Sediment DNA Records the Critical Transition of Bacterial Communities in the Arid Lake.
Alternative states
Critical transition
Sedimentary DNA
Species interactions
Stability
Journal
Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663
Informations de publication
Date de publication:
09 May 2024
09 May 2024
Historique:
received:
20
11
2023
accepted:
07
03
2024
medline:
9
5
2024
pubmed:
9
5
2024
entrez:
9
5
2024
Statut:
epublish
Résumé
It is necessary to predict the critical transition of lake ecosystems due to their abrupt, non-linear effects on social-economic systems. Given the promising application of paleolimnological archives to tracking the historical changes of lake ecosystems, it is speculated that they can also record the lake's critical transition. We studied Lake Dali-Nor in the arid region of Inner Mongolia because of the profound shrinking the lake experienced between the 1300 s and the 1600 s. We reconstructed the succession of bacterial communities from a 140-cm-long sediment core at 4-cm intervals and detected the critical transition. Our results showed that the historical trajectory of bacterial communities from the 1200 s to the 2010s was divided into two alternative states: state1 from 1200 to 1300 s and state2 from 1400 to 2010s. Furthermore, in the late 1300 s, the appearance of a tipping point and critical slowing down implied the existence of a critical transition. By using a multi-decadal time series from the sedimentary core, with general Lotka-Volterra model simulations, local stability analysis found that bacterial communities were the most unstable as they approached the critical transition, suggesting that the collapse of stability triggers the community shift from an equilibrium state to another state. Furthermore, the most unstable community harbored the strongest antagonistic and mutualistic interactions, which may imply the detrimental role of interaction strength on community stability. Collectively, our study showed that sediment DNA can be used to detect the critical transition of lake ecosystems.
Identifiants
pubmed: 38722447
doi: 10.1007/s00248-024-02365-4
pii: 10.1007/s00248-024-02365-4
doi:
Substances chimiques
DNA, Bacterial
0
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
68Subventions
Organisme : Key Technologies Research and Development Program
ID : 2019YFA0607100
Organisme : National Natural Science Foundation of China
ID : U2003205
Organisme : The third Xinjiang Scientific Expedition
ID : 2022xjkk1504
Informations de copyright
© 2024. The Author(s).
Références
Holling CS (1973) Resilience and stability of ecological systems. Ann Rev Ecol Syst 4:1–23
doi: 10.1146/annurev.es.04.110173.000245
Xu L, Patterson D, Levin SA, Wang J (2023) Non-equilibrium early-warning signals for critical transitions in ecological systems. Proc Natl Acad Sci U S A 120:e2218663120
pubmed: 36689655
pmcid: 9945981
doi: 10.1073/pnas.2218663120
Faust K, Lahti L, Gonze D, de Vos WM, Raes J (2015) Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol 25:56–66
pubmed: 26005845
doi: 10.1016/j.mib.2015.04.004
Faust K, Bauchinger F, Laroche B, Buyl Sd, Lahti L, Washburne AD, Gonze D, Widder S (2018) Signatures of ecological processes in microbial community time series. Microbiome 6:120
pubmed: 29954432
pmcid: 6022718
doi: 10.1186/s40168-018-0496-2
Stegner MA, Ratajczak Z, Carpenter SR, Williams JW (2019) Inferring critical transitions in paleoecological time series with irregular sampling and variable time-averaging. Quaternary Sci Rev 207:49–63
doi: 10.1016/j.quascirev.2019.01.009
Ibrahim A, Capo E, Wessels M, Martin I, Meyer A, Schleheck D, Epp LS (2021) Anthropogenic impact on the historical phytoplankton community of Lake Constance reconstructed by multimarker analysis of sediment-core environmental DNA. Mol Ecol 30:3040–3056
pubmed: 33070403
doi: 10.1111/mec.15696
Monchamp ME, Bruel R, Frossard V, McGowan S, Lavrieux M, Muschick M, Perga ME, Dubois N (2021) Paleoecological evidence for a multi-trophic regime shift in a perialpine lake (Lake Joux, Switzerland). Anthropocene 35:100301
doi: 10.1016/j.ancene.2021.100301
Nazarimehr F, Jafari S, Perc M, Sprott JC (2020) Critical slowing down indicators. Epl-Europhys Lett 132:18001
doi: 10.1209/0295-5075/132/18001
Dakos V, van-Nes EH, D’Odorico P, Scheffer M (2012) Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93:264–271
pubmed: 22624308
doi: 10.1890/11-0889.1
Dakos V, Bascompte J (2014) Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc Natl Acad Sci U S A 111:17546–17551
pubmed: 25422412
pmcid: 4267327
doi: 10.1073/pnas.1406326111
Wouters N, Dakos V, Edwards M, Serafim MP, Valayer PJ, Cabral HN (2015) Evidencing a regime shift in the North Sea using early-warning signals as indicators of critical transitions. Estuar Coast Shelf S 152:65–72
doi: 10.1016/j.ecss.2014.10.017
Banerjee S, Saha B, Rietkerk M, Baudena M, Chattopadhyay J (2021) Chemical contamination-mediated regime shifts in planktonic systems. Theor Ecol-Neth 14:559–574
doi: 10.1007/s12080-021-00516-8
Doncaster CP, Chavez VA, Viguier C, Wang R, Zhang EL, Dong XH, Dearing JA, Langdon PG, Dyke JG (2016) Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97:3079–3090
pubmed: 27870052
doi: 10.1002/ecy.1558
Bissell JJ (2022) Bifurcation, stability, and critical slowing down in a simple mass-spring system. Mech Res Commun 125:103967
doi: 10.1016/j.mechrescom.2022.103967
Lucini FA, Morone F, Tomassone MS, Makse HA (2020) Diversity increases the stability of ecosystem. PLoS ONE 15:e0228692
doi: 10.1371/journal.pone.0228692
Stone L (2020) The stability of mutualism. Nat Commun 65:411–429
Pettersson S, Savage V, Jacobi MN (2020) Predicting collapse of complex ecological systems: quantifying the stability-complexity continuum. J R Soc Interface 17:20190391
pubmed: 32396810
pmcid: 7276551
doi: 10.1098/rsif.2019.0391
Gonze D, Coyte KZ, Lahti L, Faust K (2018) Microbial communities as dynamical systems. Curr Opin Microbiol 44:41–49
pubmed: 30041083
doi: 10.1016/j.mib.2018.07.004
Wright ES, Gupta R, Vetsigian KH (2021) Multi-stable bacterial communities exhibit extreme sensitivity to initial conditions. Fems Microbiol Ecol 97:fiab073
pubmed: 34021563
doi: 10.1093/femsec/fiab073
Butler S, O’Dwyer JP (2018) Stability criteria for complex microbial communities. Nat Commun 9:2970
pubmed: 30061657
pmcid: 6065391
doi: 10.1038/s41467-018-05308-z
May RM (1972) Will a large complex system be stable? Nature 238:413–414
pubmed: 4559589
doi: 10.1038/238413a0
Hu J, Amor DR, Barbier M, Bunin G, Gore J (2022) Emergent phases of ecological diversity and dynamics mapped in microcosms. Science 378:85–89
pubmed: 36201585
doi: 10.1126/science.abm7841
Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Microbiome 350:663–666
Qian JJ, Akcay E (2019) The balance of interaction types determines the assembly and stability of ecological communities. Nat Ecol Evol 4:356–365
doi: 10.1038/s41559-020-1121-x
Hirano H, Takemoto K (2019) Difficulty in inferring microbial community structure based on co-occurrence network approaches. BMC Bioinformatics 20:329
pubmed: 31195956
pmcid: 6567618
doi: 10.1186/s12859-019-2915-1
Faust K, Raes J (2016) CoNet app: inference of biological association networks using Cytoscape. F1000Res 5:1519
pubmed: 27853510
pmcid: 5089131
doi: 10.12688/f1000research.9050.1
Coyte KZ, Rakoff-Nahoum S (2019) Understanding competition and cooperation within the mammalian gut microbiome. Curr Biol 29:R538–R544
pubmed: 31163167
pmcid: 6935513
doi: 10.1016/j.cub.2019.04.017
Ratzke C, Barrere J, Gore J (2020) Strength of species interactions determines biodiversity and stability in microbial communities. Nature Ecology & Evolution 4:376–383
doi: 10.1038/s41559-020-1099-4
Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME (2021) Environmental stress destabilizes microbial networks. ISME J 15:1722–1734
pubmed: 33452480
pmcid: 8163744
doi: 10.1038/s41396-020-00882-x
Dubinkina V, Fridman Y, Pandey PP, Maslov S (2019) Multistability and regime shifts in microbial communities explained by competition for essential nutrients. Elife 8:e49720
pubmed: 31756158
pmcid: 6874476
doi: 10.7554/eLife.49720
Mounier J, Monnet C, Vallaeys T, Arditi R, Sarthou AS, Helias A, Irlinger F (2008) Microbial interactions within a cheese microbial community. Appl Environ Microb 74:172–181
doi: 10.1128/AEM.01338-07
Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G, Pamer EG, Sander C, Xavier JB (2013) Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol 9:e1003388
pubmed: 24348232
pmcid: 3861043
doi: 10.1371/journal.pcbi.1003388
Liu SZ, Deng CL, Xiao JL, Li JH, Paterson GA, Chang L, Yi L, Qin HF, Zhu RX (2016) High-resolution enviromagnetic records of the last deglaciation from Dali Lake, Inner Mongolia. Palaeogeogr Palaeocl 454:1–11
doi: 10.1016/j.palaeo.2016.04.030
Xiao J, Si B, Zhai D, Itoh S, Lomtatidze Z (2008) Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. J Paleolimnol 40:519–528
doi: 10.1007/s10933-007-9179-x
Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Ramsey CB, Butzin M, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kromer B, Manning SW, Muscheler R, Palmer JG, Pearson C, van der Plicht J, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, Wacker L, Adolphi F, Büntgen U, Capano M, Fahrni SM, Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A, Talamo S (2020) The Intcal20 northern hemisphere radiocarbon age calibration curve (0–55 Cal Kbp). Radiocarbon 62:725–757
doi: 10.1017/RDC.2020.41
Kyle M, Haande S, Sonstebo J, Rohrlack T (2015) Amplification of DNA in sediment cores to detect historic occurrence in three Norwegian lakes. J Paleolimnol 53:61–72
doi: 10.1007/s10933-014-9807-1
Banerjee A, Chakrabarty M, Bandyopadhyay G, Roy PK, Ray S (2020) Forecasting environmental factors and zooplankton of Bakreswar reservoir in India using time series model. Ecol Inform 60:101157
doi: 10.1016/j.ecoinf.2020.101157
Fan JW, Xiao JL, Wen RL, Zhang SR, Huang Y (2019) Middle to late Holocene drought events recorded by the sediments from Dali Lake, Inner Mongolia. Quaternary Sci 39:701–716
Salonen IS, Chronopoulou PM, Leskinen E, Koho KA (2019) Metabarcoding successfully tracks temporal changes in eukaryotic communities in coastal sediments. Fems Microbiol Ecol 95:fiy226
doi: 10.1093/femsec/fiy226
Sagrario MDG, Musazzi S, Cordoba FE, Mendiolar M, Lami A (2020) Inferring the occurrence of regime shifts in a shallow lake during the last 250 years based on multiple indicators. Ecol Indic 117:106536
doi: 10.1016/j.ecolind.2020.106536
Taranu ZE, Carpenter SR, Frossard V, Jenny JP, Thomas Z, Vermaire JC, Perga ME (2018) Can we detect ecosystem critical transitions and signals of changing resilience from paleo-ecological records? Ecosphere 9:e02438
doi: 10.1002/ecs2.2438
Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31:L09204
doi: 10.1029/2004GL019448
Xu M, Wang R, Dong XH, Yang XD (2019) A palaeolimnological perspective to understand regime-shift dynamics in two Yangtze-basin lakes. Biol Letters 15:20190447
doi: 10.1098/rsbl.2019.0447
Marwan N, Donges JF, Donner RV, Eroglu D (2021) Nonlinear time series analysis of palaeoclimate proxy records. Quaternary Sci Rev 274:107245
doi: 10.1016/j.quascirev.2021.107245
Janssen ABG, Teurlincx S, An SQ, Janse JH, Paerl HW, Mooij WM (2014) Alternative stable states in large shallow lakes? J Great Lakes Res 40:813–826
doi: 10.1016/j.jglr.2014.09.019
Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casella F, Fernandez L (2011) Enterotypes of the human gut microbiome. Nature 473:174–180
pubmed: 21508958
pmcid: 3728647
doi: 10.1038/nature09944
Zhang KP, Shi Y, Cui XQ, Yue P, Li KH, Liu XJ, Tripathi BM, Chu HY (2019) Salinity is a key determinant for soil microbial communities in a desert ecosystem. Msystems 4:e00225-e318
pubmed: 30801023
pmcid: 6372838
doi: 10.1128/mSystems.00225-18
Mathias JD, Anderies JM, Baggio J, Hodbod J, Huet S, Janssen MA, Milkoreit M, Schoon M (2020) Exploring non-linear transition pathways in social-ecological systems. Sci Rep-Uk 10:4136
doi: 10.1038/s41598-020-59713-w
Karita Y, Limmer DT, Hallatschek O (2022) Scale-dependent tipping points of bacterial colonization resistance. Proc Natl Acad Sci U S A 119:e2115496119
pubmed: 35145031
pmcid: 8851462
doi: 10.1073/pnas.2115496119
Ban Z, Hu XG, Li JH (2022) Tipping points of marine phytoplankton to multiple environmental stressors. Nat Clim Chang 12:1045–1051
doi: 10.1038/s41558-022-01489-0
Gromov D, Upmann T (2021) Dynamics and economics of shallow lakes: a survey. Sustainability-Basel 13:13763
doi: 10.3390/su132413763
Wang R, Dearing AJ, Langdon PG, Zhang EL, Yang XD, Dakos V, Scheffer M (2012) Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492:419–422
pubmed: 23160492
doi: 10.1038/nature11655
Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59
pubmed: 19727193
doi: 10.1038/nature08227
Roberts CP, Twidwell D, Angeler DG, Allen CR (2019) How do ecological resilience metrics relate to community stability and collapse? Ecol Indic 107:105552
doi: 10.1016/j.ecolind.2019.105552
Moreau CS, Rubin BER (2017) Diversity and persistence of the gut microbiome of the giant neotropical bullet ant. Integr Comp Biol 57:682–689
pubmed: 28655188
doi: 10.1093/icb/icx037
Grilli J, Adorisio M, Suweis S, Barabas G, Banavar JR, Allesina S, Maritan A (2017) Feasibility and coexistence of large ecological communities. Nat Commun 8:14389
pubmed: 28233768
pmcid: 5333123
doi: 10.1038/ncomms14389
Yuan MM, Guo X, Wu LW, Zhang Y, Xiao NJ, Ning DL, Shi Z, Zhou XS, Wu LY, Yang YF, Tiedje JM, Zhou JZ (2021) Climate warming enhances microbial network complexity and stability. Nat Clim Change 11:343–348
doi: 10.1038/s41558-021-00989-9
Karkaria BD, Manhart A, Fedorec AJH, Barnes CP (2022) Chaos in synthetic microbial communities. PLoS Comput Biol 18:e1010548
pubmed: 36215322
pmcid: 9584520
doi: 10.1371/journal.pcbi.1010548
Gonze D, Lahti L, Raes J, Faust K (2017) Multi-stability and the origin of microbial community types. ISME J 11:2159–2166
pubmed: 28475180
pmcid: 5607358
doi: 10.1038/ismej.2017.60
Baskett ML, Fabina NS, Gross K (2014) Response diversity can increase ecological resilience to disturbance in coral reefs. Am Nat 184:E16–E31
pubmed: 25058289
doi: 10.1086/676643
Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550
pubmed: 22796884
doi: 10.1038/nrmicro2832
Ushio M (2022) Interaction capacity as a potential driver of community diversity. Proc R Soc B-Biol Sci 289:20212690
doi: 10.1098/rspb.2021.2690
Ulrich W, Puchalka R, Koprowski M, Strona G, Gotelli NJ (2019) Ecological drift and competitive interactions predict unique patterns in temporal fluctuations of population size. Ecology 100:e02623
pubmed: 30644544
doi: 10.1002/ecy.2623
Zhou YQ, Sun BY, Xie BH, Feng K, Zhang ZJ, Zhang Z, Li SZ, Du XF, Zhang Q, Gu SS, Song W, Wang LL, Xia JY, Han GX, Deng Y (2021) Warming reshaped the microbial hierarchical interactions. Glob Change Biol 27:6331–6347
doi: 10.1111/gcb.15891
Romdhane S, Spor A, Aubert J, Bru D, Breuil MC, Hallin S, Mounier A, Ouadah S, Tsiknia M, Philippot L (2021) Unraveling negative biotic interactions determining soil microbial community assembly and functioning. Isme J 16:296–306
pubmed: 34321619
pmcid: 8692615
doi: 10.1038/s41396-021-01076-9
Castellanos N, Diez GG, Antunez-Almagro C, Bailen M, Bressa C, Soltero RG, Perez M, Larrosa M (2020) A critical mutualism - competition interplay underlies the loss of microbial diversity in sedentary lifestyle. Front Microbiol 10:3142
pubmed: 32038575
pmcid: 6987436
doi: 10.3389/fmicb.2019.03142
Wu FL, Ha YC, Weiss A, Wang MD, Letourneau J, Wang SY, Luo N, Huang SQ, Lee CT, David LA, You LC (2022) Modulation of microbial community dynamics by spatial partitioning. Nat Chem Biol 18:394–402
pubmed: 35145274
pmcid: 8967799
doi: 10.1038/s41589-021-00961-w