Polyurethane-based three-dimensional printing for biological mesh carriers.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 May 2024
Historique:
received: 09 01 2024
accepted: 23 05 2024
medline: 29 5 2024
pubmed: 29 5 2024
entrez: 28 5 2024
Statut: epublish

Résumé

Repair and reconstruction of the myopectineal orifice area using meshes is the mainstay of surgical treatment of inguinal hernias. However, the limitations of existing meshes are becoming increasingly evident in clinical applications; thus, the idea of using three-dimensionally (3D)-printed biological meshes was put forward. According to the current level of the 3D printing technology and the inherent characteristics of biological materials, the direct use of the 3D printing technology for making biological materials into finished products suitable for clinical applications is not yet supported, but synthetic materials can be first printed into 3D form carriers, compounded with biological materials, and finally made into finished products. The purpose of this study was to develop a technical protocol for making 3D-printed biomesh carriers using polyurethane as a raw material. In our study: raw material, polyurethane; weight, 20-30 g/m

Identifiants

pubmed: 38806559
doi: 10.1038/s41598-024-63000-3
pii: 10.1038/s41598-024-63000-3
doi:

Substances chimiques

Polyurethanes 0
Biocompatible Materials 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12278

Subventions

Organisme : Shanxi Provincial Key Research and Development Program
ID : No. 201903D321175

Informations de copyright

© 2024. The Author(s).

Références

Pérez-Köhler, B. et al. New insights into the application of 3D-printing technology in hernia repair. Materials (Basel) 14, 7092. https://doi.org/10.3390/ma14227092 (2021).
doi: 10.3390/ma14227092 pubmed: 34832493
Mp, S. et al. European hernia society guidelines on the treatment of inguinal hernia in adult patients. Hernia J. Hernias Abdom. Wall Surg. https://doi.org/10.1007/s10029-009-0529-7 (2009).
doi: 10.1007/s10029-009-0529-7
China Hernia Society; Chinese Hernia College of Surgeons. Guidelines for diagnosis and treatment on the adult groin hernia (2018 edition). Chin. J. Surg. https://doi.org/10.3760/cma.j.issn.0529-5815.2018.08.002 (2018).
doi: 10.3760/cma.j.issn.0529-5815.2018.08.002
HerniaSurge Group. International guidelines for groin hernia management. Hernia 22, 1–165. https://doi.org/10.1007/s10029-017-1668-x (2018).
doi: 10.1007/s10029-017-1668-x
Dumanian, G. A., Tulaimat, A. & Dumanian, Z. P. Experimental study of the characteristics of a novel mesh suture. Br. J. Surg. 102, 1285–1292. https://doi.org/10.1002/bjs.9853 (2015).
doi: 10.1002/bjs.9853 pubmed: 26154703
Tanabe, K. et al. A rare case report of bilateral recurrent inguinal hernia due to persistent Müllerian duct syndrome treated by transabdominal preperitoneal repair. Medicine (Baltimore) 99, e19079. https://doi.org/10.1097/MD.0000000000019079 (2020).
doi: 10.1097/MD.0000000000019079 pubmed: 32049810
Sun, X., Zhang, X. & Wang, J. Surgical outcomes and quality of life post-synthetic mesh-augmented repair for pelvic organ prolapse in the Chinese population. J. Obstet. Gynaecol. Res. 40, 509–514. https://doi.org/10.1111/jog.12167 (2014).
doi: 10.1111/jog.12167 pubmed: 24118430
Sun, W. et al. Surgical resection and reconstructive techniques using autologous femoral head bone-grafting in treating partial acetabular defects arising from primary pelvic malignant tumors. BMC Cancer 19, 969. https://doi.org/10.1186/s12885-019-6196-x (2019).
doi: 10.1186/s12885-019-6196-x pubmed: 31627719 pmcid: 6800503
Alam, A. Y. The challenge of dealing with animal derived ingredients in medical/surgical products. 2.
Pizarro-Berdichevsky, J. et al. Natural history of pelvic organ prolapse in symptomatic patients actively seeking treatment. Int. Urogynecol. J. 29, 873–880. https://doi.org/10.1007/s00192-017-3450-0 (2018).
doi: 10.1007/s00192-017-3450-0 pubmed: 28840270
Silverman, R. P., Li, E. N., Holton, L. H., Sawan, K. T. & Goldberg, N. H. Ventral hernia repair using allogenic acellular dermal matrix in a swine model. Hernia 8, 336–342. https://doi.org/10.1007/s10029-004-0241-6 (2004).
doi: 10.1007/s10029-004-0241-6 pubmed: 15185131
Trippoli, S. et al. Biological meshes for abdominal hernia: Lack of evidence-based recommendations for clinical use. Int. J. Surg. 52, 278–284. https://doi.org/10.1016/j.ijsu.2018.02.046 (2018).
doi: 10.1016/j.ijsu.2018.02.046 pubmed: 29501796
Limura, E. & Giordano, P. Biological implant for complex abdominal wall reconstruction: A single institution experience and review of literature. World J. Surg. 41, 2492–2501. https://doi.org/10.1007/s00268-017-4066-8 (2017).
doi: 10.1007/s00268-017-4066-8 pubmed: 28560512
Weisman, J. A. et al. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int. J. Nanomed. 10, 357–370. https://doi.org/10.2147/IJN.S74811 (2015).
doi: 10.2147/IJN.S74811
Olmos-Juste, R., Olza, S., Gabilondo, N. & Eceiza, A. Tailor-made 3D printed meshes of alginate-waterborne polyurethane as suitable implants for hernia repair. Macromol. Biosci. 22, 2200124. https://doi.org/10.1002/mabi.202200124 (2022).
doi: 10.1002/mabi.202200124
Wang, F. & Yang, X.-F. Application of computer tomography-based 3D reconstruction technique in hernia repair surgery. World J. Clin. Cases 8, 5944–5951. https://doi.org/10.12998/wjcc.v8.i23.5944 (2020).
doi: 10.12998/wjcc.v8.i23.5944 pubmed: 33344593 pmcid: 7723694
Kyser, A. J., Fotouh, B., Mahmoud, M. Y. & Frieboes, H. B. Rising role of 3D-printing in delivery of therapeutics for infectious disease. J. Control. Release https://doi.org/10.1016/j.jconrel.2023.12.051 (2024).
doi: 10.1016/j.jconrel.2023.12.051 pubmed: 38182058
Tracy, T., Wu, L., Liu, X., Cheng, S. & Li, X. 3D printing: Innovative solutions for patients and pharmaceutical industry. Int. J. Pharm. 631, 122480. https://doi.org/10.1016/j.ijpharm.2022.122480 (2023).
doi: 10.1016/j.ijpharm.2022.122480 pubmed: 36509225
Heller, M. et al. Applications of patient-specific 3D printing in medicine. Int. J. Comput. Dent. 19, 323–339 (2016).
pubmed: 28008429
Cabral, M., Cheng, K. & Zhu, D. Three-dimensional bioprinting of organoids: Past, present, and prospective. Tissue Eng. Part A https://doi.org/10.1089/ten.tea.2023.0209 (2024).
doi: 10.1089/ten.tea.2023.0209 pubmed: 38205663
Sanbhal, N., Miao, L., Xu, R., Khatri, A. & Wang, L. Physical structure and mechanical properties of knitted hernia mesh materials: A review. J. Ind. Text. 48, 333–360. https://doi.org/10.1177/1528083717690613 (2018).
doi: 10.1177/1528083717690613
Lake, S. P. et al. Pore size and pore shape—but not mesh density—alter the mechanical strength of tissue ingrowth and host tissue response to synthetic mesh materials in a porcine model of ventral hernia repair. J. Mech. Behav. Biomed. Mater. 42, 186–197. https://doi.org/10.1016/j.jmbbm.2014.11.011 (2015).
doi: 10.1016/j.jmbbm.2014.11.011 pubmed: 25486631
Brown, C. N. & Finch, J. G. Which mesh for hernia repair?. Ann. R. Coll. Surg. Engl. 92, 272–278. https://doi.org/10.1308/003588410X12664192076296 (2010).
doi: 10.1308/003588410X12664192076296 pubmed: 20501011 pmcid: 3025220
Xiaolong, Y. et al. Ventral hernia repair in rat using nanofibrous polylactic acid/polypropylene meshes. Nanomedicine (Lond) 13, 2187–2199. https://doi.org/10.2217/nnm-2018-0165 (2018).
doi: 10.2217/nnm-2018-0165 pubmed: 29998792
Li, G. et al. Synthesis and biological application of polylactic acid. Molecules 25, 5023. https://doi.org/10.3390/molecules25215023 (2020).
doi: 10.3390/molecules25215023 pubmed: 33138232 pmcid: 7662581
Xu, D., Chen, S., Xie, C., Liang, Q. & Xiao, X. Cryogenic 3D printing of modified polylactic acid scaffolds with biomimetic nanofibrous architecture for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 33, 532–549. https://doi.org/10.1080/09205063.2021.1997210 (2022).
doi: 10.1080/09205063.2021.1997210 pubmed: 34704534
Chen, K.-J., Hung, F.-Y., Wang, Y.-T. & Yen, C.-W. Mechanical properties and biomedical application characteristics of degradable polylactic acid–Mg–Ca
doi: 10.1016/j.jmbbm.2021.104949 pubmed: 34736029
Blackstone, B. N. et al. Inflammatory response and biomechanical properties of coaxial scaffolds for engineered skin in vitro and post-grafting. Acta Biomater. 80, 247–257. https://doi.org/10.1016/j.actbio.2018.09.014 (2018).
doi: 10.1016/j.actbio.2018.09.014 pubmed: 30218778
Kantaros, A. 3D printing in regenerative medicine: Technologies and resources utilized. Int. J. Mol. Sci. 23, 14621. https://doi.org/10.3390/ijms232314621 (2022).
doi: 10.3390/ijms232314621 pubmed: 36498949 pmcid: 9738732
Griffin, M. et al. The current versatility of polyurethane three-dimensional printing for biomedical applications. Tissue Eng. Part B Rev. 26, 272–283. https://doi.org/10.1089/ten.teb.2019.0224 (2020).
doi: 10.1089/ten.teb.2019.0224 pubmed: 32089089
Hernández-Córdova, R. et al. Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds. J. Biomed. Mater. Res. A 104, 1912–1921. https://doi.org/10.1002/jbm.a.35721 (2016).
doi: 10.1002/jbm.a.35721 pubmed: 26991636 pmcid: 5338726
Kantaros, A. & Ganetsos, T. From static to dynamic: Smart materials pioneering additive manufacturing in regenerative medicine. Int. J. Mol. Sci. https://doi.org/10.3390/ijms242115748 (2023).
doi: 10.3390/ijms242115748 pubmed: 37958733 pmcid: 10647622
Kantaros, A., Ganetsos, T. & Petrescu, F. I. T. Transforming object design and creation: biomaterials and contemporary manufacturing leading the way. Biomimetics (Basel, Switzerland) https://doi.org/10.3390/biomimetics9010048 (2024).
doi: 10.3390/biomimetics9010048 pubmed: 38248622
Noh, M. S. et al. Evaluation of sterilization performance for vaporized-hydrogen-peroxide-based sterilizer with diverse controlled parameters. ACS Omega 5, 29382–29387. https://doi.org/10.1021/acsomega.0c04208 (2020).
doi: 10.1021/acsomega.0c04208 pubmed: 33225169 pmcid: 7676334
Traynor, G. et al. The use of 3D-printed models in patient communication: A scoping review. J. 3D Print. Med. 6, 13–23. https://doi.org/10.2217/3dp-2021-0021 (2022).
doi: 10.2217/3dp-2021-0021 pubmed: 35211330 pmcid: 8852361

Auteurs

Feng Wang (F)

Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China. 15035681256@163.com.

Lin Hou (L)

The First Clinical College of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.

Yan-Hui Shan (YH)

The First Clinical College of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.

Zhen-Su Li (ZS)

Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.

Xiao-Feng Yang (XF)

Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH