Detection of small ruminant Lentivirus proviral DNA in red deer from Poland.
CAEV
Cross-species transmission
Nested PCR
Phylogenetic analysis
Red deer
SRLV
Wild ruminants
Journal
BMC veterinary research
ISSN: 1746-6148
Titre abrégé: BMC Vet Res
Pays: England
ID NLM: 101249759
Informations de publication
Date de publication:
13 May 2024
13 May 2024
Historique:
received:
03
01
2024
accepted:
06
05
2024
medline:
14
5
2024
pubmed:
14
5
2024
entrez:
13
5
2024
Statut:
epublish
Résumé
Small ruminant lentiviruses (SRLVs) are widespread and infect goats and sheep. Several reports also suggest that SRLVs can infect wild ruminants. The presence of specific antibodies against SRLVs has been identified in wild ruminants from Poland, but no studies have been conducted to detect proviral DNA of SRLVs in these animals. Therefore, the purpose of this study was to examine samples from Polish wild ruminants to determine whether these animals can serve as reservoirs of SRLVs under natural conditions. A total of 314 samples were tested from red deer (n = 255), roe deer (n = 52) and fallow deer (n = 7) using nested real-time PCR. DNA from positive real-time PCR samples was subsequently used to amplify a CA fragment (625 bp) of the gag gene, a 1.2 kb fragment of the pol gene and an LTR-gag fragment. Three samples (0.95%) were positive according to nested real-time PCR using primers and probe specific for CAEV (SRLV group B). All the samples were negative for the primers and probe specific for MVV (SRLV A group). Only SRLV LTR-gag sequences were obtained from two red deer. Phylogenetic analysis revealed that these sequences were more closely related to CAEV than to MVV. Our results revealed that deer can carry SRLV proviral sequences and therefore may play a role in the epidemiology of SRLVs. To our knowledge, this is the first study describing SRLV sequences from red deer.
Identifiants
pubmed: 38741095
doi: 10.1186/s12917-024-04059-y
pii: 10.1186/s12917-024-04059-y
doi:
Substances chimiques
DNA, Viral
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
195Informations de copyright
© 2024. The Author(s).
Références
Minardi da Cruz JC, Singh DK, Lamara A, Chebloune Y. Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses. 2013;5(7):1867–184.
pubmed: 23881276
pmcid: 3738966
doi: 10.3390/v5071867
Colitti B, Coradduzza E, Puggioni G, Capucchio MT, Reina R, Bertolotti L, Rosati S. A new approach for small ruminant Lentivirus full genome characterization revealed the circulation of divergent strains. PLoS ONE. 2019;14(2):e0212585.
pubmed: 30789950
pmcid: 6383919
doi: 10.1371/journal.pone.0212585
Ramírez H, Reina R, Amorena B, de Andrés D, Martínez HA. Small ruminant lentiviruses: genetic variability, tropism and diagnosis. Viruses. 2013;5(4):1175–207.
pubmed: 23611847
pmcid: 3705272
doi: 10.3390/v5041175
Olech M. The genetic variability of small-ruminant lentiviruses and its impact on tropism, the development of diagnostic tests and vaccines and the effectiveness of control programmes. J Veterinary Res. 2023;67(4):479–502.
doi: 10.2478/jvetres-2023-0064
Shah C, Böni J, Huder JB, Vogt HR, Mühlherr J, Zanoni R, Miserez R, Lutz H, Schüpbach J. Phylogenetic analysis and reclassification of caprine and ovine lentiviruses based on 104 new isolates: evidence for regular sheep-to-goat transmission and worldwide propagation through livestock trade. Virology. 2004;319(1):12–9.
pubmed: 14967484
doi: 10.1016/j.virol.2003.09.047
Angelopoulou K, Poutahidis T, Brellou GD, Greenland T, Vlemmas I. A deletion in the R region of long terminal repeats in small ruminant lentiviruses is associated with decreased pathology in the lung. Vet J. 2008;175(3):346–55.
pubmed: 17498982
doi: 10.1016/j.tvjl.2007.01.025
Murphy BG, Castillo D, Mete A, Vogel H, Goldsmith D, Barro M, Gonzales-Viera O. Caprine Arthritis Encephalitis Virus is Associated with renal lesions. Viruses. 2021;13(6):1051.
pubmed: 34206110
pmcid: 8230173
doi: 10.3390/v13061051
Blacklaws BA, Berriatua E, Torsteinsdottir S, Watt NJ, de Andres D, Klein D, Harkiss GD. Transmission of small ruminant lentiviruses. Vet Microbiol. 2004;101(3):199–208.
pubmed: 15223124
doi: 10.1016/j.vetmic.2004.04.006
Peterhans E, Greenland T, Badiola J, Harkiss G, Bertoni G, Amorena B, Eliaszewicz M, Juste RA, Krassnig R, Lafont JP, Lenihan P, Pétursson G, Pritchard G, Thorley J, Vitu C, Mornex JF, Pépin M. Routes of transmission and consequences of small ruminant lentiviruses (SRLVs) infection and eradication schemes. Vet Res. 2004;35(3):257–74.
pubmed: 15210075
doi: 10.1051/vetres:2004014
Villoria M, Leginagoikoa I, Luján L, Pérez M, Salazar E, Berriatua E, Juste RA, Minguijón E. Detection of small ruminant Lentivirus in environmental samples of air and water. Small Ruminant Res. 2013;110:155–60.
doi: 10.1016/j.smallrumres.2012.11.025
Patton KM, Bildfell RJ, Anderson ML, Cebra CK, Valentine BA. Fatal Caprine arthritis encephalitis virus-like infection in 4 Rocky Mountain goats (Oreamnos americanus). J Vet Diagn Invest. 2012;24(2):392–6.
pubmed: 22379056
doi: 10.1177/1040638711435503
Kuhar U, Vengušt DŽ, Vengušt G. Serological survey of small ruminant Lentivirus infections in Free-ranging Mouflon and Chamois in Slovenia. Anim (Basel). 2022;12(8):1032.
Sanjosé L, Crespo H, Blatti-Cardinaux L, Glaria I, Martínez-Carrasco C, Berriatua E, Amorena B, De Andrés D, Bertoni G, Reina R. Post entry blockade of small ruminant lentiviruses by wild ruminants. Vet Res. 2016;47:1.
pubmed: 26738942
pmcid: 4702310
doi: 10.1186/s13567-015-0288-7
López-Olvera JR, Vidal D, Vicente J, Pérez M, Luján L, Gortázar C. Serological survey of selected infectious diseases in mouflon (Ovis aries musimon) from south-central Spain. Eur J Wildl Res. 2009;55:75–9.
doi: 10.1007/s10344-008-0215-6
Cutlip RC, Lehmkuhl HD, Brogden KA, Schmerr MJ. Seroprevalence of ovine progressive pneumonia virus in various domestic and wild animal species, and species susceptibility to the virus. Am J Vet Res. 1991;52(2):189–91.
pubmed: 2012329
doi: 10.2460/ajvr.1991.52.02.189
Chomel BB, Carniciu ML, Kasten RW, Castelli PM, Work TM, Jessup DA. Antibody prevalence of eight ruminant infectious diseases in California mule and black-tailed deer (Odocoileus hemionus). J Wildl Dis. 1994;30(1):51–9.
pubmed: 8151824
doi: 10.7589/0090-3558-30.1.51
Gentile L, Mari F, Cardeti G, Macrì G. Serologic survey in a chamois population of Abruzzo. Hystrix Italian J Mammalogy. 2000;11(2):115–9.
Starick E, Dedek J, Enke KH, Loeppelmann H. Serologic investigations on the occurrence of Maedi-Visna antibodies in game ruminants DTW. Dtsch Tierarztl Wochenschrift. 1995;102(5):202–3.
Erhouma E, Guiguen F, Chebloune Y, Gauthier D, Lakhal LM, Greenland T, Mornex JF, Leroux C, Alogninouwa T. Small ruminant lentivirus proviral sequences from wild ibexes in contact with domestic goats. J Gen Virol. 2008;89(Pt 6):1478–84.
pubmed: 18474564
doi: 10.1099/vir.0.2008/000364-0
Erhouma EA. Genetic mutations in the LTR region of SRLV viruses in Capra ibex. Al-Mukhtar J Sci. 2020;35(2):139–45.
doi: 10.54172/mjsc.v35i2.321
Guiguen F, Mselli-Lakhal L, Durand J, Du J, Favier C, Fornazero C, Grezel D, Balleydier S, Hausmann E, Chebloune Y. Experimental infection of Mouflon-domestic sheep hybrids with caprine arthritis-encephalitis virus. Am J Vet Res. 200;61(4):456–61.
Olech M, Osiński Z, Kuźmak J. Seroprevalence of small ruminant lentivirus (SRLV) infection in wild cervids in Poland. Prev Vet Med. 2020;176:104905.
pubmed: 32004826
doi: 10.1016/j.prevetmed.2020.104905
Olech M, Hodor D, Toma C, Negoescu A, Taulescu M. First molecular characterization of small ruminant Lentiviruses detected in Romania. Anim (Basel). 2023;13(23):3718.
Schaer J, Cvetnic Z, Sukalic T, Dörig S, Grisiger M, Iscaro C, Feliziani F, Pfeifer F, Origgi F, Zanoni RG, Abril CE. Evaluation of serological methods and a New Real-Time nested PCR for small ruminant lentiviruses. Pathogens. 2022;11(2):129.
pubmed: 35215072
pmcid: 8875174
doi: 10.3390/pathogens11020129
Olech M, Kuźmak J. Compartmentalization of subtype A17 of small ruminant lentiviruses between blood and Colostrum in Infected Goats is not exclusively Associated to the env Gene. Viruses. 2019;11(3):270.
pubmed: 30889906
pmcid: 6466396
doi: 10.3390/v11030270
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
pubmed: 24132122
pmcid: 3840312
doi: 10.1093/molbev/mst197
Olech M, Osiński Z, Kuźmak J. Bayesian estimation of seroprevalence of small ruminant lentiviruses in sheep from Poland. Prev Vet Med. 2017;147:66–78.
pubmed: 29254729
doi: 10.1016/j.prevetmed.2017.09.001
Kaba J, Czopowicz M, Kuźmak J, Olech M, Witkowski L, Moroz-Fik A, Mickiewicz M, Biernacka K, Nalbert T, Bereznowski A, Szaluś-Jordanow O, Potârniche AV, Spinu M, Markowska-Daniel I, Bagnicka E. A large-scale study on the seroprevalence of small ruminant lentiviral infection in the Polish goat population. Prev Vet Med. 2023;213:105885.
pubmed: 36889196
doi: 10.1016/j.prevetmed.2023.105885
Olech M, Kuźmak J. Molecular characterization of small ruminant lentiviruses in Polish mixed flocks supports evidence of Cross Species Transmission, Dual Infection, a recombination event, and reveals the existence of New subtypes within Group A. Viruses. 2021;13(12):2529.
pubmed: 34960798
pmcid: 8708130
doi: 10.3390/v13122529
Frölich K, Thiede S, Kozikowski T, Jakob W. A review of mutual transmission of important infectious diseases between livestock and wildlife in Europe. Ann N Y Acad Sci. 2002;969:4–13.
pubmed: 12381556
doi: 10.1111/j.1749-6632.2002.tb04343.x
Callan RJ, Bunch TD, Workman GW, Mock RE. Development of pneumonia in desert bighorn sheep after exposure to a flock of exotic wild and domestic sheep. J Am Vet Med Assoc. 1991;198(6):1052–6.
pubmed: 2032914
doi: 10.2460/javma.1991.198.06.1052
Böhm M, White PC, Chambers J, Smith L, Hutchings MR. Wild deer as a source of infection for livestock and humans in the UK. Vet J. 2007;174(2):260–76.
pubmed: 17258479
doi: 10.1016/j.tvjl.2006.11.003
Siembieda JL, Kock RA, McCracken TA, Newman SH. The role of wildlife in transboundary animal diseases. Anim Health Res Rev. 2011;12(1):95–111.
pubmed: 21615975
doi: 10.1017/S1466252311000041
Miller RS, Sweeney SJ, Slootmaker C, Grear DA, Di Salvo PA, Kiser D, Shwiff SA. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America. Sci Rep. 2017;7(1):7821.
pubmed: 28798293
pmcid: 5552697
doi: 10.1038/s41598-017-07336-z
Craft ME. Infectious disease transmission and contact networks in wildlife and livestock. Philos Trans R Soc Lond B Biol Sci. 2015;370(1669):20140107.
pubmed: 25870393
pmcid: 4410373
doi: 10.1098/rstb.2014.0107
Gaba A, Flath B, Chelico L. Examination of the APOBEC3 barrier to Cross Species Transmission of Primate Lentiviruses. Viruses. 2021;13(6):1084.
pubmed: 34200141
pmcid: 8228377
doi: 10.3390/v13061084
Materniak-Kornas M, Löchelt M, Rola J, Kuźmak J. Infection with Foamy Virus in Wild ruminants-evidence for a New Virus. Reservoir? Viruses. 2020;12(1):58.
pubmed: 31947727
doi: 10.3390/v12010058
Foley BT. (2000) An overview of the molecular phylogeny of lentiviruses. HIV sequence compendium. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory; Los Alamos, NM, USA: pp. 35–43.
Monie TP, Greatorex JS, Maynard-Smith L, Hook BD, Bishop N, Beales LP, Lever AM. Identification and visualization of the dimerization initiation site of the prototype lentivirus, maedi visna virus: a potential GACG tetraloop displays structural homology with the alpha- and gamma-retroviruses. Biochemistry. 2005;44(1):294–302.
pubmed: 15628871
doi: 10.1021/bi048529m
Bjarnadottir H, Gudmundsson B, Gudnason J, Jonsson JJ. Encapsidation determinants located downstream of the major splice donor in the maedi-visna virus leader region. J Virol. 2006;80(23):11743–55.
pubmed: 16971429
pmcid: 1642619
doi: 10.1128/JVI.01284-06
Ooms M, Verhoef K, Southern E, Huthoff H, Berkhout B. Probing alternative foldings of the HIV-1 leader RNA by antisense oligonucleotide scanning arrays. Nucleic Acids Res. 2004;32(2):819–27.
pubmed: 14762209
pmcid: 373333
doi: 10.1093/nar/gkh206
Extramiana AB, Gonzalez L, Cortabaria N, Garcia M, Juste RA. Evaluation of a PCR technique for the detection of maedi-visna proviral DNA in blood, milk and tissue samples of naturally infected sheep. Small Rumin Res. 2002;44:109–18.
doi: 10.1016/S0921-4488(02)00044-5
Morin T, Guiguen F, Bouzar BA, Villet S, Greenland T, Grezel D, Gounel F, Gallay K, Garnier C, Durand J, Alogninouwa T, Mselli-Lakhal L, Mornex JF, Chebloune Y. Clearance of a productive lentivirus infection in calves experimentally inoculated with caprine arthritis-encephalitis virus. J Virol. 2003;77(11):6430–7.
pubmed: 12743300
pmcid: 154997
doi: 10.1128/JVI.77.11.6430-6437.2003
Guiguen F, Mselli-Lakhal L, Durand J, Du J, Favier C, Fornazero C, Grezel D, Balleydier S, Hausmann E, Chebloune Y. Experimental infection of Mouflon-domestic sheep hybrids with caprine arthritis-encephalitis virus. Am J Vet Res. 2000;61(4):456–61.
pubmed: 10772114
doi: 10.2460/ajvr.2000.61.456
Mselli-Lakhal L, Favier C, Leung K, Guiguen F, Grezel D, Miossec P, Mornex JF, Narayan O, Querat G, Chebloune Y. Lack of functional receptors is the only barrier that prevents caprine arthritis-encephalitis virus from infecting human cells. J Virol. 2000;74(18):8343–8.
pubmed: 10954533
pmcid: 116344
doi: 10.1128/JVI.74.18.8343-8348.2000
Hötzel I, Cheevers W. Differential receptor usage of small ruminant lentiviruses in ovine and caprine cells: host range but not cytopathic phenotype is determined by receptor usage. Virology. 2002;301(1):21–31.
pubmed: 12359443
doi: 10.1006/viro.2002.1575
de Vos-de Jong CJ, Groot Bruinderink GWTA, Elbers ARW. (2010) Veterinary Risk of deer in robust natural corridors in The Netherlands. Paper presented at 9th Biennial Conference of the European Wildlife Disease Association, Vlieland, The Netherlands. https://edepot.wur.nl/160879 .