Far-East Asian Toxoplasma isolates share ancestry with North and South/Central American recombinant lineages.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 May 2024
22 May 2024
Historique:
received:
16
08
2023
accepted:
08
04
2024
medline:
23
5
2024
pubmed:
23
5
2024
entrez:
22
5
2024
Statut:
epublish
Résumé
Toxoplasma gondii is a global protozoan pathogen. Clonal lineages predominate in Europe, North America, Africa, and China, whereas highly recombinant parasites are endemic in South/Central America. Far East Asian T. gondii isolates are not included in current global population genetic structure analyses at WGS resolution. Here we report a genome-wide population study that compared eight Japanese and two Chinese isolates against representative worldwide T. gondii genomes using POPSICLE, a novel population structure analyzing software. Also included were 7 genomes resurrected from non-viable isolates by target enrichment sequencing. Visualization of the genome structure by POPSICLE shows a mixture of Chinese haplogroup (HG) 13 haploblocks introgressed within the genomes of Japanese HG2 and North American HG12. Furthermore, two ancestral lineages were identified in the Japanese strains; one lineage shares a common ancestor with HG11 found in both Japanese strains and North American HG12. The other ancestral lineage, found in T. gondii isolates from a small island in Japan, is admixed with genetically diversified South/Central American strains. Taken together, this study suggests multiple ancestral links between Far East Asian and American T. gondii strains and provides insight into the transmission history of this cosmopolitan organism.
Identifiants
pubmed: 38778039
doi: 10.1038/s41467-024-47625-6
pii: 10.1038/s41467-024-47625-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4278Subventions
Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : JPMJMS2025
Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : JPMJFR206D
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP20fk0108137
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP23fk0108682
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP223fa627002
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 22K20614
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : 20B304
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : 19H00970
Informations de copyright
© 2024. The Author(s).
Références
Weiss, L. M. & Dubey, J. P. Toxoplasmosis: A history of clinical observations. Int J. Parasitol. 39, 895–901 (2009).
pubmed: 19217908
pmcid: 2704023
doi: 10.1016/j.ijpara.2009.02.004
Shwab, E. K. et al. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology 141, 453–461 (2014).
pubmed: 24477076
doi: 10.1017/S0031182013001844
Grigg, M. E., Bonnefoy, S., Hehl, A. B., Suzuki, Y. & Boothroyd, J. C. Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries. Science 294, 161–165 (2001).
pubmed: 11588262
doi: 10.1126/science.1061888
Lorenzi, H. et al. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat. Commun. 7, 10147 (2016).
pubmed: 26738725
pmcid: 4729833
doi: 10.1038/ncomms10147
Khan, A. et al. Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in North America. Int J. Parasitol. 41, 645–655 (2011).
pubmed: 21320505
pmcid: 3081397
doi: 10.1016/j.ijpara.2011.01.005
Dubey, J. P. Outbreaks of clinical toxoplasmosis in humans: five decades of personal experience, perspectives and lessons learned. Parasit. Vectors 14, 263 (2021).
pubmed: 34011387
pmcid: 8136135
doi: 10.1186/s13071-021-04769-4
Aramini, J. J., Stephen, C. & Dubey, J. P. Toxoplasma gondii in Vancouver Island cougars (Felis concolor vancouverensis): serology and oocyst shedding. J. Parasitol. 84, 438–440 (1998).
pubmed: 9576522
doi: 10.2307/3284508
Galal, L. et al. Toxoplasma and Africa: One Parasite, Two Opposite Population Structures. Trends Parasitol. 34, 140–154 (2018).
pubmed: 29174610
doi: 10.1016/j.pt.2017.10.010
Mercier, A. et al. Additional haplogroups of Toxoplasma gondii out of Africa: population structure and mouse-virulence of strains from Gabon. PLoS Negl. Trop. Dis. 4, e876 (2010).
pubmed: 21072237
pmcid: 2970538
doi: 10.1371/journal.pntd.0000876
Galal, L. et al. The introduction of new hosts with human trade shapes the extant distribution of Toxoplasma gondii lineages. PLoS Negl. Trop. Dis. 13, e0007435 (2019).
pubmed: 31295245
pmcid: 6622481
doi: 10.1371/journal.pntd.0007435
Al-Kappany, Y. M. et al. Genetic diversity of Toxoplasma gondii isolates in Egyptian feral cats reveals new genotypes. J. Parasitol. 96, 1112–1114 (2010).
pubmed: 21158618
doi: 10.1645/GE-2608.1
Dubey, J. P. et al. Genetic diversity of Toxoplasma gondii isolates from Ethiopian feral cats. Vet. Parasitol. 196, 206–208 (2013).
pubmed: 23411374
doi: 10.1016/j.vetpar.2013.01.015
Dong, H. et al. Isolation, genotyping and pathogenicity of a Toxoplasma gondii strain isolated from a Serval (Leptailurus serval) in China. Transbound. Emerg. Dis. 66, 1796–1802 (2019).
pubmed: 31102311
Minot, S. et al. Admixture and recombination among Toxoplasma gondii lineages explain global genome diversity. Proc. Natl Acad. Sci. USA 109, 13458–13463 (2012).
pubmed: 22847430
pmcid: 3421188
doi: 10.1073/pnas.1117047109
Galal, L. et al. A unique Toxoplasma gondii haplotype accompanied the global expansion of cats. Nat. Commun. 13, 5778 (2022).
pubmed: 36182919
pmcid: 9526699
doi: 10.1038/s41467-022-33556-7
Chaichan, P. et al. Geographical distribution of Toxoplasma gondii genotypes in Asia: A link with neighboring continents. Infect. Genet Evol. 53, 227–238 (2017).
pubmed: 28583867
doi: 10.1016/j.meegid.2017.06.002
Quan, J. H., Kim, T. Y., Choi, I. U. & Lee, Y. H. Genotyping of a Korean isolate of Toxoplasma gondii by multilocus PCR-RFLP and microsatellite analysis. Korean J. Parasitol. 46, 105–108 (2008).
pubmed: 18552548
pmcid: 2532607
doi: 10.3347/kjp.2008.46.2.105
Kyan, H., Taira, M., Yamamoto, A., Inaba, C. & Zakimi, S. Isolation and characterization of Toxoplasma gondii genotypes from goats at an abattoir in Okinawa. Jpn J. Infect. Dis. 65, 167–170 (2012).
pubmed: 22446126
doi: 10.7883/yoken.65.167
Kyan, H., Takara, T., Taira, K. & Obi, T. Toxoplasma gondii antibody prevalence and isolation in free-ranging cats in Okinawa, Japan. J. Vet. Med. Sci. 83, 1303–1305 (2021).
pubmed: 34219071
pmcid: 8437723
doi: 10.1292/jvms.21-0038
Taniguchi, Y. et al. Atypical virulence in a type III Toxoplasma gondii strain isolated in Japan. Parasitol. Int. 67, 587–592 (2018).
pubmed: 29775826
doi: 10.1016/j.parint.2018.05.010
Nishimura, M. et al. Outbreak of toxoplasmosis in four squirrel monkeys (Saimiri sciureus) in Japan. Parasitol. Int. 68, 79–86 (2019).
pubmed: 30347233
doi: 10.1016/j.parint.2018.10.008
Salman, D. et al. Characterization of a spontaneous cyst-forming strain of Toxoplasma gondii isolated from Tokachi subprefecture in Japan. Parasitol. Int. 80, 102199 (2021).
pubmed: 32961305
doi: 10.1016/j.parint.2020.102199
Fukumoto, J. et al. Molecular and biological analysis revealed genetic diversity and high virulence strain of Toxoplasma gondii in Japan. PLoS One 15, e0227749 (2020).
pubmed: 32012177
pmcid: 6996823
doi: 10.1371/journal.pone.0227749
Easton, A. et al. Molecular evidence of hybridization between pig and human Ascaris indicates an interbred species complex infecting humans. Elife 9, e61562 (2020).
pubmed: 33155980
pmcid: 7647404
doi: 10.7554/eLife.61562
Domagalska, M. A. et al. Genomes of Leishmania parasites directly sequenced from patients with visceral leishmaniasis in the Indian subcontinent. PLoS Negl. Trop. Dis. 13, e0007900 (2019).
pubmed: 31830038
pmcid: 6932831
doi: 10.1371/journal.pntd.0007900
Maboko, B. B., Featherston, J., Sibeko-Matjila, K. P. & Mans, B. J. Whole genome sequencing of Theileria parva using target capture. Genomics 113, 429–438 (2021).
pubmed: 33370583
doi: 10.1016/j.ygeno.2020.12.033
Gaudin, M. & Desnues, C. Hybrid Capture-Based Next Generation Sequencing and Its Application to Human Infectious Diseases. Front. Microbiol. 9, 2924 (2018).
pubmed: 30542340
pmcid: 6277869
doi: 10.3389/fmicb.2018.02924
Taniguchi, Y. et al. A Toxoplasma gondii strain isolated in Okinawa, Japan shows high virulence in Microminipigs. Parasitol. Int. 72, 101935 (2019).
pubmed: 31153918
doi: 10.1016/j.parint.2019.101935
Masatani, T. et al. In vivo characterization of a Toxoplasma gondii strain TgCatJpTy1/k-3 isolated from a stray cat in Japan. Parasitol. Int. 74, 101995 (2020).
pubmed: 31634629
doi: 10.1016/j.parint.2019.101995
Hashizaki, E. et al. Toxoplasma IWS1 Determines Fitness in Interferon-γ-Activated Host Cells and Mice by Indirectly Regulating ROP18 mRNA Expression. mBio 14, e0325622 (2023).
pubmed: 36715543
doi: 10.1128/mbio.03256-22
Etheridge, R. D. et al. The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host Microbe 15, 537–550 (2014).
pubmed: 24832449
pmcid: 4086214
doi: 10.1016/j.chom.2014.04.002
Reese, M. L., Zeiner, G. M., Saeij, J. P., Boothroyd, J. C. & Boyle, J. P. Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc. Natl Acad. Sci. USA 108, 9625–9630 (2011).
pubmed: 21436047
pmcid: 3111280
doi: 10.1073/pnas.1015980108
Jensen, K. D. et al. Toxoplasma gondii superinfection and virulence during secondary infection correlate with the exact ROP5/ROP18 allelic combination. mBio 6, e02280 (2015).
pubmed: 25714710
pmcid: 4358003
doi: 10.1128/mBio.02280-14
Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).
pubmed: 24700103
pmcid: 4063916
doi: 10.1534/genetics.114.164350
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
pubmed: 19648217
pmcid: 2752134
doi: 10.1101/gr.094052.109
Dunn, J. C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybern. 3, 32–57 (1973).
doi: 10.1080/01969727308546046
Boyle, J. P. et al. Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii. Proc. Natl Acad. Sci. USA 103, 10514–10519 (2006).
pubmed: 16801557
pmcid: 1502489
doi: 10.1073/pnas.0510319103
Ajzenberg, D. et al. Genetic diversity, clonality and sexuality in Toxoplasma gondii. Int J. Parasitol. 34, 1185–1196 (2004).
pubmed: 15380690
doi: 10.1016/j.ijpara.2004.06.007
Dubey, J. P. et al. Prevalence of Toxoplasma gondii in dogs from Colombia, South America and genetic characterization of T. gondii isolates. Vet. Parasitol. 145, 45–50 (2007).
pubmed: 17257761
doi: 10.1016/j.vetpar.2006.12.001
Dubey, J. P., Huong, L. T., Sundar, N. & Su, C. Genetic characterization of Toxoplasma gondii isolates in dogs from Vietnam suggests their South American origin. Vet. Parasitol. 146, 347–351 (2007).
pubmed: 17442492
doi: 10.1016/j.vetpar.2007.03.008
El Behairy, A. M. et al. Genetic characterization of viable Toxoplasma gondii isolates from stray dogs from Giza, Egypt. Vet. Parasitol. 193, 25–29 (2013).
pubmed: 23333072
doi: 10.1016/j.vetpar.2012.12.007
Dubey, J. P. et al. Prevalence of Toxoplasma gondii in dogs from Sri Lanka and genetic characterization of the parasite isolates. Vet. Parasitol. 146, 341–346 (2007).
pubmed: 17442491
doi: 10.1016/j.vetpar.2007.03.009
Dubey, J. P. et al. Toxoplasmosis in Sand cats (Felis margarita) and other animals in the Breeding Centre for Endangered Arabian Wildlife in the United Arab Emirates and Al Wabra Wildlife Preservation, the State of Qatar. Vet. Parasitol. 172, 195–203 (2010).
pubmed: 20570441
pmcid: 7116901
doi: 10.1016/j.vetpar.2010.05.013
Saeij, J. P. et al. Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314, 1780–1783 (2006).
pubmed: 17170306
pmcid: 2646183
doi: 10.1126/science.1133690
Miranda, F. J. et al. Experimental infection with the Toxoplasma gondii ME-49 strain in the Brazilian BR-1 mini pig is a suitable animal model for human toxoplasmosis. Mem. Inst. Oswaldo Cruz 110, 95–100 (2015).
pubmed: 25742268
pmcid: 4371222
doi: 10.1590/0074-02760140318
Glasner, P. D. et al. An unusually high prevalence of ocular toxoplasmosis in southern Brazil. Am. J. Ophthalmol. 114, 136–144 (1992).
pubmed: 1642287
doi: 10.1016/S0002-9394(14)73976-5
Khan, A. et al. Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg. Infect. Dis. 12, 942–949 (2006).
pubmed: 16707050
pmcid: 3373049
doi: 10.3201/eid1206.060025
Grigg, M. E., Ganatra, J., Boothroyd, J. C. & Margolis, T. P. Unusual abundance of atypical strains associated with human ocular toxoplasmosis. J. Infect. Dis. 184, 633–639 (2001).
pubmed: 11474426
doi: 10.1086/322800
Petersen, E., Kijlstra, A. & Stanford, M. Epidemiology of ocular toxoplasmosis. Ocul. Immunol. Inflamm. 20, 68–75 (2012).
pubmed: 22409558
doi: 10.3109/09273948.2012.661115
Matsuo, K. et al. Seroprevalence of Toxoplasma gondii infection in cattle, horses, pigs and chickens in Japan. Parasitol. Int. 63, 638–639 (2014).
pubmed: 24780140
doi: 10.1016/j.parint.2014.04.003
Kyan, H., Matsubara, R. & Nagamune, K. About Toxoplasmosis and the Epidemic Status of Toxoplasma in Okinawa Prefecture. J. Antibact. Antifungal Agents 41, 19–28 (2013).
Kyan, H. et al. Current Status of Toxoplasmosis in Okinawa Prefecture (Japanese Article). IASR 43, 52–53 (2022).
Khan, A. et al. Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome. Proc. Natl Acad. Sci. USA 104, 14872–14877 (2007).
pubmed: 17804804
pmcid: 1965483
doi: 10.1073/pnas.0702356104
Diamond, J. & Bellwood, P. Farmers and their languages: the first expansions. Science 300, 597–603 (2003).
Lehmann, T., Marcet, P. L., Graham, D. H., Dahl, E. R. & Dubey, J. P. Globalization and the population structure of Toxoplasma gondii. Proc. Natl Acad. Sci. USA 103, 11423–11428 (2006).
pubmed: 16849431
pmcid: 1544101
doi: 10.1073/pnas.0601438103
Boulnois, L. Silk road: monks, warriors & merchants on the Silk Road (WW Norton & Company Incorporated, 2004).
Nayauchi, T. & Matsui, A. Summary of Animal fossils at the Karakami remain. 157–163 (IkiKarakami III, 2011).
Suzuki, H. et al. Phylogenetic relationship between the Iriomote cat and the leopard cat, Felis bengalensis, based on the ribosomal DNA. Jpn J. Genet 69, 397–406 (1994).
pubmed: 7946460
doi: 10.1266/jjg.69.397
Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).
pubmed: 19182786
pmcid: 2663421
doi: 10.1038/nbt.1523
Takada, K. et al. Genomic diversity of SARS-CoV-2 can be accelerated by mutations in the nsp14 gene. iScience 26, 106210 (2023).
pubmed: 36811085
pmcid: 9933857
doi: 10.1016/j.isci.2023.106210
Dubey, J. P. et al. A new atypical genotype mouse virulent strain of Toxoplasma gondii isolated from the heart of a wild caught puma (Felis concolor) from Durango, Mexico. Vet. Parasitol. 197, 674–677 (2013).
pubmed: 23849518
doi: 10.1016/j.vetpar.2013.06.005
Acosta, I. C. L., Gennari, S. M., Llano, H. A. B., Muñoz-Leal, S. & Soares, R. M. Molecular Characterization of New Haplotype of Genus Sarcocystis in Seabirds from Magdalena Island, Southern Chile. Animals 11, 245 (2021).
Van der Auwera G. A. & O’Connor, B. D. Genomics in the Clou. In: Using Docker, GATK, and WDL in Terr, 1st ed. (O’Reilly Media Inc, 2020).
Ortiz, E. M. vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. Zenodo https://doi.org/10.5281/zenodo.2540861 (2019).
doi: 10.5281/zenodo.2540861
Huson, D. H. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998).
pubmed: 9520503
doi: 10.1093/bioinformatics/14.1.68
Kennard, A. et al. Virulence shift in a sexual clade of Type X Toxoplasma infecting Southern Sea Otters. Preprint at bioRxiv, https://doi.org/10.1101/2021.03.31.437793 (2021).
Sasai, M. et al. Essential role for GABARAP autophagy proteins in interferon-inducible GTPase-mediated host defense. Nat. Immunol. 18, 899–910 (2017).
pubmed: 28604719
doi: 10.1038/ni.3767
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
pubmed: 19541911
pmcid: 2752132
doi: 10.1101/gr.092759.109
Purcell, S. et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795