Identification of a family of species-selective complex I inhibitors as potential anthelmintics.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 May 2024
Historique:
received: 22 08 2023
accepted: 28 03 2024
medline: 9 5 2024
pubmed: 9 5 2024
entrez: 8 5 2024
Statut: epublish

Résumé

Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.

Identifiants

pubmed: 38719808
doi: 10.1038/s41467-024-47331-3
pii: 10.1038/s41467-024-47331-3
doi:

Substances chimiques

Anthelmintics 0
Electron Transport Complex I EC 7.1.1.2
Benzimidazoles 0
rhodoquinone JVC3PUU81F
Quinones 0
Biological Products 0
Ubiquinone 1339-63-5

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

3367

Informations de copyright

© 2024. The Author(s).

Références

Torgerson, P. R. et al. World health organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med. 12, e1001920 (2015).
pubmed: 26633705 pmcid: 4668834 doi: 10.1371/journal.pmed.1001920
Pullan, R. L., Smith, J. L., Jasrasaria, R. & Brooker, S. J. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit. Vectors 7, 37 (2014).
pubmed: 24447578 pmcid: 3905661 doi: 10.1186/1756-3305-7-37
World Health Organization. Prevention and Control of Schistosomiasis and Soil-transmitted Helminthiasis: Report of a WHO Expert Committee. 1–66 https://www.who.int/publications/i/item/WHO-TRS-912 (2002).
Lacey, E. Mode of action of benzimidazoles. Parasitol. Today 6, 112–115 (1990).
pubmed: 15463312 doi: 10.1016/0169-4758(90)90227-U
Brown, H. D. et al. Antiparasitic drugs. IV. 2-(4’-THIAZOLYL)-benzimidazole, a new anthelmintic J. Am. Chem. Soc. 83, 1764–1765 (1961).
doi: 10.1021/ja01468a052
Campbell, W. C., Fisher, M. H., Stapley, E. O., Albers-Schönberg, G. & Jacob, T. A. Ivermectin: a potent new antiparasitic agent. Science 221, 823–828 (1983).
pubmed: 6308762 doi: 10.1126/science.6308762
Campbell, W. C. History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Curr. Pharm. Biotechnol. 13, 853–865 (2012).
pubmed: 22039784 doi: 10.2174/138920112800399095
Krücken, J. et al. Reduced efficacy of albendazole against Ascaris lumbricoides in rwandan school children. Int. J. Parasitol. Drugs Drug Resist. 7, 262–271 (2017).
pubmed: 28697451 pmcid: 5503839 doi: 10.1016/j.ijpddr.2017.06.001
Osei-Atweneboana, M. Y. et al. Phenotypic evidence of emerging ivermectin resistance in onchocerca volvulus. PLoS Negl. Trop. Dis. 5, e998 (2011).
pubmed: 21468315 pmcid: 3066159 doi: 10.1371/journal.pntd.0000998
Tielens, A. G. M. Energy generation in parasitic helminths. Parasitol. Today 10, 346–352 (1994).
pubmed: 15275412 doi: 10.1016/0169-4758(94)90245-3
Tielens, A. G. M. & Van Hellemond, J. J. The electron transport chain in anaerobically functioning eukaryotes. Biochim. Biophys. Acta—Bioenerg. 1365, 71–78 (1998).
doi: 10.1016/S0005-2728(98)00045-0
Kita, K., Nihei, C. & Tomitsuka, E. Parasite mitochondria as drug target: diversity and dynamic changes during the life cycle. Curr. Med. Chem. 10, 2535–2548 (2003).
pubmed: 14529469 doi: 10.2174/0929867033456549
Kita, K. [Current trend of drug development for neglected tropical diseases (NTDs)]. Yakugaku Zasshi 136, 205–211 (2016).
pubmed: 26831795 doi: 10.1248/yakushi.15-00233-1
Moore, H. W. & Folkers, K. Coenzyme Q. LXII. structure and synthesis of rhodoquinone, a natural aminoquinone of the coenzyme Q group. J. Am. Chem. Soc. 87, 1409–1410 (1965).
pubmed: 14293762 doi: 10.1021/ja01084a065
OZAWA, H., SATO, M., NATORI, S. & OGAWA, H. Rhodoquinone-9 from the muscle of Ascaris lumbricoides var. suis. Chem. Pharm. Bull. (Tokyo) 18, 1099–1103 (1970).
pubmed: 5449932 doi: 10.1248/cpb.18.1099
Sato, M. & Ozawa, H. Occurrence of ubiquinone and rhodoquinone in parasitic nematodes, metastrongylus elongatus and Ascaris lumbricoides var. Suis. J. Biochem. (Tokyo) 65, 861–867 (1969).
pubmed: 5811785 doi: 10.1093/oxfordjournals.jbchem.a129090
van Hellemond, J. J., van der Klei, A., van Weelden, S. W. & Tielens, A. G. Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 205–213 (2003).
pubmed: 12594928 pmcid: 1693107 doi: 10.1098/rstb.2002.1182
Del Borrello, S. et al. Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway. eLife 8, 1–21 (2019).
Tan, J. H. et al. Alternative splicing of coq-2 controls the levels of rhodoquinone in animals. eLife 9, e56376 (2020).
pubmed: 32744503 pmcid: 7434440 doi: 10.7554/eLife.56376
Roberts Buceta, P. M. et al. The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans. J. Biol. Chem. 294, 11047–11053 (2019).
pubmed: 31177094 pmcid: 6635453 doi: 10.1074/jbc.AC119.009475
Osada, H. & Nogawa, T. Systematic isolation of microbial metabolites for natural products depository (NPDepo). Pure Appl. Chem. 84, 1407–1420 (2011).
doi: 10.1351/PAC-CON-11-08-11
Kato, N., Takahashi, S., Nogawa, T., Saito, T. & Osada, H. Construction of a microbial natural product library for chemical biology studies. Curr. Opin. Chem. Biol. 16, 101–108 (2012).
pubmed: 22406171 doi: 10.1016/j.cbpa.2012.02.016
Blaxter, M. Caenorhabditis elegans is a nematode. Science 282, 2041–2046 (1998).
pubmed: 9851921 doi: 10.1126/science.282.5396.2041
Burns, A. R. et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat. Commun. 6, 7485 (2015).
pubmed: 26108372 doi: 10.1038/ncomms8485
Hoebeke, J., Van Nijen, G. & De Brabander, M. Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem. Biophys. Res. Commun. 69, 319–324 (1976).
pubmed: 1267789 doi: 10.1016/0006-291X(76)90524-6
Tamaoki, T. et al. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem. Biophys. Res. Commun. 135, 397–402 (1986).
pubmed: 3457562 doi: 10.1016/0006-291X(86)90008-2
Hsiang, Y. H., Hertzberg, R., Hecht, S. & Liu, L. F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260, 14873–14878 (1985).
pubmed: 2997227 doi: 10.1016/S0021-9258(17)38654-4
Chen, B. et al. Inhibitory mechanism of reveromycin A at the tRNA binding site of a class I synthetase. Nat. Commun. 12, 1616 (2021).
pubmed: 33712620 pmcid: 7955072 doi: 10.1038/s41467-021-21902-0
Anger, E. E., Yu, F. & Li, J. Aristolochic acid-induced nephrotoxicity: molecular mechanisms and potential protective approaches. Int. J. Mol. Sci. 21, E1157 (2020).
doi: 10.3390/ijms21031157
Pearson, R. D. & Hewlett, E. L. Niclosamide therapy for tapeworm infections. Ann. Intern. Med. 102, 550–551 (1985).
pubmed: 3977200 doi: 10.7326/0003-4819-102-4-550
Frayha, G. J., Smyth, J. D., Gobert, J. G. & Savel, J. The mechanisms of action of antiprotozoal and anthelmintic drugs in man. Gen. Pharmacol. 28, 273–299 (1997).
pubmed: 9013207 doi: 10.1016/S0306-3623(96)00149-8
Mogi, T. et al. Siccanin rediscovered as a species-selective succinate dehydrogenase inhibitor. J. Biochem. (Tokyo) 146, 383–387 (2009).
pubmed: 19505951 doi: 10.1093/jb/mvp085
Morikawa, N., Nakagawa-Hattori, Y. & Mizuno, Y. Effect of dopamine, dimethoxyphenylethylamine, papaverine, and related compounds on mitochondrial respiration and complex I activity. J. Neurochem. 66, 1174–1181 (1996).
pubmed: 8769881 doi: 10.1046/j.1471-4159.1996.66031174.x
Benej, M. et al. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc. Natl Acad. Sci. USA 115, 10756–10761 (2018).
pubmed: 30201710 pmcid: 6196495 doi: 10.1073/pnas.1808945115
Driscoll, M., Dean, E., Reilly, E., Bergholz, E. & Chalfie, M. Genetic and molecular analysis of a Caenorhabditis elegans beta-tubulin that conveys benzimidazole sensitivity. J. Cell Biol. 109, 2993–3003 (1989).
pubmed: 2592410 doi: 10.1083/jcb.109.6.2993
Ghisi, M., Kaminsky, R. & Mäser, P. Phenotyping and genotyping of haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Vet. Parasitol. 144, 313–320 (2007).
pubmed: 17101226 doi: 10.1016/j.vetpar.2006.10.003
Hahnel, S. R. et al. Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. PLoS Pathog. 14, e1007226 (2018).
pubmed: 30372484 pmcid: 6224181 doi: 10.1371/journal.ppat.1007226
Prichard, R. K. Mode of action of the anthelminthic thiabendazole in haemonchus contortus. Nature 228, 684–685 (1970).
pubmed: 4319844 doi: 10.1038/228684a0
Köhler, P. & Bachmann, R. The effects of the antiparasitic drugs levamisole, thiabendazole, praziquantel, and chloroquine on mitochondrial electron transport in muscle tissue from Ascaris suum. Mol. Pharmacol. 14, 155–163 (1978).
pubmed: 203843
Barrowman, M. M., Marriner, S. E. & Bogan, J. A. The fumarate reductase system as a site of anthelmintic attack in Ascaris suum. Biosci. Rep. 4, 879–883 (1984).
pubmed: 6518278 doi: 10.1007/BF01138170
Burns, A. R. et al. A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat. Chem. Biol. 6, 549–557 (2010).
pubmed: 20512140 doi: 10.1038/nchembio.380
Dent, J. A., Smith, M. M., Vassilatis, D. K. & Avery, L. The genetics of ivermectin resistance in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 97, 2674–2679 (2000).
pubmed: 10716995 pmcid: 15988 doi: 10.1073/pnas.97.6.2674
Lewis, J. A., Wu, C. H., Berg, H. & Levine, J. H. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95, 905–928 (1980).
pubmed: 7203008 pmcid: 1214276 doi: 10.1093/genetics/95.4.905
Lewis, J. A., Wu, C. H., Levine, J. H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967–989 (1980).
pubmed: 7402460 doi: 10.1016/0306-4522(80)90180-3
Barrows, B. D. et al. Resistance to bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose. J. Biol. Chem. 282, 3302–3311 (2007).
pubmed: 17135259 doi: 10.1074/jbc.M606621200
Guest, M. et al. The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. Int. J. Parasitol. 37, 1577–1588 (2007).
pubmed: 17583712 doi: 10.1016/j.ijpara.2007.05.006
Kaminsky, R. et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature 452, 176–180 (2008).
pubmed: 18337814 doi: 10.1038/nature06722
Keiser, J. & Häberli, C. Evaluation of commercially available anthelminthics in laboratory models of human intestinal nematode infections. ACS Infect. Dis. 7, 1177–1185 (2021).
pubmed: 33410658 doi: 10.1021/acsinfecdis.0c00719
Monroy, F. G. & Enriquez, F. J. Heligmosomoides polygyrus: a model for chronic gastrointestinal helminthiasis. Parasitol. Today Pers. Ed. 8, 49–54 (1992).
doi: 10.1016/0169-4758(92)90084-F
Rausch, S. et al. Parasitic nematodes exert antimicrobial activity and benefit from microbiota-driven support for host immune regulation. Front. Immunol. 9, 2282 (2018).
pubmed: 30349532 pmcid: 6186814 doi: 10.3389/fimmu.2018.02282
Tritten, L., Nwosu, U., Vargas, M. & Keiser, J. In vitro and in vivo efficacy of tribendimidine and its metabolites alone and in combination against the hookworms heligmosomoides bakeri and ancylostoma ceylanicum. Acta Trop. 122, 101–107 (2012).
pubmed: 22210439 doi: 10.1016/j.actatropica.2011.12.008
Buchter, V., Priotti, J., Leonardi, D., Lamas, M. C. & Keiser, J. Preparation, physicochemical characterization and in vitro and In vivo activity against heligmosomoides polygyrus of novel oral formulations of albendazole and mebendazole. J. Pharm. Sci. 109, 1819–1826 (2020).
pubmed: 32070702 doi: 10.1016/j.xphs.2020.02.002
Lautens, M. J. et al. Identification of enzymes that have helminth-specific active sites and are required for rodoquinone-dependent metabolism as targets for new anthelmintics. PLoS Negl. Trop. Dis. 15, e0009991 (2021).
pubmed: 34843467 pmcid: 8659336 doi: 10.1371/journal.pntd.0009991
Nakagawa, Y., Kuwano, E., Eto, M. & Fujita, T. Effects of insect-growth-regulatory benzimidazole derivatives on cultured integument of the rice stem borer and mitochondria from rat liver. Agric. Biol. Chem. 49, 3569–3573 (1985).
Friedrich, T. et al. Two binding sites of inhibitors in NADH: ubiquinone oxidoreductase (complex I). Relationship of one site with the ubiquinone-binding site of bacterial glucose:ubiquinone oxidoreductase. Eur. J. Biochem. 219, 691–698 (1994).
pubmed: 8307034 doi: 10.1111/j.1432-1033.1994.tb19985.x
Stiernagle, T. Maintenance of C. elegans, WormBook, ed. The C. elegans Research Community, WormBook, https://doi.org/10.1895/wormbook.1.101.1 (2006).
Spensley, M., Del Borrello, S., Pajkic, D. & Fraser, A. G. Acute effects of drugs on Caenorhabditis elegans movement reveal complex responses and plasticity. G3 Bethesda Md. 8, 2941–2952 (2018).
pubmed: 30061375 doi: 10.1534/g3.118.200374
Long, J. et al. Comparison of two methods for assaying complex I activity in mitochondria isolated from rat liver, brain and heart. Life Sci. 85, 276–280 (2009).
pubmed: 19520091 doi: 10.1016/j.lfs.2009.05.019
Luo, C., Long, J. & Liu, J. An improved spectrophotometric method for a more specific and accurate assay of mitochondrial complex III activity. Clin. Chim. Acta Int. J. Clin. Chem. 395, 38–41 (2008).
doi: 10.1016/j.cca.2008.04.025
Janssen, R. C. & Boyle, K. E. Microplate assays for spectrophotometric measurement of mitochondrial enzyme activity. Methods Mol. Biol. Clifton NJ 1978, 355–368 (2019).
doi: 10.1007/978-1-4939-9236-2_22
Yang, Z.-Y., Yang, Z.-J., Lu, A.-P., Hou, T.-J. & Cao, D.-S. Scopy: an integrated negative design python library for desirable HTS/VS database design. Brief. Bioinform. 22, bbaa194 (2021).
pubmed: 32892221 doi: 10.1093/bib/bbaa194
O’Boyle, N. M., Morley, C. & Hutchison, G. R. Pybel: a python wrapper for the openbabel cheminformatics toolkit. Chem. Cent. J. 2, 5 (2008).
pubmed: 18328109 pmcid: 2270842 doi: 10.1186/1752-153X-2-5
Cline, M. S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366–2382 (2007).
pubmed: 17947979 pmcid: 3685583 doi: 10.1038/nprot.2007.324

Auteurs

Taylor Davie (T)

The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Xènia Serrat (X)

The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Lea Imhof (L)

Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland.
University of Basel, CH-4000, Basel, Switzerland.

Jamie Snider (J)

The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Igor Štagljar (I)

The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000, Split, Croatia.
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.

Jennifer Keiser (J)

Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland.
University of Basel, CH-4000, Basel, Switzerland.

Hiroyuki Hirano (H)

Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan.

Nobumoto Watanabe (N)

Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan.

Hiroyuki Osada (H)

Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan.
Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan.

Andrew G Fraser (AG)

The Donnelly Centre, University of Toronto, 160 College Street, Toronto, M5S 3E1, Canada. andy.fraser@utoronto.ca.
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. andy.fraser@utoronto.ca.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH