Microstructural differences in the cingulum and the inferior longitudinal fasciculus are associated with (extinction) learning.
Associative learning
Cingulum
Diffusion tensor imaging
Extinction learning
Inferior longitudinal fasciculus
Renewal effect
Journal
BMC psychology
ISSN: 2050-7283
Titre abrégé: BMC Psychol
Pays: England
ID NLM: 101627676
Informations de publication
Date de publication:
03 Jun 2024
03 Jun 2024
Historique:
received:
15
09
2023
accepted:
19
05
2024
medline:
4
6
2024
pubmed:
4
6
2024
entrez:
3
6
2024
Statut:
epublish
Résumé
Cognitive functions, such as learning and memory processes, depend on effective communication between brain regions which is facilitated by white matter tracts (WMT). We investigated the microstructural properties and the contribution of WMT to extinction learning and memory in a predictive learning task. Forty-two healthy participants completed an extinction learning paradigm without a fear component. We examined differences in microstructural properties using diffusion tensor imaging to identify underlying neural connectivity and structural correlates of extinction learning and their potential implications for the renewal effect. Participants with good acquisition performance exhibited higher fractional anisotropy (FA) in WMT including the bilateral inferior longitudinal fasciculus (ILF) and the right temporal part of the cingulum (CNG). This indicates enhanced connectivity and communication between brain regions relevant to learning and memory resulting in better learning performance. Our results suggest that successful acquisition and extinction performance were linked to enhanced structural connectivity. Lower radial diffusivity (RD) in the right ILF and right temporal part of the CNG was observed for participants with good acquisition learning performance. This observation suggests that learning difficulties associated with increased RD may potentially be due to less myelinated axons in relevant WMT. Also, participants with good acquisition performance were more likely to show a renewal effect. The results point towards a potential role of structural integrity in extinction-relevant WMT for acquisition and extinction.
Identifiants
pubmed: 38831468
doi: 10.1186/s40359-024-01800-y
pii: 10.1186/s40359-024-01800-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
324Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : 316803389
Organisme : Deutsche Forschungsgemeinschaft
ID : 316803389
Organisme : Deutsche Forschungsgemeinschaft
ID : 316803389
Organisme : Deutsche Forschungsgemeinschaft
ID : 316803389
Organisme : Deutsche Forschungsgemeinschaft
ID : 316803389
Organisme : Deutsche Forschungsgemeinschaft
ID : 316803389
Informations de copyright
© 2024. The Author(s).
Références
Thompson RF, Kim JJ. Memory systems in the brain and localization of a memory. Proc Natl Acad Sci U S A. 1996;93(24):13438–44.
Ackerman S. Discovering the brain. Discovering Brain. 1992. https://doi.org/10.17226/1785 .
doi: 10.17226/1785
Bonnefond M, Kastner S, Jensen O. Communication between brain areas based on nested oscillations. eNeuro 2017:4;NEURO.0153-16.2017.
Horne A, Ding J, Schnur TT, Martin RC. White Matter correlates of Domain-Specific Working Memory. Brain Sci. 2022;13:19.
doi: 10.3390/brainsci13010019
pubmed: 36672001
pmcid: 9856066
Dziemian S, Appenzeller S, von Bastian CC, Jäncke L, Langer N. Working Memory Training effects on White Matter Integrity in Young and older adults. Front Hum Neurosci 2021:15;605213.
Bouyeure A, Bekha D, Patil S, Hertz-Pannier L, Noulhiane M. Maturity of white matter tracts is associated with episodic memory recall during development. Cereb Cortex Commun 2022;3:tgac004.
Filley CM, Fields RD. White matter and cognition: Making the connection. J Neurophysiol. 2016:116; 2093–2104 Preprint at https://doi.org/10.1152/jn.00221.2016 .
Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST. Conserved and variable architecture of human white matter connectivity. NeuroImage. 2011;54:1262–79.
Jolles D, et al. Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning. Brain Struct Funct. 2016;221:1337–51.
doi: 10.1007/s00429-014-0975-6
pubmed: 25604464
Taubert M, et al. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci. 2010;30:11670–7.
doi: 10.1523/JNEUROSCI.2567-10.2010
pubmed: 20810887
pmcid: 6633410
Schlaffke L, Leemans A, Schweizer LM, Ocklenburg S, Schmidt-Wilcke T. Learning morse code alters microstructural properties in the inferior longitudinal fasciculus: a DTI study. Front Hum Neurosci. 2017;11:1–9.
doi: 10.3389/fnhum.2017.00383
Hermann A, Stark R, Blecker CR, Milad MR, Merz CJ. Brain structural connectivity and context-dependent extinction memory. Hippocampus. 2017;27:883–9.
doi: 10.1002/hipo.22738
pubmed: 28498605
Fani N, et al. Fear-potentiated startle during extinction is associated with white matter microstructure and functional connectivity. Cortex. 2015;64:249–59.
doi: 10.1016/j.cortex.2014.11.006
pubmed: 25522360
Nees F, et al. White matter correlates of contextual pavlovian fear extinction and the role of anxiety in healthy humans. Cortex. 2019;121:179–88.
doi: 10.1016/j.cortex.2019.08.020
pubmed: 31629196
Bouton ME, Bolles RC. Role of conditioned contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim Behav Process. 1979;5:368–78.
doi: 10.1037/0097-7403.5.4.368
pubmed: 528893
Bouton ME, Bolles RC. Contextual control of the extinction of conditioned fear. Learn Motiv. 1979;10:445–66.
doi: 10.1016/0023-9690(79)90057-2
Lissek S, Klass A, Tegenthoff M. Left Inferior Frontal Gyrus participates in mediating the Renewal Effect irrespective of Context Salience. Front Behav Neurosci 2020;14:43.
Lissek S, Glaubitz B, Uengoer M, Tegenthoff M. Hippocampal activation during extinction learning predicts occurrence of the renewal effect in extinction recall. NeuroImage. 2013;81:131–43.
doi: 10.1016/j.neuroimage.2013.05.025
pubmed: 23684875
Sotres-Bayon F, Diaz-Mataix L, Bush DEA, LeDoux JE. Dissociable roles for the ventromedial prefrontal cortex and amygdala in fear extinction: NR2B contribution. Cereb Cortex. 2009;19:474–82.
doi: 10.1093/cercor/bhn099
pubmed: 18562331
Gass JT, Chandler LJ. The plasticity of extinction: contribution of the Prefrontal Cortex in treating addiction through inhibitory learning. Front Psychiatry. 2013;4:1–13.
doi: 10.3389/fpsyt.2013.00046
Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33:56–72 Preprint at https://doi.org/10.1038/sj.npp.1301555 .
Myers KM, Davis M. Behavioral and neural analysis of extinction. Neuron. 2002;36:567–84.
doi: 10.1016/S0896-6273(02)01064-4
pubmed: 12441048
Delamater AR. Experimental extinction in pavlovian conditioning: behavioural and neuroscience perspectives. Q J Experimental Psychol Sect B: Comp Physiological Psychol. 2004;57:97–132.
doi: 10.1080/02724990344000097
Frizzell TO et al. White Matter Neuroplasticity: Motor Learning activates the Internal Capsule and reduces hemodynamic response variability. Front Hum Neurosci 2020;4:509258.
Frizzell TO, et al. Imaging functional neuroplasticity in human white matter tracts. Brain Struct Funct. 2022;227:381–92.
doi: 10.1007/s00429-021-02407-4
pubmed: 34812936
Vestergaard M, et al. White Matter Microstructure in Superior Longitudinal Fasciculus Associated with spatial Working Memory performance in children. J Cogn Neurosci. 2011;23:2135–46.
doi: 10.1162/jocn.2010.21592
pubmed: 20964591
Salminen T, Mårtensson J, Schubert T, Kühn S. Increased integrity of white matter pathways after dual n-back training. NeuroImage. 2016;133:244–50.
doi: 10.1016/j.neuroimage.2016.03.028
pubmed: 27001498
Dziemian S, Appenzeller S, von Bastian CC, Jäncke L, Langer N. Working Memory Training effects on White Matter Integrity in Young and older adults. Front Hum Neurosci 2021;15:605213.
Chang YL, Chao RY, Hsu YC, Chen TF, Tseng W. Y. I. White Matter network disruption and cognitive correlates underlying impaired memory awareness in mild cognitive impairment. Neuroimage Clin. 2021;30:102626.
doi: 10.1016/j.nicl.2021.102626
pubmed: 33780863
pmcid: 8039854
Qiao Y et al. The associations between White Matter disruptions and Cognitive decline at the early stage of subcortical vascular cognitive impairment: a case–control study. Front Aging Neurosci 2021;13:681208.
Sweeney JA, et al. White Matter Abnormalities in post-traumatic stress disorder following a specific traumatic event. EBioMedicine. 2016;4:176–83.
doi: 10.1016/j.ebiom.2016.01.012
pubmed: 26981581
pmcid: 4776058
Costanzo ME, et al. White matter microstructure of the uncinate fasciculus is associated with subthreshold posttraumatic stress disorder symptoms and fear potentiated startle during early extinction in recently deployed service members. Neurosci Lett. 2016;618:66–71.
doi: 10.1016/j.neulet.2016.02.041
pubmed: 26923670
Hölzel BK et al. Mindfulness-based stress reduction, fear conditioning, and the Uncinate Fasciculus: a pilot study. Front Behav Neurosci 2016;10;124.
Herbet G, Zemmoura I, Duffau H. Functional Anatomy of the Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses. Front Neuroanatomy 2018;12 Preprint at https://doi.org/10.3389/fnana.2018.00077 .
Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev. 2018;92:104–127 Preprint at https://doi.org/10.1016/j.neubiorev.2018.05.008 .
Conner AK, et al. A connectomic atlas of the human Cerebrum-Chap. 13: Tractographic description of the Inferior Fronto-Occipital Fasciculus. Operative Neurosurg. 2018;15:5436–43.
Nowrangi MA, Rosenberg PB. The fornix in mild cognitive impairment and Alzheimer’s disease. Front Aging Neurosci 2015;7 Preprint at https://doi.org/10.3389/fnagi.2015.00001 .
Rajagopalan V et al. A basic introduction to Diffusion Tensor Imaging mathematics and Image Processing steps. Brain Disord Ther 06, (2017).
Lissek S, Glaubitz B, Schmidt-Wilcke T, Tegenthoff M. Hippocampal Context Processing during Acquisition of a predictive Learning Task is Associated with Renewal in extinction recall. J Cogn Neurosci. 2016;28:747–62.
doi: 10.1162/jocn_a_00928
pubmed: 26807840
Lissek S, Golisch A, Glaubitz B, Tegenthoff M. The GABAergic system in prefrontal cortex and hippocampus modulates context-related extinction learning and renewal in humans. Brain Imaging Behav. 2017;11:1885–900.
doi: 10.1007/s11682-016-9662-y
pubmed: 27928709
Lissek S, Klass A, Tegenthoff M. NMDA receptor-mediated processing in inferior frontal gyrus facilitates acquisition and extinction learning and strengthens renewal. Neurobiol Learn Mem. 2022;194:107672.
doi: 10.1016/j.nlm.2022.107672
pubmed: 35917993
Chattarji S, Tomar A, Suvrathan A, Ghosh S, Rahman MM. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat Neurosci 2015 18:(10)1364–1375.
Cook SC, Wellman CL. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol. 2004;60:236–48.
doi: 10.1002/neu.20025
pubmed: 15266654
McEwen BS, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353.
doi: 10.1038/nn.4086
pubmed: 26404710
pmcid: 4933289
Lissek S, Klass A, Tegenthoff M. Effects of noradrenergic stimulation upon context-related extinction learning performance and BOLD activation in hippocampus and prefrontal cortex differ between participants showing and not showing renewal. Front Behav Neurosci. 2019;13.
Kinner VL, Merz CJ, Lissek S, Wolf. O. T. Cortisol disrupts the neural correlates of extinction recall. NeuroImage. 2016;133:233–43.
doi: 10.1016/j.neuroimage.2016.03.005
pubmed: 26973167
Leemans A, Jeurissen B, Sijbers J, Jones DK. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc Intl Soc Mag Reson Med. 2009:3537.
Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. Vivo Fiber Tractography using DT-MRI data. Magn Reson Med. 2000;44:625–32.
doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
pubmed: 11025519
Catani M, de Thiebaut M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex. 2008;44:1105–32.
doi: 10.1016/j.cortex.2008.05.004
pubmed: 18619589
Figley CR et al. Potential pitfalls of using Fractional Anisotropy, Axial Diffusivity, and Radial Diffusivity as biomarkers of cerebral White Matter Microstructure. Front Neurosci 2022;15:799576.
Aung WY, Mar S, Benzinger TL. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 2013;5:427.
doi: 10.2217/iim.13.49
pubmed: 24795779
pmcid: 4004089
Song SK, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage. 2003;20:1714–22.
doi: 10.1016/j.neuroimage.2003.07.005
pubmed: 14642481