The Miami Framework for ALS and related neurodegenerative disorders: an integrated view of phenotype and biology.
Journal
Nature reviews. Neurology
ISSN: 1759-4766
Titre abrégé: Nat Rev Neurol
Pays: England
ID NLM: 101500072
Informations de publication
Date de publication:
20 May 2024
20 May 2024
Historique:
accepted:
03
04
2024
medline:
21
5
2024
pubmed:
21
5
2024
entrez:
20
5
2024
Statut:
aheadofprint
Résumé
Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum - from clinically silent, to prodromal, to clinically manifest - and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes - motor neuron, frontotemporal and extrapyramidal - rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.
Identifiants
pubmed: 38769202
doi: 10.1038/s41582-024-00961-z
pii: 10.1038/s41582-024-00961-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Investigateurs
Ronald C Petersen
(RC)
Peggy Allred
(P)
Stanley Appel
(S)
David Benatar
(D)
James Berry
(J)
Meg Bradbury
(M)
Lucie Bruijn
(L)
Jennifer Buczyner
(J)
Nathan Carberry
(N)
James Caress
(J)
Thomas Champney
(T)
Kuldip Dave
(K)
Stephanie Fradette
(S)
Volkan Granit
(V)
Anne-Laure Grignon
(AL)
Amelie Gubitz
(A)
Matthew Harms
(M)
Terry Heiman-Patterson
(T)
Sharon Hesterlee
(S)
Karen Lawrence
(K)
Travis Lewis
(T)
Oren Levy
(O)
Tahseen Mozaffar
(T)
Christine Stanislaw
(C)
Alexander Thompson
(A)
Olga Uspenskay
(O)
Patrick Weydt
(P)
Lorne Zinman
(L)
Informations de copyright
© 2024. Springer Nature Limited.
Références
Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J. Neurol. Neurosurg. Psychiatry 57, 416–418 (1994).
doi: 10.1136/jnnp.57.4.416
Brooks, B. R., Miller, R. G., Swash, M. & Munsat, T. L. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 1, 293–299 (2000).
doi: 10.1080/146608200300079536
de Carvalho, M. et al. The Awaji criteria for diagnosis of ALS. Muscle Nerve 44, 456–457 (2011).
pubmed: 21996809
doi: 10.1002/mus.22175
Ludolph, A. et al. A revision of the El Escorial criteria — 2015. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 291–292 (2015).
pubmed: 26121170
doi: 10.3109/21678421.2015.1049183
Neary, D. & Snowden, J. Frontal lobe dementia, motor neuron disease, and clinical and neuropathological criteria. J. Neurol. Neurosurg. Psychiatry 84, 713–714 (2013).
pubmed: 23482660
doi: 10.1136/jnnp-2012-304549
Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).
pubmed: 9855500
doi: 10.1212/WNL.51.6.1546
Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).
pubmed: 21810890
pmcid: 3170532
doi: 10.1093/brain/awr179
Shefner, J. M. et al. A proposal for new diagnostic criteria for ALS. Clin. Neurophysiol. 131, 1975–1978 (2020).
pubmed: 32387049
doi: 10.1016/j.clinph.2020.04.005
Strong, M. J. et al. Amyotrophic lateral sclerosis — frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 153–174 (2017).
pubmed: 28054827
pmcid: 7409990
doi: 10.1080/21678421.2016.1267768
Benatar, M. et al. Mild motor impairment as prodromal state in amyotrophic lateral sclerosis: a new diagnostic entity. Brain 145, 3500–3508 (2022).
pubmed: 35594156
pmcid: 9586537
doi: 10.1093/brain/awac185
Benatar, M., Wuu, J., Andersen, P. M., Lombardi, V. & Malaspina, A. Neurofilament light: a candidate biomarker of pre-symptomatic ALS and phenoconversion. Ann. Neurol. 84, 130–139 (2018).
pubmed: 30014505
doi: 10.1002/ana.25276
Bjornevik, K. et al. Prediagnostic neurofilament light chain levels in amyotrophic lateral sclerosis. Neurology 97, e1466–e1474 (2021).
pubmed: 34380747
pmcid: 8575132
doi: 10.1212/WNL.0000000000012632
Smith, E. N. et al. Plasma neurofilament light levels show elevation two years prior to diagnosis of amyotrophic lateral sclerosis in the UK Biobank. Amyotroph. Lateral Scler. Frontotemporal Degener. 25, 170–176 (2024).
pubmed: 38013452
doi: 10.1080/21678421.2023.2285428
Benatar, M. et al. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 145, 27–44 (2022).
pubmed: 34677606
doi: 10.1093/brain/awab404
Boeve, B. F., Boxer, A. L., Kumfor, F., Pijnenburg, Y. & Rohrer, J. D. Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 21, 258–272 (2022).
pubmed: 35182511
doi: 10.1016/S1474-4422(21)00341-0
Benussi, A. et al. Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimers Dement. 18, 1408–1423 (2022).
pubmed: 34874596
doi: 10.1002/alz.12485
Mitsumoto, H., Kasarskis, E. J. & Simmons, Z. Hastening the diagnosis of amyotrophic lateral sclerosis. Neurology 99, 60–68 (2022).
pubmed: 35577578
doi: 10.1212/WNL.0000000000200799
Benatar, M. & Wuu, J. Presymptomatic studies in ALS: rationale, challenges, and approach. Neurology 79, 1732–1739 (2012).
pubmed: 23071166
pmcid: 3468777
doi: 10.1212/WNL.0b013e31826e9b1d
Estevez-Fraga, C. et al. Expanding the spectrum of movement disorders associated with C9orf72 hexanucleotide expansions. Neurol. Genet. 7, e575 (2021).
pubmed: 33977144
pmcid: 8105892
doi: 10.1212/NXG.0000000000000575
Daube, J. R. Electrodiagnostic studies in amyotrophic lateral sclerosis and other motor neuron disorders. Muscle Nerve 23, 1488–1502 (2000).
pubmed: 11003783
doi: 10.1002/1097-4598(200010)23:10<1488::AID-MUS4>3.0.CO;2-E
Swash, M. Shortening the time to diagnosis in ALS: the role of electrodiagnostic studies. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 1, S67–S72 (2000).
doi: 10.1080/14660820050515359
Johnsen, B. et al. Diagnostic criteria for amyotrophic lateral sclerosis: a multicentre study of inter-rater variation and sensitivity. Clin. Neurophysiol. 130, 307–314 (2019).
pubmed: 30573424
doi: 10.1016/j.clinph.2018.11.021
Petersen, R. C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194 (2004).
pubmed: 15324362
doi: 10.1111/j.1365-2796.2004.01388.x
Benatar, M., Turner, M. R. & Wuu, J. Defining pre-symptomatic amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 303–309 (2019).
pubmed: 30892087
pmcid: 6613999
doi: 10.1080/21678421.2019.1587634
Brooks, B. R. The role of axonal transport in neurodegenerative disease spread: a meta-analysis of experimental and clinical poliomyelitis compares with amyotrophic lateral sclerosis. Can. J. Neurological Sci. 18, 435–438 (1991).
doi: 10.1017/S0317167100032625
Grossman, M. et al. Frontotemporal lobar degeneration. Nat. Rev. Dis. Prim. 9, 40 (2023).
pubmed: 37563165
doi: 10.1038/s41572-023-00447-0
Leroy, M. et al. Characteristics and progression of patients with frontotemporal dementia in a regional memory clinic network. Alzheimers Res. Ther. 13, 19 (2021).
pubmed: 33419472
pmcid: 7796569
doi: 10.1186/s13195-020-00753-9
Boeve, B. et al. The longitudinal evaluation of familial frontotemporal dementia subjects protocol: Framework and methodology. Alzheimers Dement. 16, 22–36 (2020).
pubmed: 31636026
doi: 10.1016/j.jalz.2019.06.4947
Olney, N. T. et al. Clinical and volumetric changes with increasing functional impairment in familial frontotemporal lobar degeneration. Alzheimers Dement. 16, 49–59 (2020).
pubmed: 31784375
doi: 10.1016/j.jalz.2019.08.196
Barker, M. S. et al. Proposed research criteria for prodromal behavioural variant frontotemporal dementia. Brain 145, 1079–1097 (2022).
pubmed: 35349636
pmcid: 9050566
doi: 10.1093/brain/awab365
Brooks, B. R. El Escorial World Federation of Neurology Criteria for the diagnosis of amyotrophic lateral sclerosis. J. Neurological Sci. 124, 96–107 (1994).
doi: 10.1016/0022-510X(94)90191-0
Taylor, L. J. et al. Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? J. Neurol. Neurosurg. Psychiatry 84, 494–498 (2013).
pubmed: 23033353
doi: 10.1136/jnnp-2012-303526
Abrahams, S. Executive dysfunction in ALS is not the whole story. J. Neurol. Neurosurg. Psychiatry 84, 474–475 (2013).
pubmed: 23117493
doi: 10.1136/jnnp-2012-303851
Saxon, J. A. et al. Semantic dementia, progressive non-fluent aphasia and their association with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 711–712 (2017).
pubmed: 28554960
doi: 10.1136/jnnp-2016-314912
Kendler, K. S. The phenomenology of major depression and the representativeness and nature of DSM criteria. Am. J. Psychiatry 173, 771–780 (2016).
pubmed: 27138588
doi: 10.1176/appi.ajp.2016.15121509
Tipton, P. W. et al. Differences in motor features of C9orf72, MAPT, or GRN variant carriers with familial frontotemporal lobar degeneration. Neurology 99, e1154–e1167 (2022).
pubmed: 35790423
pmcid: 9536745
doi: 10.1212/WNL.0000000000200860
Siuda, J., Fujioka, S. & Wszolek, Z. K. Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism Relat. Disord. 20, 957–964 (2014).
pubmed: 24998994
pmcid: 4160731
doi: 10.1016/j.parkreldis.2014.06.004
Rowe, J. B., Holland, N. & Rittman, T. Progressive supranuclear palsy: diagnosis and management. Pract. Neurol. 21, 376–383 (2021).
pubmed: 34215700
pmcid: 8461411
doi: 10.1136/practneurol-2020-002794
Espay, A. J. & Litvan, I. Parkinsonism and frontotemporal dementia: the clinical overlap. J. Mol. Neurosci. 45, 343–349 (2011).
pubmed: 21892619
pmcid: 3324113
doi: 10.1007/s12031-011-9632-1
de Pablo-Fernandez, E. et al. A clinicopathologic study of movement disorders in frontotemporal lobar degeneration. Mov. Disord. 36, 632–641 (2021).
pubmed: 33155746
doi: 10.1002/mds.28356
Gasca-Salas, C. et al. Characterization of movement disorder phenomenology in genetically proven, familial frontotemporal lobar degeneration: a systematic review and meta-analysis. PLoS ONE 11, e0153852 (2016).
pubmed: 27100392
pmcid: 4839564
doi: 10.1371/journal.pone.0153852
Baizabal-Carvallo, J. F. & Jankovic, J. Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat. Rev. Neurol. 12, 175–185 (2016).
pubmed: 26891767
doi: 10.1038/nrneurol.2016.14
Wen, Y., Zhou, Y., Jiao, B. & Shen, L. Genetics of progressive supranuclear palsy: a review. J. Parkinsons Dis. 11, 93–105 (2021).
pubmed: 33104043
pmcid: 7990399
doi: 10.3233/JPD-202302
Foster, N. L. et al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann. Neurol. 41, 706–715 (1997).
pubmed: 9189031
doi: 10.1002/ana.410410606
Fiondella, L. et al. Movement disorders are linked to TDP-43 burden in the substantia nigra of FTLD-TDP brain donors. Acta Neuropathol. Commun. 11, 63 (2023).
pubmed: 37046309
pmcid: 10091586
doi: 10.1186/s40478-023-01560-7
Arienti, F. et al. Unravelling genetic factors underlying corticobasal syndrome: a systematic review. Cells 10, 171 (2021).
pubmed: 33467748
pmcid: 7830591
doi: 10.3390/cells10010171
Steele, J. C. Parkinsonism-dementia complex of Guam. Mov. Disord. 20, S99–S107 (2005).
pubmed: 16092098
doi: 10.1002/mds.20547
Hensman Moss, D. J. et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82, 292–299 (2014).
pubmed: 24363131
pmcid: 3929197
doi: 10.1212/WNL.0000000000000061
Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503 (2013).
pubmed: 23359374
pmcid: 3590050
doi: 10.1212/WNL.0b013e31827f0fd1
Hoglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 32, 853–864 (2017).
pubmed: 28467028
pmcid: 5516529
doi: 10.1002/mds.26987
Benatar, M., Turner, M. R. & Wuu, J. Presymptomatic amyotrophic lateral sclerosis: from characterization to prevention. Curr. Opin. Neurol. 36, 360–364 (2023).
pubmed: 37382103
doi: 10.1097/WCO.0000000000001168
Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).
pubmed: 21325651
pmcid: 3059138
doi: 10.1212/WNL.0b013e31821103e6
Jack, C. R. Jr. et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).
pubmed: 29653606
doi: 10.1016/j.jalz.2018.02.018
Jack, C. R. Jr. et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016).
pubmed: 27371494
pmcid: 4970664
doi: 10.1212/WNL.0000000000002923
Hoglinger, G. U. et al. A biological classification of Parkinson’s disease: the SynNeurGe research diagnostic criteria. Lancet Neurol. 23, 191–204 (2024).
pubmed: 38267191
doi: 10.1016/S1474-4422(23)00404-0
Benatar, M. et al. Neurofilaments in pre-symptomatic ALS and the impact of genotype. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 538–548 (2019).
pubmed: 31432691
pmcid: 6768722
doi: 10.1080/21678421.2019.1646769
Meeter, L. H. et al. Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann. Clin. Transl. Neurol. 3, 623–636 (2016).
pubmed: 27606344
pmcid: 4999594
doi: 10.1002/acn3.325
van der Ende, E. L. et al. Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurol. 18, 1103–1111 (2019).
pubmed: 31701893
doi: 10.1016/S1474-4422(19)30354-0
Rojas, J. C. et al. Plasma neurofilament light for prediction of disease progression in familial frontotemporal lobar degeneration. Neurology 96, e2296–e2312 (2021).
pubmed: 33827960
pmcid: 8166434
doi: 10.1212/WNL.0000000000011848
Saracino, D. et al. Plasma NfL levels and longitudinal change rates in C9orf72 and GRN-associated diseases: from tailored references to clinical applications. J. Neurol. Neurosurg. Psychiatry 92, 1278–1288 (2021).
pubmed: 34349004
doi: 10.1136/jnnp-2021-326914
Gendron, T. F. et al. Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders. Cell Rep. Med. 3, 100607 (2022).
pubmed: 35492244
pmcid: 9044101
doi: 10.1016/j.xcrm.2022.100607
Wilke, C. et al. Stratifying the presymptomatic phase of genetic frontotemporal dementia by serum NfL and pNfH: a longitudinal multicentre study. Ann. Neurol. 91, 33–47 (2022).
pubmed: 34743360
doi: 10.1002/ana.26265
Staffaroni, A. M. et al. Temporal order of clinical and biomarker changes in familial frontotemporal dementia. Nat. Med. 28, 2194–2206 (2022).
pubmed: 36138153
pmcid: 9951811
doi: 10.1038/s41591-022-01942-9
Benatar, M., Wuu, J. & Turner, M. R. Neurofilament light chain in drug development for amyotrophic lateral sclerosis: a critical appraisal. Brain 146, 2711–2716 (2023).
pubmed: 36310538
doi: 10.1093/brain/awac394
Irwin, D. J. et al. Ante mortem cerebrospinal fluid tau levels correlate with postmortem tau pathology in frontotemporal lobar degeneration. Ann. Neurol. 82, 247–258 (2017).
pubmed: 28719018
pmcid: 5776747
doi: 10.1002/ana.24996
Cousins, K. A. Q. et al. Elevated plasma phosphorylated Tau 181 in amyotrophic lateral sclerosis. Ann. Neurol. 92, 807–818 (2022).
pubmed: 35877814
pmcid: 9588516
doi: 10.1002/ana.26462
Saijo, E. et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathologica 139, 63–77 (2020).
pubmed: 31616982
doi: 10.1007/s00401-019-02080-2
Chatterjee, M. et al. Plasma extracellular vesicle Tau isoform ratios and TDP-43 inform about molecular pathology in frontotemporal dementia and amyotrophic lateral sclerosis. Preprint at ResSq. https://doi.org/10.21203/rs.3.rs-3158170/v1 (2023).
doi: 10.21203/rs.3.rs-3158170/v1
Irwin, K. E. et al. A fluid biomarker reveals loss of TDP-43 splicing repression in presymptomatic ALS–FTD. Nat. Med. 30, 382–393 (2024).
pubmed: 38278991
pmcid: 10878965
doi: 10.1038/s41591-023-02788-5
Andersen, P. M. et al. EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)-revised report of an EFNS task force. Eur. J. Neurol. 19, 360–375 (2012).
pubmed: 21914052
doi: 10.1111/j.1468-1331.2011.03501.x
Pressman, P. S. & Miller, B. L. Diagnosis and management of behavioral variant frontotemporal dementia. Biol. Psychiatry 75, 574–581 (2014).
pubmed: 24315411
doi: 10.1016/j.biopsych.2013.11.006
Arias, J. J. & Karlawish, J. Confidentiality in preclinical Alzheimer disease studies: when research and medical records meet. Neurology 82, 725–729 (2014).
pubmed: 24477112
pmcid: 3945659
doi: 10.1212/WNL.0000000000000153
United States. The Genetic Information Nondiscrimination Act of 2008 (GINA). In: US Department of Labor EBSA, editor. Public Law No 110-233 (Washington, DC, 2008).
Prince, A. E. & Berkman, B. E. When does an illness begin: genetic discrimination and disease manifestation. J. Law Med. Ethics 40, 655–664 (2012).
pubmed: 23061591
pmcid: 4142506
doi: 10.1111/j.1748-720X.2012.00696.x
Benatar, M. et al. Design of a randomized, placebo-controlled, phase 3 trial of tofersen initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS study. Neurotherapeutics 19, 1248–1258 (2022).
pubmed: 35585374
pmcid: 9587202
doi: 10.1007/s13311-022-01237-4
Largent, E. A. et al. Testing for Alzheimer disease biomarkers and disclosing results across the disease continuum. Neurology 100, 1010–1019 (2023).
pubmed: 36720642
doi: 10.1212/WNL.0000000000206891
Bourinaris, T. & Houlden, H. C9orf72 and its relevance in parkinsonism and movement disorders: a comprehensive review of the literature. Mov. Disord. Clin. Pract. 5, 575–585 (2018).
pubmed: 30637277
pmcid: 6277362
doi: 10.1002/mdc3.12677
Benatar, M. et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology 95, e59–e69 (2020).
pubmed: 32385188
pmcid: 7371380
doi: 10.1212/WNL.0000000000009559
Feneberg, E. et al. Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology 90, e22–e30 (2018).
pubmed: 29212830
doi: 10.1212/WNL.0000000000004761
Lu, C. H. et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84, 2247–2257 (2015).
pubmed: 25934855
pmcid: 4456658
doi: 10.1212/WNL.0000000000001642
Poesen, K. et al. Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease. Neurology 88, 2302–2309 (2017).
pubmed: 28500227
doi: 10.1212/WNL.0000000000004029
Thompson, A. G. et al. Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Commun. 4, fcac029 (2022).
pubmed: 35224491
pmcid: 8870425
doi: 10.1093/braincomms/fcac029
Wilke, C. et al. Serum neurofilament light chain is increased in hereditary spastic paraplegias. Ann. Clin. Transl. Neurol. 5, 876–882 (2018).
pubmed: 30009206
pmcid: 6043776
doi: 10.1002/acn3.583
Shepheard, S. et al. Urinary p75 extracellular domain; a biomarker for prognosis, progression and pharmacodynamic effect in ALS. Neurology 88, 1137–1143 (2017).
pubmed: 28228570
pmcid: 5373786
doi: 10.1212/WNL.0000000000003741
Gertsman, I. et al. An endogenous peptide marker differentiates SOD1 stability and facilitates pharmacodynamic monitoring in SOD1 amyotrophic lateral sclerosis. JCI Insight 4, e122768 (2019).
pubmed: 31092730
pmcid: 6542602
doi: 10.1172/jci.insight.122768
Turner, M. R. et al. Primary lateral sclerosis: consensus diagnostic criteria. J. Neurol. Neurosurg. Psychiatry 91, 373–377 (2020).
pubmed: 32029539
doi: 10.1136/jnnp-2019-322541