TCAF1 promotes TRPV2-mediated Ca


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
30 May 2024
Historique:
received: 19 09 2023
accepted: 21 05 2024
medline: 31 5 2024
pubmed: 31 5 2024
entrez: 30 5 2024
Statut: epublish

Résumé

The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca

Identifiants

pubmed: 38816425
doi: 10.1038/s41467-024-48988-6
pii: 10.1038/s41467-024-48988-6
doi:

Substances chimiques

TRPV Cation Channels 0
Calcium SY7Q814VUP
Membrane Proteins 0
STING1 protein, human 0
DNA 9007-49-2
Calcium-Calmodulin-Dependent Protein Kinase Kinase EC 2.7.11.17
CAMKK2 protein, human EC 2.7.11.17

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4609

Subventions

Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01GM098535
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01CA193318
Organisme : American Cancer Society (American Cancer Society, Inc.)
ID : RSG-13-212-01-DMC
Organisme : WUSTL | Washington University School of Medicine in St. Louis
ID : 5124
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82272984

Informations de copyright

© 2024. The Author(s).

Références

Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).
pubmed: 24366029 pmcid: 4354890 doi: 10.1038/ncb2897
Tubbs, A. & Nussenzweig, A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell 168, 644–656 (2017).
pubmed: 28187286 pmcid: 6591730 doi: 10.1016/j.cell.2017.01.002
Cybulla, E. & Vindigni, A. Leveraging the replication stress response to optimize cancer therapy. Nat. Rev. Cancer 23, 6–24 (2023).
pubmed: 36323800 doi: 10.1038/s41568-022-00518-6
Berti, M., Cortez, D. & Lopes, M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633–651 (2020).
pubmed: 32612242 doi: 10.1038/s41580-020-0257-5
Thakar, T. & Moldovan, G. L. The emerging determinants of replication fork stability. Nucleic Acids Res 49, 7224–7238 (2021).
pubmed: 33978751 pmcid: 8287955 doi: 10.1093/nar/gkab344
Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).
pubmed: 22789542 pmcid: 3954744 doi: 10.1016/j.ccr.2012.05.015
Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).
pubmed: 21565612 pmcid: 3261725 doi: 10.1016/j.cell.2011.03.041
Higgs, M. R. et al. BOD1L Is Required to Suppress Deleterious Resection of Stressed Replication Forks. Mol. Cell 59, 462–477 (2015).
pubmed: 26166705 doi: 10.1016/j.molcel.2015.06.007
Bhat, K. P. et al. RADX Modulates RAD51 Activity to Control Replication Fork Protection. Cell Rep. 24, 538–545 (2018).
pubmed: 30021152 pmcid: 6086571 doi: 10.1016/j.celrep.2018.06.061
Karanja, K. K., Lee, E. H., Hendrickson, E. A. & Campbell, J. L. Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells. Cell cycle 13, 1540–1550 (2014).
pubmed: 24626199 pmcid: 4050159 doi: 10.4161/cc.28476
Rickman, K. & Smogorzewska, A. Advances in understanding DNA processing and protection at stalled replication forks. J. Cell Biol. 218, 1096–1107 (2019).
pubmed: 30670471 pmcid: 6446843 doi: 10.1083/jcb.201809012
Yang, Z. et al. Context-dependent pro- and anti-resection roles of ZKSCAN3 in the regulation of fork processing during replication stress. J. Biol. Chem. 298, 102215 (2022).
pubmed: 35779634 pmcid: 9352557 doi: 10.1016/j.jbc.2022.102215
Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153–159 (2005).
pubmed: 15629726 doi: 10.1016/j.molcel.2004.11.032
Segurado, M. & Diffley, J. F. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev. 22, 1816–1827 (2008).
pubmed: 18593882 pmcid: 2492668 doi: 10.1101/gad.477208
El-Shemerly, M., Hess, D., Pyakurel, A. K., Moselhy, S. & Ferrari, S. ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic acids Res. 36, 511–519 (2008).
pubmed: 18048416 doi: 10.1093/nar/gkm1052
Saldivar, J. C., Cortez, D. & Cimprich, K. A. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 18, 622–636 (2017).
pubmed: 28811666 pmcid: 5796526 doi: 10.1038/nrm.2017.67
Yazinski, S. A. & Zou, L. Functions, Regulation, and Therapeutic Implications of the ATR Checkpoint Pathway. Annu. Rev. Genet. 50, 155–173 (2016).
Leung, W. et al. ATR protects ongoing and newly assembled DNA replication forks through distinct mechanisms. Cell Rep. 42, 112792 (2023).
pubmed: 37454295 pmcid: 10529362 doi: 10.1016/j.celrep.2023.112792
Li, S. et al. Ca(2+)-Stimulated AMPK-Dependent Phosphorylation of Exo1 Protects Stressed Replication Forks from Aberrant Resection. Mol. Cell 74, 1123–1137.e1126 (2019).
pubmed: 31053472 pmcid: 6588484 doi: 10.1016/j.molcel.2019.04.003
Li, S. et al. Cytosolic DNA sensing by cGAS/STING promotes TRPV2-mediated Ca(2+) release to protect stressed replication forks. Mol. Cell 83, 556–573.e557 (2023).
pubmed: 36696898 pmcid: 9974760 doi: 10.1016/j.molcel.2022.12.034
Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).
pubmed: 23258413 doi: 10.1126/science.1232458
Gao, P. et al. Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).
pubmed: 23647843 pmcid: 4382009 doi: 10.1016/j.cell.2013.04.046
Ablasser, A. et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).
pubmed: 23722158 pmcid: 4143541 doi: 10.1038/nature12306
Racioppi, L., Noeldner, P. K., Lin, F., Arvai, S. & Means, A. R. Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. J. Biol. Chem. 287, 11579–11591 (2012).
pubmed: 22334678 pmcid: 3322820 doi: 10.1074/jbc.M111.336032
Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005).
pubmed: 16054095 doi: 10.1016/j.cmet.2005.05.009
Hurley, R. L. et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005).
pubmed: 15980064 doi: 10.1074/jbc.M503824200
Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).
pubmed: 16054096 doi: 10.1016/j.cmet.2005.06.005
Chen, X. et al. 14-3-3 proteins restrain the exo1 nuclease to prevent overresection. J. Biol. Chem. 290, 12300–12312 (2015).
pubmed: 25833945 pmcid: 4424361 doi: 10.1074/jbc.M115.644005
Gkika, D. et al. TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity. J. Cell Biol. 208, 89–107 (2015).
pubmed: 25559186 pmcid: 4284226 doi: 10.1083/jcb.201402076
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903 pmcid: 4486245 doi: 10.1038/nmeth.3047
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
pubmed: 25476604 pmcid: 4290824 doi: 10.1186/s13059-014-0554-4
Quinet, A., Carvajal-Maldonado, D., Lemacon, D. & Vindigni, A. DNA Fiber Analysis: Mind the Gap! Methods Enzymol. 591, 55–82 (2017).
pubmed: 28645379 doi: 10.1016/bs.mie.2017.03.019
Przetocka, S. et al. CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress. Mol. Cell 72, 568–582.e566 (2018).
pubmed: 30344097 doi: 10.1016/j.molcel.2018.09.014
Lemacon, D. et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat. Commun. 8, 860 (2017).
pubmed: 29038425 pmcid: 5643552 doi: 10.1038/s41467-017-01180-5
Thangavel, S. et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. cell Biol. 208, 545–562 (2015).
pubmed: 25733713 pmcid: 4347643 doi: 10.1083/jcb.201406100
Liu, W. et al. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res 51, 9144–9165 (2023).
pubmed: 37526271 pmcid: 10516637 doi: 10.1093/nar/gkad624
Dhoonmoon, A., Nicolae, C. M. & Moldovan, G. L. The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1. Nat. Commun. 13, 5063 (2022).
pubmed: 36030235 pmcid: 9420157 doi: 10.1038/s41467-022-32756-5
Emam, A. et al. Stalled replication fork protection limits cGAS-STING and P-body-dependent innate immune signalling. Nat. Cell Biol. 24, 1154–1164 (2022).
pubmed: 35817959 pmcid: 9924303 doi: 10.1038/s41556-022-00950-8
Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
pubmed: 23868258 pmcid: 3777791 doi: 10.1038/nature12354
Henderson, M. J. et al. A Low Affinity GCaMP3 Variant (GCaMPer) for Imaging the Endoplasmic Reticulum Calcium Store. PLoS One 10, e0139273 (2015).
pubmed: 26451944 pmcid: 4599735 doi: 10.1371/journal.pone.0139273
Iwata, Y., Katanosaka, Y., Arai, Y., Shigekawa, M. & Wakabayashi, S. Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum. Mol. Genet 18, 824–834 (2009).
pubmed: 19050039 doi: 10.1093/hmg/ddn408
Wang, C. et al. Manganese Increases the Sensitivity of the cGAS-STING Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses. Immunity 48, 675–687.e677 (2018).
pubmed: 29653696 doi: 10.1016/j.immuni.2018.03.017
Zhao, Z. et al. Mn(2+) Directly Activates cGAS and Structural Analysis Suggests Mn(2+) Induces a Noncanonical Catalytic Synthesis of 2'3’-cGAMP. Cell Rep. 32, 108053 (2020).
pubmed: 32814054 doi: 10.1016/j.celrep.2020.108053
Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging Biological Principles of Metastasis. Cell 168, 670–691 (2017).
pubmed: 28187288 pmcid: 5308465 doi: 10.1016/j.cell.2016.11.037
Kotsantis, P., Petermann, E. & Boulton, S. J. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov. 8, 537–555 (2018).
pubmed: 29653955 pmcid: 5935233 doi: 10.1158/2159-8290.CD-17-1461
da Costa, A., Chowdhury, D., Shapiro, G. I., D’Andrea, A. D. & Konstantinopoulos, P. A. Targeting replication stress in cancer therapy. Nat. Rev. Drug Discov. 22, 38–58 (2023).
pubmed: 36202931 doi: 10.1038/s41573-022-00558-5
Hsieh, P. et al. Evidence for opposing selective forces operating on human-specific duplicated TCAF genes in Neanderthals and humans. Nat. Commun. 12, 5118 (2021).
pubmed: 34433829 pmcid: 8387397 doi: 10.1038/s41467-021-25435-4
Cheruiyot, A. et al. Nonsense-Mediated RNA Decay Is a Unique Vulnerability of Cancer Cells Harboring SF3B1 or U2AF1 Mutations. Cancer Res 81, 4499–4513 (2021).
pubmed: 34215620 pmcid: 8416940 doi: 10.1158/0008-5472.CAN-20-4016
Dhar, S., Datta, A., Banerjee, T. & Brosh, R. M. Jr. Single-Molecule DNA Fiber Analyses to Characterize Replication Fork Dynamics in Living Cells. Methods Mol. Biol. 1999, 307–318 (2019).
pubmed: 31127587 pmcid: 9123882 doi: 10.1007/978-1-4939-9500-4_21
Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417–423 (2012).
pubmed: 22388737 doi: 10.1038/nsmb.2258
Chen, X., Paudyal, S. C., Chin, R. I. & You, Z. PCNA promotes processive DNA end resection by Exo1. Nucleic acids Res. 41, 9325–9338 (2013).
pubmed: 23939618 pmcid: 3814391 doi: 10.1093/nar/gkt672

Auteurs

Lingzhen Kong (L)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Chen Cheng (C)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Abigael Cheruiyot (A)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Jiayi Yuan (J)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Yichan Yang (Y)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Sydney Hwang (S)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Daniel Foust (D)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Ning Tsao (N)

Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.

Emily Wilkerson (E)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Nima Mosammaparast (N)

Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.

Michael B Major (MB)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

David W Piston (DW)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Shan Li (S)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. shan.li@zju.edu.cn.
Zhejiang Provincial Key Laboratory of Pancreatic Disease in the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China. shan.li@zju.edu.cn.
Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310029, China. shan.li@zju.edu.cn.

Zhongsheng You (Z)

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. zyou@wustl.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH