Assessing Phagocytosis of Cryptococcus neoformans Cells in Human Monocytes or the J774 Murine Macrophage Cell Line.
Cryptococcus neoformans
Flow cytometry
Fluorescent microscopy
Human monocyte
Murine cell line (J774)
Phagocytosis
Proliferation
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
17
5
2024
pubmed:
17
5
2024
entrez:
17
5
2024
Statut:
ppublish
Résumé
Monocyte/macrophage cells play a central role in innate immunity against C. neoformans and C. gattii, species known to cause human disease. Cryptococcus is the only fungal genus known to possess such a large extracellular polysaccharide capsule, which impacts interactions of innate cells with the yeast. This interaction results in different fates, such as phagocytosis and intracellular proliferation and, as the interaction progresses, vomocytosis, cell-to-cell transfer, lysis of macrophages, or yeast killing. Differentiating internalized versus external Cryptococcus cells is thus essential to evaluate monocyte-macrophage phagocytosis. We describe here a protocol that allows quantification of Cryptococcus spp. phagocytosis using quantitative flow cytometry in human monocytes and a murine macrophage cell line (J774).
Identifiants
pubmed: 38758317
doi: 10.1007/978-1-0716-3722-7_11
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
157-169Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Bliska JB, Casadevall A (2009) Intracellular pathogenic bacteria and fungi – a case of convergent evolution? Nat Rev Microbiol 7(2):165–171
doi: 10.1038/nrmicro2049
pubmed: 19098923
Bitar D, Lortholary O, Le Strat Y et al (2014) Population-based analysis of invasive fungal infections, France, 2001–2010. Emerg Infect Dis 20(7):1149–1155
doi: 10.3201/eid2007.140087
pubmed: 24960557
pmcid: 4073874
Rajasingham R, Smith RM, Park BJ et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17(8):873–881
doi: 10.1016/S1473-3099(17)30243-8
pubmed: 28483415
pmcid: 5818156
Feldmesser M, Kress Y, Novikoff P et al (2000) Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 68(7):4225–4237
doi: 10.1128/IAI.68.7.4225-4237.2000
pubmed: 10858240
pmcid: 101732
Kronstad JW, Attarian R, Cadieux B et al (2011) Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9(3):193–203
doi: 10.1038/nrmicro2522
pubmed: 21326274
pmcid: 4698337
Charlier C, Nielsen K, Daou S et al (2009) Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 77(1):120–127
doi: 10.1128/IAI.01065-08
pubmed: 18936186
García-Rodas R, Zaragoza O (2012) Catch me if you can: Phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunol Med Microbiol 64(2):147–161
doi: 10.1111/j.1574-695X.2011.00871.x
pubmed: 22029633
Jesus MD, Nicola AM, Chow S-K et al (2010) Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence 1(6):500–508
doi: 10.4161/viru.1.6.13451
pubmed: 21178496
pmcid: 3073359
Levitz SM, DiBenedetto DJ (1989) Paradoxical role of capsule in murine bronchoalveolar macrophage-mediated killing of Cryptococcus neoformans. J Immunol 142(2):659–665
doi: 10.4049/jimmunol.142.2.659
pubmed: 2521352
McQuiston T, Luberto C, Del Poeta M (2011) Role of sphingosine-1-phosphate (S1P) and S1P receptor 2 in the phagocytosis of Cryptococcus neoformans by alveolar macrophages. Microbiol Read 157(Pt 5):1416–1427
doi: 10.1099/mic.0.045989-0
Ben-Abdallah M, Sturny-Leclère A, Avé P et al (2012) Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB. PLoS Pathog 8(3):e1002555
doi: 10.1371/journal.ppat.1002555
pubmed: 22396644
pmcid: 3291658
Kozel TR, Wilson MA, Pfrommer GS et al (1989) Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect Immun 57(7):1922–1927
doi: 10.1128/iai.57.7.1922-1927.1989
pubmed: 2525113
pmcid: 313821
Kozel TR, Pfrommer GS (1986) Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect Immun 52(1):1–5
doi: 10.1128/iai.52.1.1-5.1986
pubmed: 3514450
pmcid: 262188
Keller RG, Pfrommer GS, Kozel TR (1994) Occurrences, specificities, and functions of ubiquitous antibodies in human serum that are reactive with the Cryptococcus neoformans cell wall. Infect Immun 62(1):215–220
doi: 10.1128/iai.62.1.215-220.1994
pubmed: 8262630
pmcid: 186089
Zaragoza O, Taborda CP, Casadevall A (2003) The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Eur J Immunol 33(7):1957–1967
doi: 10.1002/eji.200323848
pubmed: 12884862
Casadevall A, Cleare W, Feldmesser M et al (1998) Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents Chemother 42(6):1437–1446
doi: 10.1128/AAC.42.6.1437
pubmed: 9624491
pmcid: 105619
Dromer F, Salamero J, Contrepois A et al (1987) Production, characterization, and antibody specificity of a mouse monoclonal antibody reactive with Cryptococcus neoformans capsular polysaccharide. Infect Immun 55(3):742–748
doi: 10.1128/iai.55.3.742-748.1987
pubmed: 3546139
pmcid: 260404
Carreto-Binaghi LE, Aliouat EM, Taylor ML (2016) Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res 17(1):66
doi: 10.1186/s12931-016-0385-9
pubmed: 27250970
pmcid: 4888672
Casadevall A, Coelho C, Alanio A (2018) Mechanisms of Cryptococcus neoformans-mediated host damage. Front Immunol 9:855
doi: 10.3389/fimmu.2018.00855
pubmed: 29760698
pmcid: 5936990
Taborda CP, Casadevall A (2002) CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16(6):791–802
doi: 10.1016/S1074-7613(02)00328-X
pubmed: 12121661
Coelho C, Souza ACO, Derengowski L d S et al (2015) Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans. J Immunol 194(5):2345–2357
doi: 10.4049/jimmunol.1402350
pubmed: 25646306
Ikeda-Dantsuji Y, Ohno H, Tanabe K et al (2015) Interferon-γ promotes phagocytosis of Cryptococcus neoformans but not Cryptococcus gattii by murine macrophages. J Infect Chemother 21(12):831–836
doi: 10.1016/j.jiac.2015.08.001
pubmed: 26477011
Alanio A, Desnos-Ollivier M, Dromer F (2011) Dynamics of Cryptococcus neoformans-macrophage interactions reveal that fungal background influences outcome during cryptococcal meningoencephalitis in humans. mBio 2(4):e00158–e00111
doi: 10.1128/mBio.00158-11
pubmed: 21828220
pmcid: 3149853
Levitz SM, Farrell TP (1990) Growth inhibition of Cryptococcus neoformans by cultured human monocytes: role of the capsule, opsonins, the culture surface, and cytokines. Infect Immun 58(5):1201–1209
doi: 10.1128/iai.58.5.1201-1209.1990
pubmed: 2182538
pmcid: 258610
Walenkamp AM, Scharringa J, Schramel FM et al (2000) Quantitative analysis of phagocytosis of Cryptococcus neoformans by adherent phagocytic cells by fluorescence multi-well plate reader. J Microbiol Methods 40(1):39–45
doi: 10.1016/S0167-7012(99)00128-1
pubmed: 10739341
Alvarez M, Burn T, Luo Y et al (2009) The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes. BMC Microbiol 9:51
doi: 10.1186/1471-2180-9-51
pubmed: 19265539
pmcid: 2670303
Coelho C, Tesfa L, Zhang J et al (2012) Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry. Infect Immun 80(4):1467–1478
doi: 10.1128/IAI.06332-11
pubmed: 22252872
pmcid: 3318400
Srikanta D, Yang M, Williams M et al (2011) A sensitive high-throughput assay for evaluating host-pathogen interactions in Cryptococcus neoformans infection. PLoS One 6(7):e22773
doi: 10.1371/journal.pone.0022773
pubmed: 21829509
pmcid: 3145667
Mukherjee S, Feldmesser M, Casadevall A (1996) J774 murine macrophage-like cell interactions with Cryptococcus neoformans in the presence and absence of opsonins. J Infect Dis 173(5):1222–1231
doi: 10.1093/infdis/173.5.1222
pubmed: 8627076
Alanio A, Vernel-Pauillac F, Sturny-Leclère A et al (2015) Cryptococcus neoformans host adaptation: Toward biological evidence of dormancy. mBio 6(2):e02580–e02514
doi: 10.1128/mBio.02580-14
pubmed: 25827423
pmcid: 4453510