Exploring the virulence potential of Staphylococcus aureus CC121 and CC152 lineages related to paediatric community-acquired bacteraemia in Manhiça, Mozambique.
Humans
Mozambique
/ epidemiology
Staphylococcus aureus
/ genetics
Virulence
/ genetics
Staphylococcal Infections
/ microbiology
Biofilms
/ growth & development
Child, Preschool
Bacteremia
/ microbiology
Community-Acquired Infections
/ microbiology
Infant
Animals
Exotoxins
/ genetics
Bacterial Toxins
/ genetics
Leukocidins
/ genetics
Virulence Factors
/ genetics
Female
Male
Moths
/ microbiology
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 May 2024
10 May 2024
Historique:
received:
19
12
2023
accepted:
05
05
2024
medline:
11
5
2024
pubmed:
11
5
2024
entrez:
10
5
2024
Statut:
epublish
Résumé
Staphylococcus aureus is a frequent agent of bacteraemia. This bacterium has a variety of virulence traits that allow the establishment and maintenance of infection. This study explored the virulence profile of S. aureus strains causing paediatric bacteraemia (SAB) in Manhiça district, Mozambique. We analysed 336 S. aureus strains isolated from blood cultures of children younger than 5 years admitted to the Manhiça District Hospital between 2001 and 2019, previously characterized for antibiotic susceptibility and clonality. The strains virulence potential was evaluated by PCR detection of the Panton-Valentine leucocidin (PVL) encoding genes, lukS-PV/lukF-PV, assessment of the capacity for biofilm formation and pathogenicity assays in Galleria mellonella. The overall carriage of PVL-encoding genes was over 40%, although reaching ~ 70 to 100% in the last years (2014 to 2019), potentially linked to the emergence of CC152 lineage. Strong biofilm production was a frequent trait of CC152 strains. Representative CC152 and CC121 strains showed higher virulence potential in the G. mellonella model when compared to reference strains, with variations within and between CCs. Our results highlight the importance of monitoring the emergent CC152-MSSA-PVL
Identifiants
pubmed: 38730020
doi: 10.1038/s41598-024-61345-3
pii: 10.1038/s41598-024-61345-3
doi:
Substances chimiques
Exotoxins
0
Bacterial Toxins
0
Leukocidins
0
Virulence Factors
0
Panton-Valentine leukocidin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10758Subventions
Organisme : Fundação para a Ciência e a Tecnologia
ID : UID/04413/2020
Organisme : Fundação para a Ciência e a Tecnologia
ID : 2022.07931.PTDC
Organisme : Fundação Calouste Gulbenkian
ID : 145278
Informations de copyright
© 2024. The Author(s).
Références
Bai, A. D. et al. Staphylococcus aureus bacteraemia mortality: A systematic review and meta-analysis. Clin. Microbiol. Infect. 28, 1076–1084. https://doi.org/10.1016/j.cmi.2022.03.015 (2022).
doi: 10.1016/j.cmi.2022.03.015
pubmed: 35339678
Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 17, 32–37. https://doi.org/10.1016/j.mib.2013.11.004 (2014).
doi: 10.1016/j.mib.2013.11.004
pubmed: 24581690
Ahmad-Mansour, N. et al. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins (Basel) 13, 677. https://doi.org/10.3390/toxins13100677 (2021).
doi: 10.3390/toxins13100677
pubmed: 34678970
Saeed, K. et al. Panton-Valentine leukocidin-positive Staphylococcus aureus: a position statement from the International Society of Chemotherapy. Int. J. Antimicrob. Agents. 51, 16–25. https://doi.org/10.1016/j.ijantimicag.2017.11.002 (2018).
doi: 10.1016/j.ijantimicag.2017.11.002
pubmed: 29174420
Tam, K. & Torres, V. J. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol. Spectr. 7, 1–59. https://doi.org/10.1128/microbiolspec.GPP3-0039-2018 (2019).
doi: 10.1128/microbiolspec.GPP3-0039-2018
McGuire, E. et al. Is Panton-Valentine leucocidin (PVL) toxin associated with poor clinical outcomes in patients with community-acquired Staphylococcus aureus bacteraemia. J. Med. Microbiol. 72, 1–7. https://doi.org/10.1099/jmm.0.001683 (2023).
doi: 10.1099/jmm.0.001683
Otto, M. Staphylococcal biofilms. Microbiol. Spectr. 6, 1–26. https://doi.org/10.1128/microbiolspec.GPP3-0023-2018 (2018).
doi: 10.1128/microbiolspec.GPP3-0023-2018
Kranjec, C. et al. Staphylococcal biofilms: Challenges and novel therapeutic perspectives. Antibiotics (Basel) 10, 131. https://doi.org/10.3390/antibiotics10020131 (2021).
doi: 10.3390/antibiotics10020131
pubmed: 33573022
Sheehan, G., Dixon, A. & Kavanagh, K. Utilization of Galleria mellonella larvae to characterize the development of Staphylococcus aureus infection. Microbiology 165, 863–875. https://doi.org/10.1099/mic.0.000813 (2019).
doi: 10.1099/mic.0.000813
pubmed: 31107207
Hesketh-Best, P. J., Mouritzen, M. V., Shandley-Edwards, K., Billington, R. A. & Upton, M. Galleria mellonella larvae exhibit a weight-dependent lethal median dose when infected with methicillin-resistant Staphylococcus aureus. Pathog. Dis. 79, ftab003. https://doi.org/10.1093/femspd/ftab003 (2021).
doi: 10.1093/femspd/ftab003
pubmed: 33503238
pmcid: 8855217
Ménard, G. et al. Galleria mellonella larvae as an infection model to investigate sRNA-mediated pathogenesis in Staphylococcus aureus. Front. Cell Infect. Microbiol. 11, 631710. https://doi.org/10.3389/fcimb.2021.631710 (2021).
doi: 10.3389/fcimb.2021.631710
pubmed: 33954118
pmcid: 8089379
Andrade, M. et al. Virulence potential of biofilm-producing Staphylococcus pseudintermedius, Staphylococcus aureus and Staphylococcus coagulans causing skin infections in companion animals. Antibiotics (Basel) 11, 1339. https://doi.org/10.3390/antibiotics11101339 (2022).
doi: 10.3390/antibiotics11101339
pubmed: 36289997
Ménard, G., Rouillon, A., Cattoir, V. & Donnio, P. Y. Galleria mellonella as a suitable model of bacterial infection: Past, present and future. Front. Cell Infect. Microbiol. 11, 782733. https://doi.org/10.3389/fcimb.2021.782733 (2021).
doi: 10.3389/fcimb.2021.782733
pubmed: 35004350
pmcid: 8727906
Tsai, C. J., Loh, J. M. & Proft, T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 7, 214–229. https://doi.org/10.1080/21505594.2015.1135289 (2016).
doi: 10.1080/21505594.2015.1135289
pubmed: 26730990
pmcid: 4871635
Garrine, M. et al. Epidemiology and clinical presentation of community-acquired Staphylococcus aureus bacteraemia in children under 5 years of age admitted to the Manhiça District Hospital, Mozambique, 2001–2019. Eur. J. Clin. Microbiol. Infect. Dis. 42, 653–659. https://doi.org/10.1007/s10096-023-04580-2 (2023).
doi: 10.1007/s10096-023-04580-2
pubmed: 36932278
pmcid: 10023310
Garrine, M. et al. Antimicrobial resistance and clonality of Staphylococcus aureus causing bacteraemia in children admitted to the Manhiça District Hospital, Mozambique, over two decades. Front. Microbiol. 14, 1208131. https://doi.org/10.3389/fmicb.2023.1208131 (2023).
doi: 10.3389/fmicb.2023.1208131
pubmed: 37555065
pmcid: 10406509
Desbois, A. P. & Coote, P. J. Wax moth larva (Galleria mellonella): An in vivo model for assessing the efficacy of antistaphylococcal agents. J. Antimicrob. Chemother. 66, 1785–1790. https://doi.org/10.1093/jac/dkr198 (2011).
doi: 10.1093/jac/dkr198
pubmed: 21622972
Lawal, O. U. et al. A 6-Year update on the diversity of methicillin-resistant Staphylococcus aureus clones in Africa: A systematic review. Front. Microbiol. 13, 860436. https://doi.org/10.3389/fmicb.2022.860436 (2022).
doi: 10.3389/fmicb.2022.860436
pubmed: 35591993
pmcid: 9113548
Otto, M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64, 143–162. https://doi.org/10.1146/annurev.micro.112408.134309 (2010).
doi: 10.1146/annurev.micro.112408.134309
pubmed: 20825344
He, C. et al. Leukotoxin and pyrogenic toxin superantigen gene backgrounds in bloodstream and wound Staphylococcus aureus isolates from eastern region of China. BMC Infect. Dis. 18, 395. https://doi.org/10.1186/s12879-018-3297-0 (2018).
doi: 10.1186/s12879-018-3297-0
pubmed: 30103694
pmcid: 6090790
Ruffing, U. et al. Community-associated Staphylococcus aureus from sub-saharan Africa and Germany: A cross-sectional geographic correlation study. Sci. Rep. 7, 154. https://doi.org/10.1038/s41598-017-00214-8 (2017).
doi: 10.1038/s41598-017-00214-8
pubmed: 28273954
pmcid: 5428059
Baig, S. et al. Evolution and population dynamics of clonal complex 152 community-associated methicillin-resistant Staphylococcus aureus. mSphere. 5, e00226-e320. https://doi.org/10.1128/mSphere.00226-20 (2020).
doi: 10.1128/mSphere.00226-20
pubmed: 32611695
pmcid: 7333568
Rao, Q., Shang, W., Hu, X. & Rao, X. Staphylococcus aureus ST121: A globally disseminated hypervirulent clone. J. Med. Microbiol. 64, 1462–1473. https://doi.org/10.1099/jmm.0.000185 (2015).
doi: 10.1099/jmm.0.000185
pubmed: 26445995
Sigaúque, B. et al. Community-acquired bacteremia among children admitted to a rural hospital in Mozambique. Pediatr. Infect. Dis. J. 28, 108–113. https://doi.org/10.1097/INF.0b013e318187a87d (2009).
doi: 10.1097/INF.0b013e318187a87d
pubmed: 19131902
Alexopoulou, K. et al. Comparison of two commercial methods with PCR restriction fragment length polymorphism of the tuf gene in the identification of coagulase-negative staphylococci. Lett. Appl. Microbiol. 43, 450–454. https://doi.org/10.1111/j.1472-765X.2006.01964.x (2006).
doi: 10.1111/j.1472-765X.2006.01964.x
pubmed: 16965378
Lina, G. et al. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29, 1128–1132. https://doi.org/10.1086/313461 (1999).
doi: 10.1086/313461
pubmed: 10524952
Stepanović, S., Vuković, D., Dakić, I., Savić, B. & Svabic-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 40, 175–179. https://doi.org/10.1016/s0167-7012(00)00122-6 (2000).
doi: 10.1016/s0167-7012(00)00122-6
pubmed: 10699673
Stepanović, S. et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115, 891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x (2007).
doi: 10.1111/j.1600-0463.2007.apm_630.x
pubmed: 17696944