (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science, 287, 443–449.
de Castro, F. & Bolker, B. (2005) Mechanisms of disease‐induced extinction. Ecology Letters, 8, 117–126.
Dennehy, J.J., Friedenberg, N.A., Holt, R.D. & Turner, P.E. (2006) Viral ecology and the maintenance of novel host use. The American Naturalist, 167, 429–439.
Farrell, M.J. & Davies, T.J. (2019) Disease mortality in domesticated animals is predicted by host evolutionary relationships. Proceedings of the National Academy of Sciences, 116, 7911–7915.
Fisher, M.C. & Garner, T.W. (2020) Chytrid fungi and global amphibian declines. Nature Reviews Microbiology, 18, 332–343.
Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L. et al. (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186–194.
Fu, M. & Waldman, B. (2019) Ancestral chytrid pathogen remains hypervirulent following its long coevolution with amphibian hosts. Proceedings of the Royal Society B, 286, 20190833.
Gandon, S. & van Zandt, P.A. (1998) Local adaptation and host–parasite interactions. Trends in Ecology & Evolution, 13, 214–216.
Golas, B.D., Goodell, B. & Webb, C.T. (2021) Host adaptation to novel pathogen introduction: predicting conditions that promote evolutionary rescue. Ecology Letters, 24, 2238–2255.
Greischar, M.A. & Koskella, B. (2007) A synthesis of experimental work on parasite local adaptation. Ecology Letters, 10, 418–434.
Grogan, L.F., Mangan, M.J. & McCallum, H.I. (2023) Amphibian infection tolerance to chytridiomycosis. Philosophical Transactions of the Royal Society B, 378, 20220133.
Guth, S., Visher, E., Boots, M. & Brook, C.E. (2019) Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal–human interface. Philosophical Transactions of the Royal Society B, 374, 20190296.
Johnson, P., Calhoun, D.M., Moss, W.E., McDevitt‐Galles, T., Riepe, T.B., Hallas, J.M. et al. (2021) The cost of travel: how dispersal ability limits local adaptation in host–parasite interactions. Journal of Evolutionary Biology, 34, 512–524.
Kaltz, O. & Shykoff, J.A. (1998) Local adaptation in host–parasite systems. Heredity, 81, 361–370.
Kawecki, T.J. & Ebert, D. (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225–1241.
Lambertini, C., Becker, C.G., Jenkinson, T.S., Rodriguez, D., da Silva Leite, D., James, T.Y. et al. (2016) Local phenotypic variation in amphibian‐killing fungus predicts infection dynamics. Fungal Ecology, 20, 15–21.
Lively, C.M. & Dybdahl, M.F. (2000) Parasite adaptation to locally common host genotypes. Nature, 405, 679–681.
Lively, C.M. & Jokela, J. (1996) Clinal variation for local adaptation in a host–parasite interaction. Proceedings of the Royal Society of London, Series B: Biological Sciences, 263, 891–897.
Lloyd‐Smith, J.O., Cross, P.C., Briggs, C.J., Daugherty, M., Getz, W.M., Latto, J. et al. (2005) Should we expect population thresholds for wildlife disease? Trends in Ecology & Evolution, 20, 511–519.
Longdon, B., Brockhurst, M.A., Russell, C.A., Welch, J.J. & Jiggins, F.M. (2014) The evolution and genetics of virus host shifts. PLoS Pathogens, 10, e1004395.
Longdon, B., Hadfield, J.D., Day, J.P., Smith, S.C., McGonigle, J.E., Cogni, R. et al. (2015) The causes and consequences of changes in virulence following pathogen host shifts. PLoS Pathogens, 11, e1004728.
Longo, A.V., Rodriguez, D., da Silva Leite, D., Toledo, L.F., Mendoza Almeralla, C., Burrowes, P.A. et al. (2013) ITS1 copy number varies among Batrachochytrium dendrobatidis strains: implications for qPCR estimates of infection intensity from field‐collected amphibian skin swabs. PLoS One, 8, e59499.
Lymbery, A.J., Morine, M., Kanani, H.G., Beatty, S.J. & Morgan, D.L. (2014) Co‐invaders: the effects of alien parasites on native hosts. International Journal for Parasitology: Parasites and Wildlife, 3, 171–177.
Mahon, M.B., Jennings, D.E., Civitello, D.J., Lajeunesse, M.J. & Rohr, J.R. (2021) Functional similarity, not phylogenetic relatedness, predicts the relative strength of competition. Biorxiv, 2021.2007.2021.453226.
Mastitsky, S.E., Karatayev, A.Y., Burlakova, L.E. & Molloy, D.P. (2010) Parasites of exotic species in invaded areas: does lower diversity mean lower epizootic impact? Diversity and Distributions, 16, 798–803.
McDonald, C., Ellison, A., Toledo, L., James, T. & Zamudio, K.R. (2020) Gene expression varies within and between enzootic and epizootic lineages of Batrachochytrium dendrobatidis (Bd) in the Americas. Fungal Biology, 124, 34–43.
McKenzie, V.J. & Peterson, A.C. (2012) Pathogen pollution and the emergence of a deadly amphibian pathogen. Molecular Ecology, 21, 5151–5154.
McMahon, T.A., Brannelly, L.A., Chatfield, M.W.H., Johnson, P.T.J., Joseph, M.B., McKenzie, V.J. et al. (2013) Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proceedings of the National Academy of Sciences of the United States of America, 110, 210–215.
McMahon, T.A., Sears, B.F., Venesky, M.D., Bessler, S.M., Brown, J.M., Deutsch, K. et al. (2014) Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature, 511, 224–227.
Morens, D.M., Daszak, P., Markel, H. & Taubenberger, J.K. (2020) Pandemic COVID‐19 joins history's pandemic legion. MBio, 11, e00812–e00820.
Morran, L.T., Schmidt, O.G., Gelarden, I.A., Parrish, R.C. & Lively, C.M. (2011) Running with the Red Queen: host–parasite coevolution selects for biparental sex. Science, 333, 216–218.
Nordheim, C.L., Grim, J.M. & McMahon, T.A. (2021) Batrachochytrium dendrobatidis (Bd) exposure damages gill tissue and inhibits crayfish respiration. Diseases of Aquatic Organisms, 146, 67–73.
O'Hanlon, S.J., Rieux, A., Farrer, R.A., Rosa, G.M., Waldman, B., Bataille, A. et al. (2018) Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 360, 621–627.
Parker, I.M., Saunders, M., Bontrager, M., Weitz, A.P., Hendricks, R., Magarey, R. et al. (2015) Phylogenetic structure and host abundance drive disease pressure in communities. Nature, 520, 542–544.
R Core Team. (2013) R: a language and environment for statistical computing. Vienna: R Core Team.
Raffel, T.R., Halstead, N.T., McMahon, T., Romansic, J.M., Venesky, M.D. & Rohr, J.R. (2013) Disease and thermal acclimation in a more variable and unpredictable climate. Nature Climate Change, 3, 146–151.
Reeder, D.M., Frank, C.L., Turner, G.G., Meteyer, C.U., Kurta, A., Britzke, E.R. et al. (2012) Frequent arousal from hibernation linked to severity of infection and mortality in bats with white‐nose syndrome. PLoS One, 7, e38920.
Rohr, J.R., Raffel, T.R. & Hall, C.A. (2010) Developmental variation in resistance and tolerance in a multi‐host‐parasite system. Functional Ecology, 24, 1110–1121.
Rohr, J.R., Sack, A., Bakhoum, S., Barrett, C.B., Lopez‐Carr, D., Chamberlin, A.J. et al. (2023) A planetary health innovation for disease, food and water challenges in Africa. Nature, 619, 782–787.
Sauer, E.L., Cohen, J.M., Lajeunesse, M.J., McMahon, T.A., Civitello, D.J., Knutie, S.A. et al. (2020) A meta‐analysis reveals temperature, dose, life stage, and taxonomy influence host susceptibility to a fungal parasite. Ecology, 101, e02979.
Scheele, B.C., Foster, C.N., Hunter, D.A., Lindenmayer, D.B., Schmidt, B.R. & Heard, G.W. (2019) Living with the enemy: facilitating amphibian coexistence with disease. Biological Conservation, 236, 52–59.
Scheele, B.C., Pasmans, F., Skerratt, L.F., Berger, L., Martel, A., Beukema, W. et al. (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 363, 1459–1463.
Strauss, A., White, A. & Boots, M. (2012) Invading with biological weapons: the importance of disease‐mediated invasions. Functional Ecology, 26, 1249–1261.
Taraschewski, H. (2006) Hosts and parasites as aliens. Journal of Helminthology, 80, 99–128.
Therneau, T. (2014) A package for survival analysis in S. R package version 2.37‐7.
Torchin, M.E., Lafferty, K.D., Dobson, A.P., McKenzie, V.J. & Kuris, A.M. (2003) Introduced species and their missing parasites. Nature, 421, 628–630.
Torchin, M.E. & Mitchell, C.E. (2004) Parasites, pathogens, and invasions by plants and animals. Frontiers in Ecology and the Environment, 2, 183–190.
Urban, M.C., Strauss, S.Y., Pelletier, F., Palkovacs, E.P., Leibold, M.A., Hendry, A.P. et al. (2020) Evolutionary origins for ecological patterns in space. Proceedings of the National Academy of Sciences, 117, 17482–17490.
Venesky, M.D., Raffel, T.R., McMahon, T.A. & Rohr, J.R. (2014) Confronting inconsistencies in the amphibian‐chytridiomycosis system: implications for disease management. Biological Reviews, 89, 477–483.
Voyles, J., Woodhams, D.C., Saenz, V., Byrne, A.Q., Perez, R., Rios‐Sotelo, G. et al. (2018) Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science, 359, 1517–1519.
Waddle, A.W., Levy, J.E., Rivera, R., van Breukelen, F., Nash, M. & Jaeger, J.R. (2019) Population‐level resistance to chytridiomycosis is life‐stage dependent in an imperiled anuran. EcoHealth, 16, 701–711.