Assessing Phagocytosis of Cryptococcus neoformans Cells in Human Monocytes or the J774 Murine Macrophage Cell Line.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 17 5 2024
pubmed: 17 5 2024
entrez: 17 5 2024
Statut: ppublish

Résumé

Monocyte/macrophage cells play a central role in innate immunity against C. neoformans and C. gattii, species known to cause human disease. Cryptococcus is the only fungal genus known to possess such a large extracellular polysaccharide capsule, which impacts interactions of innate cells with the yeast. This interaction results in different fates, such as phagocytosis and intracellular proliferation and, as the interaction progresses, vomocytosis, cell-to-cell transfer, lysis of macrophages, or yeast killing. Differentiating internalized versus external Cryptococcus cells is thus essential to evaluate monocyte-macrophage phagocytosis. We describe here a protocol that allows quantification of Cryptococcus spp. phagocytosis using quantitative flow cytometry in human monocytes and a murine macrophage cell line (J774).

Identifiants

pubmed: 38758317
doi: 10.1007/978-1-0716-3722-7_11
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

157-169

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Bliska JB, Casadevall A (2009) Intracellular pathogenic bacteria and fungi – a case of convergent evolution? Nat Rev Microbiol 7(2):165–171
doi: 10.1038/nrmicro2049 pubmed: 19098923
Bitar D, Lortholary O, Le Strat Y et al (2014) Population-based analysis of invasive fungal infections, France, 2001–2010. Emerg Infect Dis 20(7):1149–1155
doi: 10.3201/eid2007.140087 pubmed: 24960557 pmcid: 4073874
Rajasingham R, Smith RM, Park BJ et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17(8):873–881
doi: 10.1016/S1473-3099(17)30243-8 pubmed: 28483415 pmcid: 5818156
Feldmesser M, Kress Y, Novikoff P et al (2000) Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 68(7):4225–4237
doi: 10.1128/IAI.68.7.4225-4237.2000 pubmed: 10858240 pmcid: 101732
Kronstad JW, Attarian R, Cadieux B et al (2011) Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9(3):193–203
doi: 10.1038/nrmicro2522 pubmed: 21326274 pmcid: 4698337
Charlier C, Nielsen K, Daou S et al (2009) Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 77(1):120–127
doi: 10.1128/IAI.01065-08 pubmed: 18936186
García-Rodas R, Zaragoza O (2012) Catch me if you can: Phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunol Med Microbiol 64(2):147–161
doi: 10.1111/j.1574-695X.2011.00871.x pubmed: 22029633
Jesus MD, Nicola AM, Chow S-K et al (2010) Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence 1(6):500–508
doi: 10.4161/viru.1.6.13451 pubmed: 21178496 pmcid: 3073359
Levitz SM, DiBenedetto DJ (1989) Paradoxical role of capsule in murine bronchoalveolar macrophage-mediated killing of Cryptococcus neoformans. J Immunol 142(2):659–665
doi: 10.4049/jimmunol.142.2.659 pubmed: 2521352
McQuiston T, Luberto C, Del Poeta M (2011) Role of sphingosine-1-phosphate (S1P) and S1P receptor 2 in the phagocytosis of Cryptococcus neoformans by alveolar macrophages. Microbiol Read 157(Pt 5):1416–1427
doi: 10.1099/mic.0.045989-0
Ben-Abdallah M, Sturny-Leclère A, Avé P et al (2012) Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB. PLoS Pathog 8(3):e1002555
doi: 10.1371/journal.ppat.1002555 pubmed: 22396644 pmcid: 3291658
Kozel TR, Wilson MA, Pfrommer GS et al (1989) Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect Immun 57(7):1922–1927
doi: 10.1128/iai.57.7.1922-1927.1989 pubmed: 2525113 pmcid: 313821
Kozel TR, Pfrommer GS (1986) Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect Immun 52(1):1–5
doi: 10.1128/iai.52.1.1-5.1986 pubmed: 3514450 pmcid: 262188
Keller RG, Pfrommer GS, Kozel TR (1994) Occurrences, specificities, and functions of ubiquitous antibodies in human serum that are reactive with the Cryptococcus neoformans cell wall. Infect Immun 62(1):215–220
doi: 10.1128/iai.62.1.215-220.1994 pubmed: 8262630 pmcid: 186089
Zaragoza O, Taborda CP, Casadevall A (2003) The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Eur J Immunol 33(7):1957–1967
doi: 10.1002/eji.200323848 pubmed: 12884862
Casadevall A, Cleare W, Feldmesser M et al (1998) Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents Chemother 42(6):1437–1446
doi: 10.1128/AAC.42.6.1437 pubmed: 9624491 pmcid: 105619
Dromer F, Salamero J, Contrepois A et al (1987) Production, characterization, and antibody specificity of a mouse monoclonal antibody reactive with Cryptococcus neoformans capsular polysaccharide. Infect Immun 55(3):742–748
doi: 10.1128/iai.55.3.742-748.1987 pubmed: 3546139 pmcid: 260404
Carreto-Binaghi LE, Aliouat EM, Taylor ML (2016) Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res 17(1):66
doi: 10.1186/s12931-016-0385-9 pubmed: 27250970 pmcid: 4888672
Casadevall A, Coelho C, Alanio A (2018) Mechanisms of Cryptococcus neoformans-mediated host damage. Front Immunol 9:855
doi: 10.3389/fimmu.2018.00855 pubmed: 29760698 pmcid: 5936990
Taborda CP, Casadevall A (2002) CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16(6):791–802
doi: 10.1016/S1074-7613(02)00328-X pubmed: 12121661
Coelho C, Souza ACO, Derengowski L d S et al (2015) Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans. J Immunol 194(5):2345–2357
doi: 10.4049/jimmunol.1402350 pubmed: 25646306
Ikeda-Dantsuji Y, Ohno H, Tanabe K et al (2015) Interferon-γ promotes phagocytosis of Cryptococcus neoformans but not Cryptococcus gattii by murine macrophages. J Infect Chemother 21(12):831–836
doi: 10.1016/j.jiac.2015.08.001 pubmed: 26477011
Alanio A, Desnos-Ollivier M, Dromer F (2011) Dynamics of Cryptococcus neoformans-macrophage interactions reveal that fungal background influences outcome during cryptococcal meningoencephalitis in humans. mBio 2(4):e00158–e00111
doi: 10.1128/mBio.00158-11 pubmed: 21828220 pmcid: 3149853
Levitz SM, Farrell TP (1990) Growth inhibition of Cryptococcus neoformans by cultured human monocytes: role of the capsule, opsonins, the culture surface, and cytokines. Infect Immun 58(5):1201–1209
doi: 10.1128/iai.58.5.1201-1209.1990 pubmed: 2182538 pmcid: 258610
Walenkamp AM, Scharringa J, Schramel FM et al (2000) Quantitative analysis of phagocytosis of Cryptococcus neoformans by adherent phagocytic cells by fluorescence multi-well plate reader. J Microbiol Methods 40(1):39–45
doi: 10.1016/S0167-7012(99)00128-1 pubmed: 10739341
Alvarez M, Burn T, Luo Y et al (2009) The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes. BMC Microbiol 9:51
doi: 10.1186/1471-2180-9-51 pubmed: 19265539 pmcid: 2670303
Coelho C, Tesfa L, Zhang J et al (2012) Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry. Infect Immun 80(4):1467–1478
doi: 10.1128/IAI.06332-11 pubmed: 22252872 pmcid: 3318400
Srikanta D, Yang M, Williams M et al (2011) A sensitive high-throughput assay for evaluating host-pathogen interactions in Cryptococcus neoformans infection. PLoS One 6(7):e22773
doi: 10.1371/journal.pone.0022773 pubmed: 21829509 pmcid: 3145667
Mukherjee S, Feldmesser M, Casadevall A (1996) J774 murine macrophage-like cell interactions with Cryptococcus neoformans in the presence and absence of opsonins. J Infect Dis 173(5):1222–1231
doi: 10.1093/infdis/173.5.1222 pubmed: 8627076
Alanio A, Vernel-Pauillac F, Sturny-Leclère A et al (2015) Cryptococcus neoformans host adaptation: Toward biological evidence of dormancy. mBio 6(2):e02580–e02514
doi: 10.1128/mBio.02580-14 pubmed: 25827423 pmcid: 4453510

Auteurs

Emmanuel Lafont (E)

Translational Mycology Research Group, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Paris, France.

Aude Sturny-Leclère (A)

Department of Mycology, Translational Mycology Group, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Paris, France.

Carolina Coelho (C)

MRC Centre for Medical Mycology, College of Health and Medicine, University of Exeter, Exeter, Devon, UK.

Fanny Lanternier (F)

Translational Mycology Research Group, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Paris, France.
MRC Centre for Medical Mycology, College of Health and Medicine, University of Exeter, Exeter, Devon, UK.
Service de maladies infectieuses et tropicales, hôpital Necker-Enfants Malades, Paris, France.

Alexandre Alanio (A)

Translational Mycology Research Group, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Paris, France. alexandre.alanio@pasteur.fr.
Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France. alexandre.alanio@pasteur.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH