Co-habiting ants and silverfish display a converging feeding ecology.


Journal

BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720

Informations de publication

Date de publication:
29 May 2024
Historique:
received: 03 12 2023
accepted: 10 05 2024
medline: 29 5 2024
pubmed: 29 5 2024
entrez: 28 5 2024
Statut: epublish

Résumé

Various animal taxa have specialized to living with social hosts. Depending on their level of specialization, these symbiotic animals are characterized by distinct behavioural, chemical, and morphological traits that enable close heterospecific interactions. Despite its functional importance, our understanding of the feeding ecology of animals living with social hosts remains limited. We examined how host specialization of silverfish co-habiting with ants affects several components of their feeding ecology. We combined stable isotope profiling, feeding assays, phylogenetic reconstruction, and microbial community characterization of the Neoasterolepisma silverfish genus and a wider nicoletiid and lepismatid silverfish panel where divergent myrmecophilous lifestyles are observed. Stable isotope profiling (δ Together, we show that social hosts are important determinants for the feeding ecology of symbiotic animals and can induce diet convergence.

Sections du résumé

BACKGROUND BACKGROUND
Various animal taxa have specialized to living with social hosts. Depending on their level of specialization, these symbiotic animals are characterized by distinct behavioural, chemical, and morphological traits that enable close heterospecific interactions. Despite its functional importance, our understanding of the feeding ecology of animals living with social hosts remains limited. We examined how host specialization of silverfish co-habiting with ants affects several components of their feeding ecology. We combined stable isotope profiling, feeding assays, phylogenetic reconstruction, and microbial community characterization of the Neoasterolepisma silverfish genus and a wider nicoletiid and lepismatid silverfish panel where divergent myrmecophilous lifestyles are observed.
RESULTS RESULTS
Stable isotope profiling (δ
CONCLUSIONS CONCLUSIONS
Together, we show that social hosts are important determinants for the feeding ecology of symbiotic animals and can induce diet convergence.

Identifiants

pubmed: 38807209
doi: 10.1186/s12915-024-01914-0
pii: 10.1186/s12915-024-01914-0
doi:

Substances chimiques

Nitrogen Isotopes 0
Carbon Isotopes 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

123

Subventions

Organisme : Fonds Wetenschappelijk Onderzoek
ID : 1203020N
Organisme : Bijzonder Onderzoeksfonds UGent
ID : 01P03420
Organisme : NAWA
ID : PPN/PPO/2018/1/00015
Organisme : NCN
ID : 2018/31/B/NZ8/01158

Informations de copyright

© 2024. The Author(s).

Références

Paracer S, Ahmadjian V. Symbiosis: an introduction to biological associations. New York: Oxford University Press; 2000.
doi: 10.1093/oso/9780195118063.001.0001
Bronstein JL. The costs of mutualism. Am Zool. 2001;41(4):825–39. https://doi.org/10.2307/3884527 .
doi: 10.2307/3884527
Futuyma DJ, Moreno G. The evolution of ecological specialization. Annu Rev Ecol Syst. 1988;19(20):207–33. https://doi.org/10.1146/annurev.es.19.110188.001231 .
doi: 10.1146/annurev.es.19.110188.001231
Luong LT, Mathot KJ. Facultative parasites as evolutionary stepping-stones towards parasitic lifestyles. Biol Lett. 2019;15(4):20190058. https://doi.org/10.1098/rsbl.2019.0058 .
doi: 10.1098/rsbl.2019.0058 pubmed: 30991912 pmcid: 6501370
Poulin R. Evolutionary ecology of parasites: (Second edition). Evolutionary Ecology of Parasites: (Second Edition). Princeton University Press. 2011. https://doi.org/10.1086/586926
Stadler B, Dixon AFG. Ecology and evolution of aphid-ant interactions. Annu Rev Ecol Evol Syst. 2005;36(1):345–72. https://doi.org/10.1146/annurev.ecolsys.36.091704.175531 .
doi: 10.1146/annurev.ecolsys.36.091704.175531
Chomicki G, Kadereit G, Renner SS, Kiers ET. Tradeoffs in the evolution of plant farming by ants. Proc Natl Acad Sci. 2020;117(5):201919611. https://doi.org/10.1146/annurev.ecolsys.36.091704.175531 .
doi: 10.1146/annurev.ecolsys.36.091704.175531
Johnson SD, Steiner KE. Generalization versus specialization in plant pollination systems. Trends Ecol Evol. 2000;15(4):140–3. https://doi.org/10.1016/S0169-5347(99)01811-X .
doi: 10.1016/S0169-5347(99)01811-X pubmed: 10717682
Nagler C, Haug JT. Functional morphology of parasitic isopods: understanding morphological adaptations of attachment and feeding structures in Nerocila as a pre-requisite for reconstructing the evolution of Cymothoidae. PeerJ. 2016;4:e2188. https://doi.org/10.7717/peerj.2188 .
doi: 10.7717/peerj.2188 pubmed: 27441121 pmcid: 4941765
Kaufman MG, Walker ED, Odelson DA, Klug MJ. Microbial community ecology & insect nutrition. Am Entomol. 2000;46(3):173–85. https://doi.org/10.1093/ae/46.3.173 .
doi: 10.1093/ae/46.3.173
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699–735. https://doi.org/10.1111/1574-6976.12025 .
doi: 10.1111/1574-6976.12025 pubmed: 23692388
Hansen AK, Moran NA. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol. 2014;23(6):1473–96. https://doi.org/10.1111/mec.12421 .
doi: 10.1111/mec.12421 pubmed: 23952067
Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9(12):e1001221. https://doi.org/10.1371/journal.pbio.1001221 .
doi: 10.1371/journal.pbio.1001221 pubmed: 22205877 pmcid: 3243724
Patel DD, Patel AK, Parmar NR, Shah TM, Patel JB, Pandya PR, et al. Microbial and carbohydrate active enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet. Gene. 2014;545(1):88–94. https://doi.org/10.1016/j.gene.2014.05.003 .
doi: 10.1016/j.gene.2014.05.003 pubmed: 24797613
Fukatsu T, Hosokawa T. Capsule-transmitted gut symbiotic bacterium of the japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol. 2002;68(1):389–96. https://doi.org/10.1128/AEM.68.1.389-396.2002 .
doi: 10.1128/AEM.68.1.389-396.2002 pubmed: 11772649 pmcid: 126591
Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M, Meng XY, et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr Biol. 2014;24(20):2465–70. https://doi.org/10.1016/j.cub.2014.08.065 .
doi: 10.1016/j.cub.2014.08.065 pubmed: 25264255
Salem H, Bauer E, Kirsch R, Berasategui A, Cripps M, Weiss B, et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell. 2017;171(7):1520–31. https://doi.org/10.1016/j.cell.2017.10.029 .
doi: 10.1016/j.cell.2017.10.029 pubmed: 29153832
Kikuchi Y, Hosokawa T, Fukatsu T. Insect-Microbe Mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73(13):4308–16. https://doi.org/10.1128/AEM.00067-07 .
doi: 10.1128/AEM.00067-07 pubmed: 17483286 pmcid: 1932760
Kikuchi Y, Hosokawa T, Fukatsu T. An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 2011;5(3):446–60. https://doi.org/10.1038/ismej.2010.150 .
doi: 10.1038/ismej.2010.150 pubmed: 20882057
Onchuru TO, Javier Martinez A, Ingham CS, Kaltenpoth M. Transmission of mutualistic bacteria in social and gregarious insects. Current Opinion in Insect Science. 2018;28:50–8. https://doi.org/10.1016/j.cois.2018.05.002 .
doi: 10.1016/j.cois.2018.05.002 pubmed: 30551767
Lanan MC, Rodrigues PAP, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016;10(8):1866–76. https://doi.org/10.1038/ismej.2015.264 .
doi: 10.1038/ismej.2015.264 pubmed: 26872040 pmcid: 5029173
Koch H, Schmid- P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108(48):19288–92. https://doi.org/10.1073/pnas.1110474108 .
doi: 10.1073/pnas.1110474108 pubmed: 22084077 pmcid: 3228419
Powell JE, Martinson VG, Urban-Mead K, Moran NA. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol. 2014;80(23):7378–87. https://doi.org/10.1128/AEM.01861-14 .
doi: 10.1128/AEM.01861-14 pubmed: 25239900 pmcid: 4249178
Nalepa CA. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments: Origin of termite eusociality. Ecol Entomol. 2015;40(4):323–35. https://doi.org/10.1111/een.12197 .
doi: 10.1111/een.12197
Perry EK, Siozios S, Hurst GDD, Parker J. Structure of an ant-myrmecophile-microbe community. Pre-print. https://doi.org/10.1101/2021.10.04.462948
Hölldobler B, Kwapich CL. The guests of ants - how myrmecophiles interact with their hosts. Harvard University Press; 2022.
Parmentier T, De Laender F, Bonte D. The topology and drivers of ant–symbiont networks across Europe. Biol Rev. 2020;95(6):1664–88. https://doi.org/10.1111/brv.12634 .
doi: 10.1111/brv.12634 pubmed: 32691527
Komatsu T, Maruyama M, Itino T. Behavioral differences between two ant cricket species in Nansei Islands: host-specialist versus host-generalist. Insectes Soc. 2009;56(4):389–96. https://doi.org/10.1007/s00040-009-0036-y .
doi: 10.1007/s00040-009-0036-y
Komatsu T, Maruyama M, Hattori M, Itino T. Morphological characteristics reflect food sources and degree of host ant specificity in four Myrmecophilus crickets. Insectes Soc. 2017;65:47–57. https://doi.org/10.1007/s00040-017-0586-3 .
doi: 10.1007/s00040-017-0586-3
Parker J. Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecological News. 2016;65–108.
von Beeren C, Brückner A, Maruyama M, Burke G, Wieschollek J, Kronauer DJC. Chemical and behavioral integration of army ant-associated rove beetles - a comparison between specialists and generalists. Front Zool. 2018;15(1):1–15. https://doi.org/10.1186/s12983-018-0249-x .
doi: 10.1186/s12983-018-0249-x
Parmentier T, De Laender F, Wenseleers T, Bonte D. Prudent behavior rather than chemical deception enables a parasite to exploit its ant host. Behav Ecol. 2018;29:1225–33. https://doi.org/10.1093/beheco/ary134 .
doi: 10.1093/beheco/ary134
Valdivia C, Newton JA, Donnell SO, Beeren CV, Daniel J, Kronauer C, et al. Microbial symbionts are shared between ants and their associated beetles. Environ Microbiol. 2022:1–19. https://doi.org/10.1111/1462-2920.16544 .
Molero-Baltanás R, Bach De Roca C, Tinaut A, Pérez JD, Gaju-Ricart M. Symbiotic relationships between silverfish (Zygentoma: Lepismatidae, Nicoletiidae) and ants (Hymenoptera: Formicidae) in the Western Palaearctic. A quantitative analysis of data from Spain. Myrmecol News. 2017;24(1):107–22.
Parmentier T, Gaju-Ricart M, Wenseleers T, Molero-Baltanás R. Chemical and behavioural strategies along the spectrum of host specificity in ant-associated silverfish. BMC Zool. 2022;7(1):1–21. https://doi.org/10.1186/s40850-022-00118-9 .
doi: 10.1186/s40850-022-00118-9
Layman CA, Arrington DA, Montaña CG, Post DM. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology. 2007;88(1):42–8. https://doi.org/10.1890/0012-9658 .
doi: 10.1890/0012-9658 pubmed: 17489452
Janet C. Etudes sur les fourmis, les guêpes et les abeilles. Note 14: Rapports des animaux myrmécophiles avec les fourmis. Ducourtieux, Limoges; 1897.
Pothula R, Shirley D, Perera OP, Klingeman WE, Oppert C, Abdelgaffar HMY, et al. The digestive system in Zygentoma as an insect model for high cellulase activity. PLoS ONE. 2019;14(2):e0212505. https://doi.org/10.1371/journal.pone.0212505 .
doi: 10.1371/journal.pone.0212505 pubmed: 30817757 pmcid: 6394914
Wygodzinsky P. On a surviving representative of the Lepidotrichidae (Thysanura). Ann Entomol Soc Am. 1961;54(5):621–7.
doi: 10.1093/aesa/54.5.621
Barnhart CS. The Internal Anatomy of the Silverfish Ctenolepisma campbelli and Lepisma saccharinum (Thysanura: Lepismatidae)1. Ann Entomol Soc Am. 1961;54(2):177–96. https://doi.org/10.1093/aesa/54.2.177 .
doi: 10.1093/aesa/54.2.177
Steiner FM, Csősz S, Markó B, Gamisch A, Rinnhofer L, Folterbauer C, et al. Turning one into five: Integrative taxonomy uncovers complex evolution of cryptic species in the harvester ant Messor “structor”. Mol Phylogenet Evol. 2018;127:387–404. https://doi.org/10.1016/j.ympev.2018.04.005 .
doi: 10.1016/j.ympev.2018.04.005 pubmed: 29709692
Perlmutter JI, Bordenstein SR. Microorganisms in the reproductive tissues of arthropods. Nat Rev Microbiol. 2020;18(2):97–111. https://doi.org/10.1038/s41579-019-0309-z .
doi: 10.1038/s41579-019-0309-z pubmed: 31907461 pmcid: 8022352
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, et al. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe. 2021;29(6):879–93. https://doi.org/10.1016/j.chom.2021.03.006 .
doi: 10.1016/j.chom.2021.03.006 pubmed: 33945798 pmcid: 8192442
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782–858. https://doi.org/10.1099/ijsem.0.004107 .
doi: 10.1099/ijsem.0.004107 pubmed: 32293557
Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, et al. The diversity of reproductive parasites among arthropods : Wolbachia do not walk alone. BMC Biol. 2008;12:1–12. https://doi.org/10.1186/1741-7007-6-27 .
doi: 10.1186/1741-7007-6-27
De Souza DJ, Bézier A, Depoix D, Drezen JM, Lenoir A. Blochmannia endosymbionts improve colony growth and immune defence in the ant Camponotus fellah. BMC Microbiol. 2009;9(1):29. https://doi.org/10.1186/1471-2180-9-29 .
doi: 10.1186/1471-2180-9-29 pubmed: 19200360 pmcid: 2660346
Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller MJ, et al. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 2007;5(1):48. https://doi.org/10.1186/1741-7007-5-48 .
doi: 10.1186/1741-7007-5-48 pubmed: 17971224 pmcid: 2206011
Gómez-Díaz E, González-Solís J. Trophic structure in a seabird host-parasite food web: insights from stable isotope analyses. PLoS ONE. 2010;5(5):e10454. https://doi.org/10.1371/journal.pone.0010454 .
doi: 10.1371/journal.pone.0010454 pubmed: 20454612 pmcid: 2864259
Sprenger P, Müsse C, Hartke J, Feldmeyer B, Schmitt T, Gebauer G, et al. Dinner with the roommates: trophic niche differentiation and competition in a mutualistic ant-ant association. Ecol Entomol. 2021;46(3):562–72. https://doi.org/10.1111/een.13002 .
doi: 10.1111/een.13002
Florencio DF, Marins A, Rosa CS, Cristaldo PF, Araújo APA, Silva IR, et al. Diet Segregation between cohabiting builder and inquiline termite species. PLoS ONE. 2013;8(6). https://doi.org/10.1371/journal.pone.0066535
Parmentier T, Boeckx P, Bonte D, De Laender F. You are what your host eats: The trophic structure and food chain length of a symbiont community are coupled with the plastic diet of the host ant. J Anim Ecol. 2023; 2028–2038. https://doi.org/10.1111/1365-2656.13994
Platner C, Piñol J, Sanders D, Espadaler X. Trophic diversity in a Mediterranean food web—Stable isotope analysis of an ant community of an organic citrus grove. Basic Appl Ecol. 2012;13(7):587–96. https://doi.org/10.1016/j.baae.2012.09.006 .
doi: 10.1016/j.baae.2012.09.006
Post DM. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology. 2002;83(3):703–18.
doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
Fiedler K, Kuhlmann F, Schlick-Steiner BC, Steiner FM, Gebauer G. Stable N-isotope signatures of central European ants – assessing positions in a trophic gradient. Insectes Sociaux. 2007;54(4):393–402. https://doi.org/10.1007/s00040-007-0959-0 .
doi: 10.1007/s00040-007-0959-0
Wissinger BD, Eigenbrode SD, Marshall JD, Hoines JD, Newingham BA. Altered nitrogen and precipitation along urban gradients affect harvester ants and seed sources. J Arid Environ. 2014;104:96–105. https://doi.org/10.1016/j.jaridenv.2014.02.001 .
doi: 10.1016/j.jaridenv.2014.02.001
Parmentier T, Bouillon S, Dekoninck W, Wenseleers T. Trophic interactions in an ant nest microcosm: a combined experimental and stable isotope (δ13C/δ15N) approach. Oikos. 2016;125(8):1182–92.
doi: 10.1111/oik.02991
Eloi I, Ribeiro KG, Bezerra-Gusmão MA. How host diet impact the life of termitophiles: insights from the Corotoca-Constrictotermes cyphergaster relationship. Insect Soc. 2023;70:317–25. https://doi.org/10.1007/s00040-023-00924-5 .
doi: 10.1007/s00040-023-00924-5
Seifert B. Die Ameisen Mittel- und Nordeuropas. lutra Verlags- und Vertriebsgesellschaft, Görlitz; 2007.
Blüthgen N, Gebauer G, Fiedler K. Disentangling a rainforest food web using stable isotopes: Dietary diversity in a species-rich ant community. Oecologia. 2003;137(3):426–35. https://doi.org/10.1007/s00442-003-1347-8 .
doi: 10.1007/s00442-003-1347-8 pubmed: 12898386
Salem H, Kirsch R, Pauchet Y, Berasategui A, Fukumori K, Moriyama M, et al. Symbiont digestive range reflects host plant breadth in herbivorous beetles. Curr Biol. 2020;30(15):2875–86. https://doi.org/10.1016/j.cub.2020.05.043 .
doi: 10.1016/j.cub.2020.05.043 pubmed: 32502409
Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42(1):165–90. https://doi.org/10.1146/annurev.genet.41.110306.130119 .
doi: 10.1146/annurev.genet.41.110306.130119 pubmed: 18983256
Siezen R, Boekhorst J, Muscariello L, Molenaar D, Renckens B, Kleerebezem M. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria. BMC Genomics. 2006;7(1):126. https://doi.org/10.1186/1471-2164-7-126 .
doi: 10.1186/1471-2164-7-126 pubmed: 16723015 pmcid: 1534035
Berasategui A, Axelsson K, Nordlander G, Schmidt A, Borg-Karlson AK, Gershenzon J, et al. The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles. Mol Ecol. 2016;25(16):4014–31. https://doi.org/10.1111/mec.13702 .
doi: 10.1111/mec.13702 pubmed: 27199034
Heo J, Hamada M, Cho H, Weon HY, Kim JS, Hong SB, et al. Weissella cryptocerci sp. nov., isolated from gut of the insect Cryptocercus kyebangensis. Int J Syst Evol Microbiol. 2019;69(9):2801–6. https://doi.org/10.1099/ijsem.0.003564 .
doi: 10.1099/ijsem.0.003564 pubmed: 31246166
Oh SJ, Shin NR, Hyun DW, Kim PS, Kim JY, Kim MS, et al. Weissella diestrammenae sp. nov., isolated from the gut of a camel cricket (Diestrammena coreana). Int J Syst Evol Microbiol. 2013;63(8):2951–6. https://doi.org/10.1099/ijs.0.047548-0 .
doi: 10.1099/ijs.0.047548-0 pubmed: 23396715
Praet J, Meeus I, Cnockaert M, Houf K, Smagghe G, Vandamme P. Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov. Antonie van Leeuwenhoek. 2015;107(5):1337–49. https://doi.org/10.1007/s10482-015-0429-z .
doi: 10.1007/s10482-015-0429-z pubmed: 25783976
Chung SH, Scully ED, Peiffer M, Geib SM, Rosa C, Hoover K, et al. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci Rep. 2017;7(1):39690. https://doi.org/10.1038/srep39690 .
doi: 10.1038/srep39690 pubmed: 28045052 pmcid: 5206732
Mogouong J, Constant P, Legendre P, Guertin C. The phyllosphere microbiome of host trees contributes more than leaf phytochemicals to variation in the Agrilus planipennis Fairmaire gut microbiome structure. Sci Rep. 2021;11(1):15911. https://doi.org/10.1038/s41598-021-95146-9 .
doi: 10.1038/s41598-021-95146-9 pubmed: 34354124 pmcid: 8342481
Pirttilä AM, Brusila V, Koskimäki JJ, Wäli PR, Ruotsalainen AL, Mutanen M, et al. Exchange of microbiomes in plant-insect herbivore interactions. mBio. 2023;14(2):e03210–22. https://doi.org/10.1128/mbio.03210-22 .
doi: 10.1128/mbio.03210-22 pubmed: 36880763 pmcid: 10127587
Strano CP, Malacrinò A, Campolo O, Palmeri V. Influence of host plant on Thaumetopoea pityocampa gut bacterial community. Microb Ecol. 2018;75(2):487–94. https://doi.org/10.1007/s00248-017-1019-6 .
doi: 10.1007/s00248-017-1019-6 pubmed: 28735425
Parmentier T, Gaju-Ricart M, Wenseleers T, Molero-Baltanás R. Strategies of the beetle Oochrotus unicolor (Tenebrionidae) thriving in the waste dumps of seed-harvesting Messor ants (Formicidae). Ecological Entomology. 2020;45(3):583–93. https://doi.org/10.1111/een.12832 .
doi: 10.1111/een.12832
Meurville MP, LeBoeuf AC. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymen ptera: Formicidae). Myrmecol News. 2020;31:1–30. https://doi.org/10.25849/myrmecol.news .
doi: 10.25849/myrmecol.news
Kolasa M, Kajtoch Ł, Michalik A, Maryańska-Nadachowska A, Łukasik P. Till evolution do us part: the diversity of symbiotic associations across populations of Philaenus spittlebugs. Environ Microb. 2023;25(11):2431–46. https://doi.org/10.1111/1462-2920.16473 .
doi: 10.1111/1462-2920.16473
Elbrecht V, Braukmann TWA, Ivanova NV, Prosser SWJ, Hajibabaei M, Wright M, et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ. 2019;7:e7745. https://doi.org/10.7717/peerj.7745 .
doi: 10.7717/peerj.7745 pubmed: 31608170 pmcid: 6786254
Tourlousse DM, Yoshiike S, Ohashi A, Matsukura S, Noda N, Sekiguchi Y. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 2016;45:e23. https://doi.org/10.1093/nar/gkw984 .
doi: 10.1093/nar/gkw984 pmcid: 5389483
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30(5):614–20. https://doi.org/10.1093/bioinformatics/btt593 .
doi: 10.1093/bioinformatics/btt593 pubmed: 24142950
Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint. 2016. http://biorxiv.org/lookup/doi/10.1101/081257 .
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. https://doi.org/10.7717/peerj.2584 .
doi: 10.7717/peerj.2584 pubmed: 27781170 pmcid: 5075697
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. https://doi.org/10.1093/bioinformatics/btq461 .
doi: 10.1093/bioinformatics/btq461 pubmed: 20709691
Edgar RC. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. Bioinformatics; 2016. http://biorxiv.org/lookup/doi/10.1101/074161
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org . 2021
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan: Community Ecology Package. 2022. https://CRAN.R-project.org/package=vegan .
Jackson A, Parnell A. SIBER: Stable Isotope Bayesian Ellipses in R. 2023. https://CRAN.R-project.org/package=SIBER .
Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics. 2010;26(15):1899–900. https://doi.org/10.1093/bioinformatics/btq224 .
doi: 10.1093/bioinformatics/btq224 pubmed: 20427515 pmcid: 2905546
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285 .
doi: 10.1038/nmeth.4285 pubmed: 28481363 pmcid: 5453245
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22. https://doi.org/10.1093/molbev/msx281 .
doi: 10.1093/molbev/msx281 pubmed: 29077904
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. https://doi.org/10.1093/molbev/msaa015 .
doi: 10.1093/molbev/msaa015 pubmed: 32011700 pmcid: 7182206
Parmentier T, Molero-Baltanás R, Valdivia C, Gaju-Ricart M, Boeckx P, Łukasik P, Wybouw N. Co-habiting ants and silverfish display a converging feeding ecology NCBI Sequence Read Archive. 2024. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1097822 .

Auteurs

Thomas Parmentier (T)

Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium. thomas.parmentier@ugent.be.

Rafael Molero-Baltanás (R)

Depto. de Biología Animal (Zoología), University of Córdoba, Córdoba, Spain.

Catalina Valdivia (C)

Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland.

Miquel Gaju-Ricart (M)

Depto. de Biología Animal (Zoología), University of Córdoba, Córdoba, Spain.

Pascal Boeckx (P)

Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.

Piotr Łukasik (P)

Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland.

Nicky Wybouw (N)

Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium. nicky.wybouw@ugent.be.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Humans Meals Time Factors Female Adult
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Classifications MeSH