TCAF1 promotes TRPV2-mediated Ca
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
30 May 2024
30 May 2024
Historique:
received:
19
09
2023
accepted:
21
05
2024
medline:
31
5
2024
pubmed:
31
5
2024
entrez:
30
5
2024
Statut:
epublish
Résumé
The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca
Identifiants
pubmed: 38816425
doi: 10.1038/s41467-024-48988-6
pii: 10.1038/s41467-024-48988-6
doi:
Substances chimiques
TRPV Cation Channels
0
Calcium
SY7Q814VUP
Membrane Proteins
0
STING1 protein, human
0
DNA
9007-49-2
Calcium-Calmodulin-Dependent Protein Kinase Kinase
EC 2.7.11.17
CAMKK2 protein, human
EC 2.7.11.17
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4609Subventions
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01GM098535
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01CA193318
Organisme : American Cancer Society (American Cancer Society, Inc.)
ID : RSG-13-212-01-DMC
Organisme : WUSTL | Washington University School of Medicine in St. Louis
ID : 5124
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82272984
Informations de copyright
© 2024. The Author(s).
Références
Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).
pubmed: 24366029
pmcid: 4354890
doi: 10.1038/ncb2897
Tubbs, A. & Nussenzweig, A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell 168, 644–656 (2017).
pubmed: 28187286
pmcid: 6591730
doi: 10.1016/j.cell.2017.01.002
Cybulla, E. & Vindigni, A. Leveraging the replication stress response to optimize cancer therapy. Nat. Rev. Cancer 23, 6–24 (2023).
pubmed: 36323800
doi: 10.1038/s41568-022-00518-6
Berti, M., Cortez, D. & Lopes, M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633–651 (2020).
pubmed: 32612242
doi: 10.1038/s41580-020-0257-5
Thakar, T. & Moldovan, G. L. The emerging determinants of replication fork stability. Nucleic Acids Res 49, 7224–7238 (2021).
pubmed: 33978751
pmcid: 8287955
doi: 10.1093/nar/gkab344
Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).
pubmed: 22789542
pmcid: 3954744
doi: 10.1016/j.ccr.2012.05.015
Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).
pubmed: 21565612
pmcid: 3261725
doi: 10.1016/j.cell.2011.03.041
Higgs, M. R. et al. BOD1L Is Required to Suppress Deleterious Resection of Stressed Replication Forks. Mol. Cell 59, 462–477 (2015).
pubmed: 26166705
doi: 10.1016/j.molcel.2015.06.007
Bhat, K. P. et al. RADX Modulates RAD51 Activity to Control Replication Fork Protection. Cell Rep. 24, 538–545 (2018).
pubmed: 30021152
pmcid: 6086571
doi: 10.1016/j.celrep.2018.06.061
Karanja, K. K., Lee, E. H., Hendrickson, E. A. & Campbell, J. L. Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells. Cell cycle 13, 1540–1550 (2014).
pubmed: 24626199
pmcid: 4050159
doi: 10.4161/cc.28476
Rickman, K. & Smogorzewska, A. Advances in understanding DNA processing and protection at stalled replication forks. J. Cell Biol. 218, 1096–1107 (2019).
pubmed: 30670471
pmcid: 6446843
doi: 10.1083/jcb.201809012
Yang, Z. et al. Context-dependent pro- and anti-resection roles of ZKSCAN3 in the regulation of fork processing during replication stress. J. Biol. Chem. 298, 102215 (2022).
pubmed: 35779634
pmcid: 9352557
doi: 10.1016/j.jbc.2022.102215
Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153–159 (2005).
pubmed: 15629726
doi: 10.1016/j.molcel.2004.11.032
Segurado, M. & Diffley, J. F. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev. 22, 1816–1827 (2008).
pubmed: 18593882
pmcid: 2492668
doi: 10.1101/gad.477208
El-Shemerly, M., Hess, D., Pyakurel, A. K., Moselhy, S. & Ferrari, S. ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic acids Res. 36, 511–519 (2008).
pubmed: 18048416
doi: 10.1093/nar/gkm1052
Saldivar, J. C., Cortez, D. & Cimprich, K. A. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 18, 622–636 (2017).
pubmed: 28811666
pmcid: 5796526
doi: 10.1038/nrm.2017.67
Yazinski, S. A. & Zou, L. Functions, Regulation, and Therapeutic Implications of the ATR Checkpoint Pathway. Annu. Rev. Genet. 50, 155–173 (2016).
Leung, W. et al. ATR protects ongoing and newly assembled DNA replication forks through distinct mechanisms. Cell Rep. 42, 112792 (2023).
pubmed: 37454295
pmcid: 10529362
doi: 10.1016/j.celrep.2023.112792
Li, S. et al. Ca(2+)-Stimulated AMPK-Dependent Phosphorylation of Exo1 Protects Stressed Replication Forks from Aberrant Resection. Mol. Cell 74, 1123–1137.e1126 (2019).
pubmed: 31053472
pmcid: 6588484
doi: 10.1016/j.molcel.2019.04.003
Li, S. et al. Cytosolic DNA sensing by cGAS/STING promotes TRPV2-mediated Ca(2+) release to protect stressed replication forks. Mol. Cell 83, 556–573.e557 (2023).
pubmed: 36696898
pmcid: 9974760
doi: 10.1016/j.molcel.2022.12.034
Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).
pubmed: 23258413
doi: 10.1126/science.1232458
Gao, P. et al. Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).
pubmed: 23647843
pmcid: 4382009
doi: 10.1016/j.cell.2013.04.046
Ablasser, A. et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).
pubmed: 23722158
pmcid: 4143541
doi: 10.1038/nature12306
Racioppi, L., Noeldner, P. K., Lin, F., Arvai, S. & Means, A. R. Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. J. Biol. Chem. 287, 11579–11591 (2012).
pubmed: 22334678
pmcid: 3322820
doi: 10.1074/jbc.M111.336032
Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005).
pubmed: 16054095
doi: 10.1016/j.cmet.2005.05.009
Hurley, R. L. et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005).
pubmed: 15980064
doi: 10.1074/jbc.M503824200
Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).
pubmed: 16054096
doi: 10.1016/j.cmet.2005.06.005
Chen, X. et al. 14-3-3 proteins restrain the exo1 nuclease to prevent overresection. J. Biol. Chem. 290, 12300–12312 (2015).
pubmed: 25833945
pmcid: 4424361
doi: 10.1074/jbc.M115.644005
Gkika, D. et al. TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity. J. Cell Biol. 208, 89–107 (2015).
pubmed: 25559186
pmcid: 4284226
doi: 10.1083/jcb.201402076
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903
pmcid: 4486245
doi: 10.1038/nmeth.3047
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
pubmed: 25476604
pmcid: 4290824
doi: 10.1186/s13059-014-0554-4
Quinet, A., Carvajal-Maldonado, D., Lemacon, D. & Vindigni, A. DNA Fiber Analysis: Mind the Gap! Methods Enzymol. 591, 55–82 (2017).
pubmed: 28645379
doi: 10.1016/bs.mie.2017.03.019
Przetocka, S. et al. CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress. Mol. Cell 72, 568–582.e566 (2018).
pubmed: 30344097
doi: 10.1016/j.molcel.2018.09.014
Lemacon, D. et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat. Commun. 8, 860 (2017).
pubmed: 29038425
pmcid: 5643552
doi: 10.1038/s41467-017-01180-5
Thangavel, S. et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. cell Biol. 208, 545–562 (2015).
pubmed: 25733713
pmcid: 4347643
doi: 10.1083/jcb.201406100
Liu, W. et al. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res 51, 9144–9165 (2023).
pubmed: 37526271
pmcid: 10516637
doi: 10.1093/nar/gkad624
Dhoonmoon, A., Nicolae, C. M. & Moldovan, G. L. The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1. Nat. Commun. 13, 5063 (2022).
pubmed: 36030235
pmcid: 9420157
doi: 10.1038/s41467-022-32756-5
Emam, A. et al. Stalled replication fork protection limits cGAS-STING and P-body-dependent innate immune signalling. Nat. Cell Biol. 24, 1154–1164 (2022).
pubmed: 35817959
pmcid: 9924303
doi: 10.1038/s41556-022-00950-8
Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
pubmed: 23868258
pmcid: 3777791
doi: 10.1038/nature12354
Henderson, M. J. et al. A Low Affinity GCaMP3 Variant (GCaMPer) for Imaging the Endoplasmic Reticulum Calcium Store. PLoS One 10, e0139273 (2015).
pubmed: 26451944
pmcid: 4599735
doi: 10.1371/journal.pone.0139273
Iwata, Y., Katanosaka, Y., Arai, Y., Shigekawa, M. & Wakabayashi, S. Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum. Mol. Genet 18, 824–834 (2009).
pubmed: 19050039
doi: 10.1093/hmg/ddn408
Wang, C. et al. Manganese Increases the Sensitivity of the cGAS-STING Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses. Immunity 48, 675–687.e677 (2018).
pubmed: 29653696
doi: 10.1016/j.immuni.2018.03.017
Zhao, Z. et al. Mn(2+) Directly Activates cGAS and Structural Analysis Suggests Mn(2+) Induces a Noncanonical Catalytic Synthesis of 2'3’-cGAMP. Cell Rep. 32, 108053 (2020).
pubmed: 32814054
doi: 10.1016/j.celrep.2020.108053
Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging Biological Principles of Metastasis. Cell 168, 670–691 (2017).
pubmed: 28187288
pmcid: 5308465
doi: 10.1016/j.cell.2016.11.037
Kotsantis, P., Petermann, E. & Boulton, S. J. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov. 8, 537–555 (2018).
pubmed: 29653955
pmcid: 5935233
doi: 10.1158/2159-8290.CD-17-1461
da Costa, A., Chowdhury, D., Shapiro, G. I., D’Andrea, A. D. & Konstantinopoulos, P. A. Targeting replication stress in cancer therapy. Nat. Rev. Drug Discov. 22, 38–58 (2023).
pubmed: 36202931
doi: 10.1038/s41573-022-00558-5
Hsieh, P. et al. Evidence for opposing selective forces operating on human-specific duplicated TCAF genes in Neanderthals and humans. Nat. Commun. 12, 5118 (2021).
pubmed: 34433829
pmcid: 8387397
doi: 10.1038/s41467-021-25435-4
Cheruiyot, A. et al. Nonsense-Mediated RNA Decay Is a Unique Vulnerability of Cancer Cells Harboring SF3B1 or U2AF1 Mutations. Cancer Res 81, 4499–4513 (2021).
pubmed: 34215620
pmcid: 8416940
doi: 10.1158/0008-5472.CAN-20-4016
Dhar, S., Datta, A., Banerjee, T. & Brosh, R. M. Jr. Single-Molecule DNA Fiber Analyses to Characterize Replication Fork Dynamics in Living Cells. Methods Mol. Biol. 1999, 307–318 (2019).
pubmed: 31127587
pmcid: 9123882
doi: 10.1007/978-1-4939-9500-4_21
Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417–423 (2012).
pubmed: 22388737
doi: 10.1038/nsmb.2258
Chen, X., Paudyal, S. C., Chin, R. I. & You, Z. PCNA promotes processive DNA end resection by Exo1. Nucleic acids Res. 41, 9325–9338 (2013).
pubmed: 23939618
pmcid: 3814391
doi: 10.1093/nar/gkt672