Testing novel strategies for patients hospitalised with HIV-associated disseminated tuberculosis (NewStrat-TB): protocol for a randomised controlled trial.
Humans
Rifampin
/ therapeutic use
HIV Infections
/ complications
Hospitalization
Tuberculosis
/ drug therapy
Levofloxacin
/ therapeutic use
Treatment Outcome
Clinical Trials, Phase III as Topic
Antitubercular Agents
/ therapeutic use
Equivalence Trials as Topic
Drug Therapy, Combination
Prednisone
/ therapeutic use
AIDS-Related Opportunistic Infections
/ drug therapy
Time Factors
Disseminated tuberculosis
HIV
High dose rifampicin
Levofloxacin
Prednisone
Randomised controlled trial
Journal
Trials
ISSN: 1745-6215
Titre abrégé: Trials
Pays: England
ID NLM: 101263253
Informations de publication
Date de publication:
08 May 2024
08 May 2024
Historique:
received:
16
01
2024
accepted:
16
04
2024
medline:
9
5
2024
pubmed:
9
5
2024
entrez:
9
5
2024
Statut:
epublish
Résumé
HIV-associated tuberculosis (TB) contributes disproportionately to global tuberculosis mortality. Patients hospitalised at the time of the diagnosis of HIV-associated disseminated TB are typically severely ill and have a high mortality risk despite initiation of tuberculosis treatment. The objective of the study is to assess the safety and efficacy of both intensified TB treatment (high dose rifampicin plus levofloxacin) and immunomodulation with corticosteroids as interventions to reduce early mortality in hospitalised patients with HIV-associated disseminated TB. This is a phase III randomised controlled superiority trial, evaluating two interventions in a 2 × 2 factorial design: (1) high dose rifampicin (35 mg/kg/day) plus levofloxacin added to standard TB treatment for the first 14 days versus standard tuberculosis treatment and (2) adjunctive corticosteroids (prednisone 1.5 mg/kg/day) versus identical placebo for the first 14 days of TB treatment. The study population is HIV-positive patients diagnosed with disseminated TB (defined as being positive by at least one of the following assays: urine Alere LAM, urine Xpert MTB/RIF Ultra or blood Xpert MTB/RIF Ultra) during a hospital admission. The primary endpoint is all-cause mortality at 12 weeks comparing, first, patients receiving intensified TB treatment to standard of care and, second, patients receiving corticosteroids to those receiving placebo. Analysis of the primary endpoint will be by intention to treat. Secondary endpoints include all-cause mortality at 2 and 24 weeks. Safety and tolerability endpoints include hepatoxicity evaluations and corticosteroid-related adverse events. Disseminated TB is characterised by a high mycobacterial load and patients are often critically ill at presentation, with features of sepsis, which carries a high mortality risk. Interventions that reduce this high mycobacterial load or modulate associated immune activation could potentially reduce mortality. If found to be safe and effective, the interventions being evaluated in this trial could be easily implemented in clinical practice. ClinicalTrials.gov NCT04951986. Registered on 7 July 2021 https://clinicaltrials.gov/study/NCT04951986.
Sections du résumé
BACKGROUND
BACKGROUND
HIV-associated tuberculosis (TB) contributes disproportionately to global tuberculosis mortality. Patients hospitalised at the time of the diagnosis of HIV-associated disseminated TB are typically severely ill and have a high mortality risk despite initiation of tuberculosis treatment. The objective of the study is to assess the safety and efficacy of both intensified TB treatment (high dose rifampicin plus levofloxacin) and immunomodulation with corticosteroids as interventions to reduce early mortality in hospitalised patients with HIV-associated disseminated TB.
METHODS
METHODS
This is a phase III randomised controlled superiority trial, evaluating two interventions in a 2 × 2 factorial design: (1) high dose rifampicin (35 mg/kg/day) plus levofloxacin added to standard TB treatment for the first 14 days versus standard tuberculosis treatment and (2) adjunctive corticosteroids (prednisone 1.5 mg/kg/day) versus identical placebo for the first 14 days of TB treatment. The study population is HIV-positive patients diagnosed with disseminated TB (defined as being positive by at least one of the following assays: urine Alere LAM, urine Xpert MTB/RIF Ultra or blood Xpert MTB/RIF Ultra) during a hospital admission. The primary endpoint is all-cause mortality at 12 weeks comparing, first, patients receiving intensified TB treatment to standard of care and, second, patients receiving corticosteroids to those receiving placebo. Analysis of the primary endpoint will be by intention to treat. Secondary endpoints include all-cause mortality at 2 and 24 weeks. Safety and tolerability endpoints include hepatoxicity evaluations and corticosteroid-related adverse events.
DISCUSSION
CONCLUSIONS
Disseminated TB is characterised by a high mycobacterial load and patients are often critically ill at presentation, with features of sepsis, which carries a high mortality risk. Interventions that reduce this high mycobacterial load or modulate associated immune activation could potentially reduce mortality. If found to be safe and effective, the interventions being evaluated in this trial could be easily implemented in clinical practice.
TRIAL REGISTRATION
BACKGROUND
ClinicalTrials.gov NCT04951986. Registered on 7 July 2021 https://clinicaltrials.gov/study/NCT04951986.
Identifiants
pubmed: 38720383
doi: 10.1186/s13063-024-08119-4
pii: 10.1186/s13063-024-08119-4
doi:
Substances chimiques
Rifampin
VJT6J7R4TR
Levofloxacin
6GNT3Y5LMF
Antitubercular Agents
0
Prednisone
VB0R961HZT
Banques de données
ClinicalTrials.gov
['NCT04951986']
Types de publication
Journal Article
Clinical Trial Protocol
Langues
eng
Sous-ensembles de citation
IM
Pagination
311Subventions
Organisme : Wellcome Trust -
ID : 214321/Z/18/Z Recipient Prof Graeme Meintjes
Informations de copyright
© 2024. The Author(s).
Références
Ford N, Matteelli A, Shubber Z, Hermans S, Meintjes G, Grinsztejn B, et al. TB as a cause of hospitalization and in-hospital mortality among people living with HIV worldwide: a systematic review and meta-analysis. J Int AIDS Soc. 2016;19(1):20714.
pubmed: 26765347
pmcid: 4712323
doi: 10.7448/IAS.19.1.20714
Bigna JJR, Noubiap JJN, Agbor AA, Plottel CS, Billong SC, Ayong APR, Koulla-Shiro S. Early mortality during initial treatment of tuberculosis in patients co-infected with HIV at the Yaoundé Central Hospital, Cameroon: an 8-year retrospective cohort study (2006-2013). PLoS One. 2015;10(7):e0132394.
pubmed: 26214516
pmcid: 4516239
doi: 10.1371/journal.pone.0132394
Subbarao S, Wilkinson KA, Van Halsema CL, Rao SS, Boyles T, Utay NS, et al. Raised venous lactate and markers of intestinal translocation are associated with mortality among in-patients with HIV-associated TB in rural South Africa. J Acquir Immune Defic Syndr. 2015;70(4):406.
pubmed: 26186506
pmcid: 4625603
doi: 10.1097/QAI.0000000000000763
Schutz C, Barr D, Andrade BB, Shey M, Ward A, Janssen S, et al. Clinical, microbiologic, and immunologic determinants of mortality in hospitalized patients with HIV-associated tuberculosis: a prospective cohort study. PLoS Med. 2019;16(7):e1002840.
pubmed: 31276515
pmcid: 6611568
doi: 10.1371/journal.pmed.1002840
Kyeyune R, den Boon S, Cattamanchi A, Davis JL, Worodria W, Yoo SD, Huang L. Causes of early mortality in HIV-infected TB suspects in an East African referral hospital. J Acquir Immune Defic Syndr. 2010;55(4):446.
pubmed: 21105258
pmcid: 3249444
doi: 10.1097/QAI.0b013e3181eb611a
Gupta-Wright A, Fielding K, Wilson D, van Oosterhout JJ, Grint D, Mwandumba HC, et al. Tuberculosis in hospitalized patients with human immunodeficiency virus: clinical characteristics, mortality, and implications from the rapid urine-based screening for tuberculosis to reduce AIDS related mortality in hospitalized patients in Africa. Clin Infect Dis. 2020;71(10):2618–26.
pubmed: 31781758
doi: 10.1093/cid/ciz1133
Gupta RK, Lucas SB, Fielding KL, Lawn SD. Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS. 2015;29(15):1987–2002.
pubmed: 26266773
doi: 10.1097/QAD.0000000000000802
Boloko L, Schutz C, Sibiya N, Balfour A, Ward A, Shey M, et al. Xpert Ultra testing of blood in severe HIV-associated tuberculosis to detect and measure Mycobacterium tuberculosis blood stream infection: a diagnostic and disease biomarker cohort study. Lancet Microbe. 2022;3(7):e521-ee32.
pubmed: 35644157
pmcid: 9242865
doi: 10.1016/S2666-5247(22)00062-3
Barr DA, Schutz C, Balfour A, Shey M, Kamariza M, Bertozzi CR, et al. Serial measurement of M. tuberculosis in blood from critically-ill patients with HIV-associated tuberculosis. EBioMedicine. 2022;78:103949.
pubmed: 35325781
pmcid: 8938880
doi: 10.1016/j.ebiom.2022.103949
Jacob ST, Pavlinac PB, Nakiyingi L, Banura P, Baeten JM, Morgan K, et al. Mycobacterium tuberculosis bacteremia in a cohort of HIV-infected patients hospitalized with severe sepsis in Uganda–high frequency, low clinical sand derivation of a clinical prediction score. PloS One. 2013;8(8):e70305.
pubmed: 23940557
pmcid: 3734073
doi: 10.1371/journal.pone.0070305
Andrews B, Semler MW, Muchemwa L, Kelly P, Lakhi S, Heimburger DC, et al. Effect of an early resuscitation protocol on in-hospital mortality among adults with sepsis and hypotension: a randomized clinical trial. Jama. 2017;318(13):1233–40.
pubmed: 28973227
pmcid: 5710318
doi: 10.1001/jama.2017.10913
Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.
pubmed: 346286
doi: 10.2165/00003088-197803020-00002
Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17(1):39–49.
pubmed: 28100438
pmcid: 5159618
doi: 10.1016/S1473-3099(16)30274-2
Dian S, Yunivita V, Ganiem AR, Pramaesya T, Chaidir L, Wahyudi K, et al. Double-blind, randomized, placebo-controlled phase II dose-finding study to evaluate high-dose rifampin for tuberculous meningitis. Antimicrob Agents Chemother. 2018;62(12):e01014–8.
pubmed: 30224533
pmcid: 6256787
doi: 10.1128/AAC.01014-18
Te Brake LH, de Jager V, Narunsky K, Vanker N, Svensson EM, Phillips PP, et al. Increased bactericidal activity but dose-limiting intolerability at 50 mg· kg− 1 rifampicin. Eur Respir J. 2021;58(1).
Svensson RJ, Aarnoutse RE, Diacon AH, Dawson R, Gillespie SH, Boeree MJ, Simonsson USH. A population pharmacokinetic model incorporating saturable pharmacokinetics and autoinduction for high rifampicin doses. Clin Pharmacol Ther. 2018;103(4):674–83.
pubmed: 28653479
doi: 10.1002/cpt.778
Chirehwa MT, Rustomjee R, Mthiyane T, Onyebujoh P, Smith P, McIlleron H, Denti P. Model-based evaluation of higher doses of rifampin using a semimechanistic model incorporating autoinduction and saturation of hepatic extraction. Antimicrob Agents Chemother. 2016;60(1):487–94.
pubmed: 26552972
doi: 10.1128/AAC.01830-15
Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–24.
pubmed: 12821456
pmcid: 161844
doi: 10.1128/AAC.47.7.2118-2124.2003
Tsukamura M, Nakamura E, Yoshii S, Amano H. Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. Am Rev Respir Dis. 1985;131(3):352–6.
pubmed: 3856412
Ji B, Lounis N, Truffot-Pernot C, Grosset J. In vitro and in vivo activities of levofloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995;39(6):1341–4.
pubmed: 7574527
pmcid: 162738
doi: 10.1128/AAC.39.6.1341
Yew WW, Kwan SY-L, Ma WK, Khin MA, Chan PY. In-vitro activity of ofloxacin against Mycobacterium tuberculosis and its clinical efficacy in multiply resistant pulmonary tuberculosis. J Antimicrob Chemother. 1990;26(2):227–36.
pubmed: 2120177
doi: 10.1093/jac/26.2.227
Yew W, Piddock L, Li M, Lyon D, Chan C, Cheng A. In-vitro activity of quinolones and macrolides against mycobacteria. J Antimicrob Chemother. 1994;34(3):343–51.
pubmed: 7829409
doi: 10.1093/jac/34.3.343
Gosling RD, Uiso LO, Sam NE, Bongard E, Kanduma EG, Nyindo M, et al. The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis. Am J Respir Crit Care Med. 2003;168(11):1342–5.
pubmed: 12917230
doi: 10.1164/rccm.200305-682OC
Merle CS, Fielding K, Sow OB, Gninafon M, Lo MB, Mthiyane T, et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med. 2014;371(17):1588–98.
pubmed: 25337748
doi: 10.1056/NEJMoa1315817
Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014;371(17):1577–87.
pubmed: 25196020
pmcid: 4277680
doi: 10.1056/NEJMoa1407426
Jindani A, Harrison TS, Nunn AJ, Phillips PP, Churchyard GJ, Charalambous S, et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med. 2014;371(17):1599–608.
pubmed: 25337749
pmcid: 4233406
doi: 10.1056/NEJMoa1314210
Jindani A, Borgulya G, de Patino IW, Gonzales T, de Fernandes RA, Shrestha B, et al. A randomised phase II trial to evaluate the toxicity of high-dose rifampicin to treat pulmonary tuberculosis. Int J Tuberc Lung Dis. 2016;20(6):832–8.
pubmed: 27155189
doi: 10.5588/ijtld.15.0577
Gillespie S, Billington O. Activity of moxifloxacin against mycobacteria. J Antimicrob Chemother. 1999;44(3):393–5.
pubmed: 10511409
doi: 10.1093/jac/44.3.393
Cremades R, Rodríguez JC, García-Pachón E, Galiana A, Ruiz-García M, López P, Royo G. Comparison of the bactericidal activity of various fluoroquinolones against Mycobacterium tuberculosis in an in vitro experimental model. J Antimicrob Chemother. 2011;66(10):2281–3.
pubmed: 21733966
doi: 10.1093/jac/dkr281
Dorman SE, Nahid P, Kurbatova EV, Phillips PP, Bryant K, Dooley KE, et al. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N Engl J Med. 2021;384(18):1705–18.
pubmed: 33951360
pmcid: 8282329
doi: 10.1056/NEJMoa2033400
Nijland H, Ruslami R, Suroto AJ, Burger D, Alisjahbana B, Van Crevel R, Aarnoutse RJ. Rifampicin reduces plasma concentrations of moxifloxacin in patients with tuberculosis. Clin Infect Dis. 2007;45(8):1001–7.
pubmed: 17879915
doi: 10.1086/521894
Naidoo A, Chirehwa M, McIlleron H, Naidoo K, Essack S, Yende-Zuma N, et al. Effect of rifampicin and efavirenz on moxifloxacin concentrations when co-administered in patients with drug-susceptible TB. J Antimicrob Chemother. 2017;72(5):1441–9.
pubmed: 28175315
pmcid: 5890691
doi: 10.1093/jac/dkx004
Noel GJ, Goodman DB, Chien S, Solanki B, Padmanabhan M, Natarajan J. Measuring the effects of supratherapeutic doses of levofloxacin on healthy volunteers using four methods of QT correction and periodic and continuous ECG recordings. J Clin Pharmacol. 2004;44(5):464–73.
pubmed: 15102866
doi: 10.1177/0091270004264643
FDA U. FDA warns about increased risk of ruptures or tears in the aorta blood vessel with fluoroquinolone antibiotics in certain patients. FDA Drug Safety Communication; 2018. p. 2020.
Sutter R, Rüegg S, Tschudin-Sutter S. Seizures as adverse events of antibiotic drugs: a systematic review. Neurology. 2015;85(15):1332–41.
pubmed: 26400582
doi: 10.1212/WNL.0000000000002023
Mayosi BM, Ntsekhe M, Bosch J, Pandie S, Jung H, Gumedze F, et al. Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. N Engl J Med. 2014;371(12):1121–30.
pubmed: 25178809
pmcid: 4912834
doi: 10.1056/NEJMoa1407380
Meintjes G, Wilkinson RJ, Morroni C, Pepper DJ, Rebe K, Rangaka MX, et al. Randomized placebo-controlled trial of prednisone for paradoxical TB-associated immune reconstitution inflammatory syndrome. AIDS (London, England). 2010;24(15):2381.
pubmed: 20808204
pmcid: 2940061
doi: 10.1097/QAD.0b013e32833dfc68
Prasad K, Singh MB, Ryan H. Corticosteroids for managing tuberculous meningitis. Cochrane Database Syst Rev. 2016;4.
Wiysonge CS, Ntsekhe M, Thabane L, Volmink J, Majombozi D, Gumedze F, et al. Interventions for treating tuberculous pericarditis. Cochrane Database Syst Rev. 2017;9.
Meintjes G, Stek C, Blumenthal L, Thienemann F, Schutz C, Buyze J, et al. Prednisone for the prevention of paradoxical tuberculosis-associated IRIS. N Engl J Med. 2018;379(20):1915–25.
pubmed: 30428290
doi: 10.1056/NEJMoa1800762
Stern A, Skalsky K, Avni T, Carrara E, Leibovici L, Paul M. Corticosteroids for pneumonia. In: Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2017.
Annane D, Bellissant E, Bollaert PE, Briegel J, Keh D, Kupfer Y. Corticosteroids for treating sepsis. Cochrane Database Syst Rev. 2015;12.
Dequin P-F, Meziani F, Quenot J-P, Kamel T, Ricard J-D, Badie J, et al. Hydrocortisone in severe community-acquired pneumonia. N Engl J Med. 2023;388(21):1931–41.
pubmed: 36942789
doi: 10.1056/NEJMoa2215145
Buchman AL. Side effects of corticosteroid therapy. J Clin Gastroenterol. 2001;33(4):289–94.
pubmed: 11588541
doi: 10.1097/00004836-200110000-00006
Roth P, Wick W, Weller M. Steroids in neurooncology: actions, indications, side-effects. Curr Opin Neurol. 2010;23(6):597–602.
pubmed: 20962642
doi: 10.1097/WCO.0b013e32833e5a5d
Ewald H, Raatz H, Boscacci R, Furrer H, Bucher HC, Briel M. Adjunctive corticosteroids for Pneumocystis jiroveci pneumonia in patients with HIV infection. Cochrane Database Syst Rev. 2015;4.
Bozzette SA, Sattler FR, Chiu J, Wu AW, Gluckstein D, Kemper C, et al. A controlled trial of early adjunctive treatment with corticosteroids for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. N Engl J Med. 1990;323(21):1451–7.
pubmed: 2233917
doi: 10.1056/NEJM199011223232104
Costiniuk CT, Fergusson DA, Doucette S, Angel JB. Discontinuation of Pneumocystis jirovecii pneumonia prophylaxis with CD4 count< 200 cells/μL and virologic suppression: a systematic review. PloS one. 2011;6(12):e28570.
pubmed: 22194853
pmcid: 3241626
doi: 10.1371/journal.pone.0028570
Schutz C, Davis AG, Sossen B, Lai RP, Ntsekhe M, Harley YX, Wilkinson RJ. Corticosteroids as an adjunct to tuberculosis therapy. Expert Rev Respir Med. 2018;12(10):881–91.
pubmed: 30138039
pmcid: 6293474
doi: 10.1080/17476348.2018.1515628
Dooley DP, Carpenter JL, Rademacher S. Adjunctive corticosteroid therapy for tuberculosis: a critical reappraisal of the literature. Clin Infect Dis. 1997;25(4):872–87.
pubmed: 9356803
doi: 10.1086/515543
Pletz MW, De Roux A, Roth A, Neumann K-H, Mauch H, Lode H. Early bactericidal activity of moxifloxacin in treatment of pulmonary tuberculosis: a prospective, randomized study. Antimicrob Agents Chemother. 2004;48(3):780–2.
pubmed: 14982764
pmcid: 353154
doi: 10.1128/AAC.48.3.780-782.2004
Consiglio CR, Cotugno N, Sardh F, Pou C, Amodio D, Rodriguez L, et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 2020;183(4):968–81 e7.
pubmed: 32966765
pmcid: 7474869
doi: 10.1016/j.cell.2020.09.016
Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383(23):2255–73.
pubmed: 33264547
pmcid: 7727315
doi: 10.1056/NEJMra2026131
Group RC. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704.
doi: 10.1056/NEJMoa2021436
Western Cape Government, Provincial TB dashboard. Number of tuberculosis (TB) cases in the Western Cape 2023 [cited 2023 05/07/2023]. Available from: https://www.westerncape.gov.za/site-page/provincial-tb-dashboard .
Mnguni AT, Schietekat D, Ebrahim N, Sonday N, Boliter N, Schrueder N, Gabriels S, Sigwadhi LN, Zemlin AE, Chapanduka ZC, Ngah V. The clinical and epidemiological characteristics of a series of patients living with HIV admitted for COVID-19 in a district hospital. BMC Infect Dis. 2023;23(1):123.
Organization WH, Initiative ST. Treatment of tuberculosis: guidelines. World Health Organization; 2010.
Africa DoHS. National Tuberculosis Management Guidelines: National Department of Health; 2013 [Guideline]. [cited 2023 1/10/2023]. Available from: https://knowledgehub.health.gov.za/system/files/elibdownloads/2023-04/National%252520TB%252520management%252520guidelines%2525202014.pdf .
Wasserman S, Davis A, Stek C, Chirehwa M, Botha S, Daroowala R, et al. Plasma pharmacokinetics of high-dose oral versus intravenous rifampicin in patients with tuberculous meningitis: a randomized controlled trial. Antimicrob Agents Chemother. 2021;65(8):e00140–e00121.
pubmed: 33972248
pmcid: 7611291
doi: 10.1128/AAC.00140-21
Chigutsa E, Visser ME, Swart EC, Denti P, Pushpakom S, Egan D, et al. The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother. 2011;55(9):4122–7.
pubmed: 21709081
pmcid: 3165308
doi: 10.1128/AAC.01833-10
Lawn SD, Wilkinson RJ, Lipman MC, Wood R. Immune reconstitution and “unmasking” of tuberculosis during antiretroviral therapy. Am J Respir Crit Care Med. 2008;177(7):680–5.
pubmed: 18202347
pmcid: 2277208
doi: 10.1164/rccm.200709-1311PP
Diacon A, Patientia R, Venter A, Van Helden P, Smith P, McIlleron H, et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother. 2007;51(8):2994–6.
pubmed: 17517849
pmcid: 1932511
doi: 10.1128/AAC.01474-06
McIlleron H, Rustomjee R, Vahedi M, Mthiyane T, Denti P, Connolly C, et al. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother. 2012;56(6):3232–8.
pubmed: 22411614
pmcid: 3370773
doi: 10.1128/AAC.05526-11
Court R, Chirehwa MT, Wiesner L, Wright B, Smythe W, Kramer N, McIlleron H. Quality assurance of rifampicin-containing fixed-drug combinations in South Africa: dosing implications. Int J Tuberc Lung Dis. 2018;22(5):537–43.
pubmed: 29663959
pmcid: 5905389
doi: 10.5588/ijtld.17.0697
Health NDo. 2023 ART Clinical Guidelines for the Management of HIV in Adults, Pregnancy, Breastfeeding, Adolescents, Children, Infants and Neonates. 2023. [cited 2023 1/10/2023]. Available from: https://knowledgehub.health.gov.za/system/files/elibdownloads/2023-07/National%20ART%20Clinical%20Guideline%20AR%204.5%2020230713%20Version%204%20WEB.pdf .
Manosuthi W, Chottanapand S, Thongyen S, Chaovavanich A, Sungkanuparph S. Survival rate and risk factors of mortality among HIV/tuberculosis-coinfected patients with and without antiretroviral therapy. JAIDS J Acquir Immune Defic Syndr. 2006;43(1):42–6.
pubmed: 16885778
doi: 10.1097/01.qai.0000230521.86964.86
Meintjes G, Lawn SD, Scano F, Maartens G, French MA, Worodria W, et al. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis. 2008;8(8):516–23.
pubmed: 18652998
pmcid: 2804035
doi: 10.1016/S1473-3099(08)70184-1
Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med. 2006;174(8):935–52.
pubmed: 17021358
doi: 10.1164/rccm.200510-1666ST
Rizvi I, Malhotra HS, Garg RK, Kumar N, Uniyal R, Pandey S. Fluoroquinolones in the management of tuberculous meningitis: systematic review and meta-analysis. J Infect. 2018;77(4):261–75.
pubmed: 30017610
doi: 10.1016/j.jinf.2018.06.009
Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet. 2003;42:819–50.
pubmed: 12882588
doi: 10.2165/00003088-200342090-00003
Waitt C, Squire S. A systematic review of risk factors for death in adults during and after tuberculosis treatment. Int J Tuberc Lung Dis. 2011;15(7):871–85.
pubmed: 21496360
doi: 10.5588/ijtld.10.0352
Straetemans M, Bierrenbach AL, Nagelkerke N, Glaziou P, van der Werf MJ. The effect of tuberculosis on mortality in HIV positive people: a meta-analysis. PLoS One. 2010;5(12):e15241.
pubmed: 21209936
pmcid: 3012688
doi: 10.1371/journal.pone.0015241
Cresswell FV, Ellis J, Kagimu E, Bangdiwala AS, Okirwoth M, Mugumya G, et al. Standardized urine-based tuberculosis (TB) screening with TB-lipoarabinomannan and Xpert MTB/RIF Ultra in Ugandan adults with advanced human immunodeficiency virus disease and suspected meningitis. In: Open forum infectious diseases. Oxford University Press US; 2020.
Atherton RR, Cresswell FV, Ellis J, Skipper C, Tadeo KK, Mugumya G, et al. Detection of Mycobacterium tuberculosis in urine by Xpert MTB/RIF Ultra: a useful adjunctive diagnostic tool in HIV-associated tuberculosis. Int J Infect Dis. 2018;75:92–4.
pubmed: 30031800
pmcid: 6170999
doi: 10.1016/j.ijid.2018.07.007
Boyles TH, Griesel R, Stewart A, Mendelson M, Maartens G. Incremental yield and cost of urine Determine TB-LAM and sputum induction in seriously ill adults with HIV. Int J Infect Dis. 2018;75:67–73.
pubmed: 30125689
pmcid: 6202059
doi: 10.1016/j.ijid.2018.08.005
Fiorentino M, Nishimwe M, Protopopescu C, Iwuji C, Okesola N, Spire B, et al. Early ART initiation improves HIV status disclosure and social support in people living with HIV, linked to care within a universal test and treat program in rural South Africa (ANRS 12249 TasP Trial). AIDS Behavior. 2021;25:1306–22.
pubmed: 33206263
doi: 10.1007/s10461-020-03101-y
Girum T, Yasin F, Wasie A, Shumbej T, Bekele F, Zeleke B. The effect of “universal test and treat” program on HIV treatment outcomes and patient survival among a cohort of adults taking antiretroviral treatment (ART) in low income settings of Gurage zone, South Ethiopia. AIDS Res Ther. 2020;17(1):1–9.
doi: 10.1186/s12981-020-00274-3
Lanoix J-P, Chaisson RE, Nuermberger EL. Shortening tuberculosis treatment with fluoroquinolones: lost in translation? Clin Infect Dis. 2016;62(4):484–90.
pubmed: 26527614
Williams KJ, Duncan K. Current strategies for identifying and validating targets for new treatment-shortening drugs for TB. Curr Mol Med. 2007;7(3):297–307.
pubmed: 17504114
doi: 10.2174/156652407780598575
Johnson J, Hadad D, Boom W, Daley C, Peloquin C, Eisenach K, et al. Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis. 2006;10(6):605–12.
pubmed: 16776446