The Miami Framework for ALS and related neurodegenerative disorders: an integrated view of phenotype and biology.


Journal

Nature reviews. Neurology
ISSN: 1759-4766
Titre abrégé: Nat Rev Neurol
Pays: England
ID NLM: 101500072

Informations de publication

Date de publication:
20 May 2024
Historique:
accepted: 03 04 2024
medline: 21 5 2024
pubmed: 21 5 2024
entrez: 20 5 2024
Statut: aheadofprint

Résumé

Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum - from clinically silent, to prodromal, to clinically manifest - and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes - motor neuron, frontotemporal and extrapyramidal - rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.

Identifiants

pubmed: 38769202
doi: 10.1038/s41582-024-00961-z
pii: 10.1038/s41582-024-00961-z
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Investigateurs

Ronald C Petersen (RC)
Peggy Allred (P)
Stanley Appel (S)
David Benatar (D)
James Berry (J)
Meg Bradbury (M)
Lucie Bruijn (L)
Jennifer Buczyner (J)
Nathan Carberry (N)
James Caress (J)
Thomas Champney (T)
Kuldip Dave (K)
Stephanie Fradette (S)
Volkan Granit (V)
Anne-Laure Grignon (AL)
Amelie Gubitz (A)
Matthew Harms (M)
Terry Heiman-Patterson (T)
Sharon Hesterlee (S)
Karen Lawrence (K)
Travis Lewis (T)
Oren Levy (O)
Tahseen Mozaffar (T)
Christine Stanislaw (C)
Alexander Thompson (A)
Olga Uspenskay (O)
Patrick Weydt (P)
Lorne Zinman (L)

Informations de copyright

© 2024. Springer Nature Limited.

Références

Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J. Neurol. Neurosurg. Psychiatry 57, 416–418 (1994).
doi: 10.1136/jnnp.57.4.416
Brooks, B. R., Miller, R. G., Swash, M. & Munsat, T. L. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 1, 293–299 (2000).
doi: 10.1080/146608200300079536
de Carvalho, M. et al. The Awaji criteria for diagnosis of ALS. Muscle Nerve 44, 456–457 (2011).
pubmed: 21996809 doi: 10.1002/mus.22175
Ludolph, A. et al. A revision of the El Escorial criteria — 2015. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 291–292 (2015).
pubmed: 26121170 doi: 10.3109/21678421.2015.1049183
Neary, D. & Snowden, J. Frontal lobe dementia, motor neuron disease, and clinical and neuropathological criteria. J. Neurol. Neurosurg. Psychiatry 84, 713–714 (2013).
pubmed: 23482660 doi: 10.1136/jnnp-2012-304549
Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).
pubmed: 9855500 doi: 10.1212/WNL.51.6.1546
Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).
pubmed: 21810890 pmcid: 3170532 doi: 10.1093/brain/awr179
Shefner, J. M. et al. A proposal for new diagnostic criteria for ALS. Clin. Neurophysiol. 131, 1975–1978 (2020).
pubmed: 32387049 doi: 10.1016/j.clinph.2020.04.005
Strong, M. J. et al. Amyotrophic lateral sclerosis — frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 153–174 (2017).
pubmed: 28054827 pmcid: 7409990 doi: 10.1080/21678421.2016.1267768
Benatar, M. et al. Mild motor impairment as prodromal state in amyotrophic lateral sclerosis: a new diagnostic entity. Brain 145, 3500–3508 (2022).
pubmed: 35594156 pmcid: 9586537 doi: 10.1093/brain/awac185
Benatar, M., Wuu, J., Andersen, P. M., Lombardi, V. & Malaspina, A. Neurofilament light: a candidate biomarker of pre-symptomatic ALS and phenoconversion. Ann. Neurol. 84, 130–139 (2018).
pubmed: 30014505 doi: 10.1002/ana.25276
Bjornevik, K. et al. Prediagnostic neurofilament light chain levels in amyotrophic lateral sclerosis. Neurology 97, e1466–e1474 (2021).
pubmed: 34380747 pmcid: 8575132 doi: 10.1212/WNL.0000000000012632
Smith, E. N. et al. Plasma neurofilament light levels show elevation two years prior to diagnosis of amyotrophic lateral sclerosis in the UK Biobank. Amyotroph. Lateral Scler. Frontotemporal Degener. 25, 170–176 (2024).
pubmed: 38013452 doi: 10.1080/21678421.2023.2285428
Benatar, M. et al. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 145, 27–44 (2022).
pubmed: 34677606 doi: 10.1093/brain/awab404
Boeve, B. F., Boxer, A. L., Kumfor, F., Pijnenburg, Y. & Rohrer, J. D. Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 21, 258–272 (2022).
pubmed: 35182511 doi: 10.1016/S1474-4422(21)00341-0
Benussi, A. et al. Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimers Dement. 18, 1408–1423 (2022).
pubmed: 34874596 doi: 10.1002/alz.12485
Mitsumoto, H., Kasarskis, E. J. & Simmons, Z. Hastening the diagnosis of amyotrophic lateral sclerosis. Neurology 99, 60–68 (2022).
pubmed: 35577578 doi: 10.1212/WNL.0000000000200799
Benatar, M. & Wuu, J. Presymptomatic studies in ALS: rationale, challenges, and approach. Neurology 79, 1732–1739 (2012).
pubmed: 23071166 pmcid: 3468777 doi: 10.1212/WNL.0b013e31826e9b1d
Estevez-Fraga, C. et al. Expanding the spectrum of movement disorders associated with C9orf72 hexanucleotide expansions. Neurol. Genet. 7, e575 (2021).
pubmed: 33977144 pmcid: 8105892 doi: 10.1212/NXG.0000000000000575
Daube, J. R. Electrodiagnostic studies in amyotrophic lateral sclerosis and other motor neuron disorders. Muscle Nerve 23, 1488–1502 (2000).
pubmed: 11003783 doi: 10.1002/1097-4598(200010)23:10<1488::AID-MUS4>3.0.CO;2-E
Swash, M. Shortening the time to diagnosis in ALS: the role of electrodiagnostic studies. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 1, S67–S72 (2000).
doi: 10.1080/14660820050515359
Johnsen, B. et al. Diagnostic criteria for amyotrophic lateral sclerosis: a multicentre study of inter-rater variation and sensitivity. Clin. Neurophysiol. 130, 307–314 (2019).
pubmed: 30573424 doi: 10.1016/j.clinph.2018.11.021
Petersen, R. C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194 (2004).
pubmed: 15324362 doi: 10.1111/j.1365-2796.2004.01388.x
Benatar, M., Turner, M. R. & Wuu, J. Defining pre-symptomatic amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 303–309 (2019).
pubmed: 30892087 pmcid: 6613999 doi: 10.1080/21678421.2019.1587634
Brooks, B. R. The role of axonal transport in neurodegenerative disease spread: a meta-analysis of experimental and clinical poliomyelitis compares with amyotrophic lateral sclerosis. Can. J. Neurological Sci. 18, 435–438 (1991).
doi: 10.1017/S0317167100032625
Grossman, M. et al. Frontotemporal lobar degeneration. Nat. Rev. Dis. Prim. 9, 40 (2023).
pubmed: 37563165 doi: 10.1038/s41572-023-00447-0
Leroy, M. et al. Characteristics and progression of patients with frontotemporal dementia in a regional memory clinic network. Alzheimers Res. Ther. 13, 19 (2021).
pubmed: 33419472 pmcid: 7796569 doi: 10.1186/s13195-020-00753-9
Boeve, B. et al. The longitudinal evaluation of familial frontotemporal dementia subjects protocol: Framework and methodology. Alzheimers Dement. 16, 22–36 (2020).
pubmed: 31636026 doi: 10.1016/j.jalz.2019.06.4947
Olney, N. T. et al. Clinical and volumetric changes with increasing functional impairment in familial frontotemporal lobar degeneration. Alzheimers Dement. 16, 49–59 (2020).
pubmed: 31784375 doi: 10.1016/j.jalz.2019.08.196
Barker, M. S. et al. Proposed research criteria for prodromal behavioural variant frontotemporal dementia. Brain 145, 1079–1097 (2022).
pubmed: 35349636 pmcid: 9050566 doi: 10.1093/brain/awab365
Brooks, B. R. El Escorial World Federation of Neurology Criteria for the diagnosis of amyotrophic lateral sclerosis. J. Neurological Sci. 124, 96–107 (1994).
doi: 10.1016/0022-510X(94)90191-0
Taylor, L. J. et al. Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? J. Neurol. Neurosurg. Psychiatry 84, 494–498 (2013).
pubmed: 23033353 doi: 10.1136/jnnp-2012-303526
Abrahams, S. Executive dysfunction in ALS is not the whole story. J. Neurol. Neurosurg. Psychiatry 84, 474–475 (2013).
pubmed: 23117493 doi: 10.1136/jnnp-2012-303851
Saxon, J. A. et al. Semantic dementia, progressive non-fluent aphasia and their association with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 711–712 (2017).
pubmed: 28554960 doi: 10.1136/jnnp-2016-314912
Kendler, K. S. The phenomenology of major depression and the representativeness and nature of DSM criteria. Am. J. Psychiatry 173, 771–780 (2016).
pubmed: 27138588 doi: 10.1176/appi.ajp.2016.15121509
Tipton, P. W. et al. Differences in motor features of C9orf72, MAPT, or GRN variant carriers with familial frontotemporal lobar degeneration. Neurology 99, e1154–e1167 (2022).
pubmed: 35790423 pmcid: 9536745 doi: 10.1212/WNL.0000000000200860
Siuda, J., Fujioka, S. & Wszolek, Z. K. Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism Relat. Disord. 20, 957–964 (2014).
pubmed: 24998994 pmcid: 4160731 doi: 10.1016/j.parkreldis.2014.06.004
Rowe, J. B., Holland, N. & Rittman, T. Progressive supranuclear palsy: diagnosis and management. Pract. Neurol. 21, 376–383 (2021).
pubmed: 34215700 pmcid: 8461411 doi: 10.1136/practneurol-2020-002794
Espay, A. J. & Litvan, I. Parkinsonism and frontotemporal dementia: the clinical overlap. J. Mol. Neurosci. 45, 343–349 (2011).
pubmed: 21892619 pmcid: 3324113 doi: 10.1007/s12031-011-9632-1
de Pablo-Fernandez, E. et al. A clinicopathologic study of movement disorders in frontotemporal lobar degeneration. Mov. Disord. 36, 632–641 (2021).
pubmed: 33155746 doi: 10.1002/mds.28356
Gasca-Salas, C. et al. Characterization of movement disorder phenomenology in genetically proven, familial frontotemporal lobar degeneration: a systematic review and meta-analysis. PLoS ONE 11, e0153852 (2016).
pubmed: 27100392 pmcid: 4839564 doi: 10.1371/journal.pone.0153852
Baizabal-Carvallo, J. F. & Jankovic, J. Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat. Rev. Neurol. 12, 175–185 (2016).
pubmed: 26891767 doi: 10.1038/nrneurol.2016.14
Wen, Y., Zhou, Y., Jiao, B. & Shen, L. Genetics of progressive supranuclear palsy: a review. J. Parkinsons Dis. 11, 93–105 (2021).
pubmed: 33104043 pmcid: 7990399 doi: 10.3233/JPD-202302
Foster, N. L. et al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann. Neurol. 41, 706–715 (1997).
pubmed: 9189031 doi: 10.1002/ana.410410606
Fiondella, L. et al. Movement disorders are linked to TDP-43 burden in the substantia nigra of FTLD-TDP brain donors. Acta Neuropathol. Commun. 11, 63 (2023).
pubmed: 37046309 pmcid: 10091586 doi: 10.1186/s40478-023-01560-7
Arienti, F. et al. Unravelling genetic factors underlying corticobasal syndrome: a systematic review. Cells 10, 171 (2021).
pubmed: 33467748 pmcid: 7830591 doi: 10.3390/cells10010171
Steele, J. C. Parkinsonism-dementia complex of Guam. Mov. Disord. 20, S99–S107 (2005).
pubmed: 16092098 doi: 10.1002/mds.20547
Hensman Moss, D. J. et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82, 292–299 (2014).
pubmed: 24363131 pmcid: 3929197 doi: 10.1212/WNL.0000000000000061
Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503 (2013).
pubmed: 23359374 pmcid: 3590050 doi: 10.1212/WNL.0b013e31827f0fd1
Hoglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 32, 853–864 (2017).
pubmed: 28467028 pmcid: 5516529 doi: 10.1002/mds.26987
Benatar, M., Turner, M. R. & Wuu, J. Presymptomatic amyotrophic lateral sclerosis: from characterization to prevention. Curr. Opin. Neurol. 36, 360–364 (2023).
pubmed: 37382103 doi: 10.1097/WCO.0000000000001168
Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).
pubmed: 21325651 pmcid: 3059138 doi: 10.1212/WNL.0b013e31821103e6
Jack, C. R. Jr. et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).
pubmed: 29653606 doi: 10.1016/j.jalz.2018.02.018
Jack, C. R. Jr. et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016).
pubmed: 27371494 pmcid: 4970664 doi: 10.1212/WNL.0000000000002923
Hoglinger, G. U. et al. A biological classification of Parkinson’s disease: the SynNeurGe research diagnostic criteria. Lancet Neurol. 23, 191–204 (2024).
pubmed: 38267191 doi: 10.1016/S1474-4422(23)00404-0
Benatar, M. et al. Neurofilaments in pre-symptomatic ALS and the impact of genotype. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 538–548 (2019).
pubmed: 31432691 pmcid: 6768722 doi: 10.1080/21678421.2019.1646769
Meeter, L. H. et al. Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann. Clin. Transl. Neurol. 3, 623–636 (2016).
pubmed: 27606344 pmcid: 4999594 doi: 10.1002/acn3.325
van der Ende, E. L. et al. Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurol. 18, 1103–1111 (2019).
pubmed: 31701893 doi: 10.1016/S1474-4422(19)30354-0
Rojas, J. C. et al. Plasma neurofilament light for prediction of disease progression in familial frontotemporal lobar degeneration. Neurology 96, e2296–e2312 (2021).
pubmed: 33827960 pmcid: 8166434 doi: 10.1212/WNL.0000000000011848
Saracino, D. et al. Plasma NfL levels and longitudinal change rates in C9orf72 and GRN-associated diseases: from tailored references to clinical applications. J. Neurol. Neurosurg. Psychiatry 92, 1278–1288 (2021).
pubmed: 34349004 doi: 10.1136/jnnp-2021-326914
Gendron, T. F. et al. Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders. Cell Rep. Med. 3, 100607 (2022).
pubmed: 35492244 pmcid: 9044101 doi: 10.1016/j.xcrm.2022.100607
Wilke, C. et al. Stratifying the presymptomatic phase of genetic frontotemporal dementia by serum NfL and pNfH: a longitudinal multicentre study. Ann. Neurol. 91, 33–47 (2022).
pubmed: 34743360 doi: 10.1002/ana.26265
Staffaroni, A. M. et al. Temporal order of clinical and biomarker changes in familial frontotemporal dementia. Nat. Med. 28, 2194–2206 (2022).
pubmed: 36138153 pmcid: 9951811 doi: 10.1038/s41591-022-01942-9
Benatar, M., Wuu, J. & Turner, M. R. Neurofilament light chain in drug development for amyotrophic lateral sclerosis: a critical appraisal. Brain 146, 2711–2716 (2023).
pubmed: 36310538 doi: 10.1093/brain/awac394
Irwin, D. J. et al. Ante mortem cerebrospinal fluid tau levels correlate with postmortem tau pathology in frontotemporal lobar degeneration. Ann. Neurol. 82, 247–258 (2017).
pubmed: 28719018 pmcid: 5776747 doi: 10.1002/ana.24996
Cousins, K. A. Q. et al. Elevated plasma phosphorylated Tau 181 in amyotrophic lateral sclerosis. Ann. Neurol. 92, 807–818 (2022).
pubmed: 35877814 pmcid: 9588516 doi: 10.1002/ana.26462
Saijo, E. et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathologica 139, 63–77 (2020).
pubmed: 31616982 doi: 10.1007/s00401-019-02080-2
Chatterjee, M. et al. Plasma extracellular vesicle Tau isoform ratios and TDP-43 inform about molecular pathology in frontotemporal dementia and amyotrophic lateral sclerosis. Preprint at ResSq. https://doi.org/10.21203/rs.3.rs-3158170/v1 (2023).
doi: 10.21203/rs.3.rs-3158170/v1
Irwin, K. E. et al. A fluid biomarker reveals loss of TDP-43 splicing repression in presymptomatic ALS–FTD. Nat. Med. 30, 382–393 (2024).
pubmed: 38278991 pmcid: 10878965 doi: 10.1038/s41591-023-02788-5
Andersen, P. M. et al. EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)-revised report of an EFNS task force. Eur. J. Neurol. 19, 360–375 (2012).
pubmed: 21914052 doi: 10.1111/j.1468-1331.2011.03501.x
Pressman, P. S. & Miller, B. L. Diagnosis and management of behavioral variant frontotemporal dementia. Biol. Psychiatry 75, 574–581 (2014).
pubmed: 24315411 doi: 10.1016/j.biopsych.2013.11.006
Arias, J. J. & Karlawish, J. Confidentiality in preclinical Alzheimer disease studies: when research and medical records meet. Neurology 82, 725–729 (2014).
pubmed: 24477112 pmcid: 3945659 doi: 10.1212/WNL.0000000000000153
United States. The Genetic Information Nondiscrimination Act of 2008 (GINA). In: US Department of Labor EBSA, editor. Public Law No 110-233 (Washington, DC, 2008).
Prince, A. E. & Berkman, B. E. When does an illness begin: genetic discrimination and disease manifestation. J. Law Med. Ethics 40, 655–664 (2012).
pubmed: 23061591 pmcid: 4142506 doi: 10.1111/j.1748-720X.2012.00696.x
Benatar, M. et al. Design of a randomized, placebo-controlled, phase 3 trial of tofersen initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS study. Neurotherapeutics 19, 1248–1258 (2022).
pubmed: 35585374 pmcid: 9587202 doi: 10.1007/s13311-022-01237-4
Largent, E. A. et al. Testing for Alzheimer disease biomarkers and disclosing results across the disease continuum. Neurology 100, 1010–1019 (2023).
pubmed: 36720642 doi: 10.1212/WNL.0000000000206891
Bourinaris, T. & Houlden, H. C9orf72 and its relevance in parkinsonism and movement disorders: a comprehensive review of the literature. Mov. Disord. Clin. Pract. 5, 575–585 (2018).
pubmed: 30637277 pmcid: 6277362 doi: 10.1002/mdc3.12677
Benatar, M. et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology 95, e59–e69 (2020).
pubmed: 32385188 pmcid: 7371380 doi: 10.1212/WNL.0000000000009559
Feneberg, E. et al. Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology 90, e22–e30 (2018).
pubmed: 29212830 doi: 10.1212/WNL.0000000000004761
Lu, C. H. et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84, 2247–2257 (2015).
pubmed: 25934855 pmcid: 4456658 doi: 10.1212/WNL.0000000000001642
Poesen, K. et al. Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease. Neurology 88, 2302–2309 (2017).
pubmed: 28500227 doi: 10.1212/WNL.0000000000004029
Thompson, A. G. et al. Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Commun. 4, fcac029 (2022).
pubmed: 35224491 pmcid: 8870425 doi: 10.1093/braincomms/fcac029
Wilke, C. et al. Serum neurofilament light chain is increased in hereditary spastic paraplegias. Ann. Clin. Transl. Neurol. 5, 876–882 (2018).
pubmed: 30009206 pmcid: 6043776 doi: 10.1002/acn3.583
Shepheard, S. et al. Urinary p75 extracellular domain; a biomarker for prognosis, progression and pharmacodynamic effect in ALS. Neurology 88, 1137–1143 (2017).
pubmed: 28228570 pmcid: 5373786 doi: 10.1212/WNL.0000000000003741
Gertsman, I. et al. An endogenous peptide marker differentiates SOD1 stability and facilitates pharmacodynamic monitoring in SOD1 amyotrophic lateral sclerosis. JCI Insight 4, e122768 (2019).
pubmed: 31092730 pmcid: 6542602 doi: 10.1172/jci.insight.122768
Turner, M. R. et al. Primary lateral sclerosis: consensus diagnostic criteria. J. Neurol. Neurosurg. Psychiatry 91, 373–377 (2020).
pubmed: 32029539 doi: 10.1136/jnnp-2019-322541

Auteurs

Michael Benatar (M)

Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA. mbenatar@miami.edu.

Joanne Wuu (J)

Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.

Edward D Huey (ED)

Department of Psychiatry and Human Behaviour, Alpert Medical School of Brown University, Providence, RI, USA.

Corey T McMillan (CT)

Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Ronald C Petersen (RC)

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Ronald Postuma (R)

Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

Caroline McHutchison (C)

Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.

Laynie Dratch (L)

Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Jalayne J Arias (JJ)

Department of Health Policy & Behavioral Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA.

Anita Crawley (A)

, Buffalo, NY, USA.

Henry Houlden (H)

UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.

Michael P McDermott (MP)

Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.

Xueya Cai (X)

Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.

Neil Thakur (N)

ALS Association, Arlington, VA, USA.

Adam Boxer (A)

Department of Neurology, University of California, San Francisco, CA, USA.

Howard Rosen (H)

Department of Neurology, University of California, San Francisco, CA, USA.

Bradley F Boeve (BF)

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Penny Dacks (P)

Association for Frontotemporal Degeneration, King of Prussia, PA, USA.

Stephanie Cosentino (S)

Department of Psychiatry, Columbia University, New York, NY, USA.

Sharon Abrahams (S)

Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK.
Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.

Neil Shneider (N)

Department of Neurology, Columbia University, New York, NY, USA.

Paul Lingor (P)

Department of Neurology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.

Jeremy Shefner (J)

Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.

Peter M Andersen (PM)

Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.

Ammar Al-Chalabi (A)

Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.
Department of Neurology, King's College Hospital, London, UK.

Martin R Turner (MR)

Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Classifications MeSH