Immunomodulation profile of the biosimilar trastuzumab MYL-1401O in a bioequivalence phase I study.
Biomarker
Biosimilar
Cytokine release assay
PBMC
Trastuzumab
mAb
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 06 2024
04 06 2024
Historique:
received:
05
06
2023
accepted:
03
05
2024
medline:
5
6
2024
pubmed:
5
6
2024
entrez:
4
6
2024
Statut:
epublish
Résumé
The initial Phase-I single centre, single dose, randomized, double-blind, cross-over study was planned to assess the pharmacokinetic and pharmacodynamic bioequivalence of the trastuzumab biosimilar (MYL-1401O) compared to the reference Herceptin
Identifiants
pubmed: 38834577
doi: 10.1038/s41598-024-61265-2
pii: 10.1038/s41598-024-61265-2
doi:
Substances chimiques
Trastuzumab
P188ANX8CK
Biosimilar Pharmaceuticals
0
Cytokines
0
Types de publication
Journal Article
Clinical Trial, Phase I
Randomized Controlled Trial
Langues
eng
Sous-ensembles de citation
IM
Pagination
12872Informations de copyright
© 2024. The Author(s).
Références
Chtioui H, Vallotton L, Audran R, Dao K, Rothuisen LE, Winterfeld U, et al., editors. A bioequivalence study for Hercules, a biosimilar trastuzumab candidate in development. poster n°: 0370. 5th British Pharmacology Society; 2015; Edinburgh.
Maadi, H., Soheilifar, M. H., Choi, W. S., Moshtaghian, A. & Wang, Z. Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers (Basel) 13, 3540. https://doi.org/10.3390/cancers13143540 (2021).
doi: 10.3390/cancers13143540
pubmed: 34298754
Nimmerjahn, F. & Ravetch, J. V. Antibodies, Fc receptors and cancer. Curr. Opin Immunol. 19(2), 239–245. https://doi.org/10.1016/j.coi.2007.01.005 (2007).
doi: 10.1016/j.coi.2007.01.005
pubmed: 17291742
Reim, F. et al. Immunoselection of breast and ovarian cancer cells with Trastuzumab and natural killer cells: Selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res. 69(20), 8058–8066. https://doi.org/10.1158/0008-5472.can-09-0834 (2009).
doi: 10.1158/0008-5472.can-09-0834
pubmed: 19826050
Varchetta, S. et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under Trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 67(24), 11991–11999. https://doi.org/10.1158/0008-5472.can-07-2068 (2007).
doi: 10.1158/0008-5472.can-07-2068
pubmed: 18089830
Beano, A. et al. Correlation between NK function and response to trastuzumab in metastatic breast cancer patients. J. Transl. Med. 6(1), 25. https://doi.org/10.1186/1479-5876-6-25 (2008).
doi: 10.1186/1479-5876-6-25
pubmed: 18485193
pmcid: 2415031
Park, S. et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2), 160–170. https://doi.org/10.1016/j.ccr.2010.06.014 (2010).
doi: 10.1016/j.ccr.2010.06.014
pubmed: 20708157
pmcid: 2923645
Brennan, F. R. et al. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. mAbs 2(3), 233–255 (2010).
doi: 10.4161/mabs.2.3.11782
pubmed: 20421713
pmcid: 2881251
Scientific Considerations in Demonstrating Biosimilarity to a Reference Product Guidance for Industry. FDA/CDER/CBER/2015.
Guideline on similar biological medicinal products containing monoclonal antibodies. EMA/CHMP/BMWP/403543/2010.
Leone, F. et al. Expression of the c-ErbB-2/HER2 proto-oncogene in normal hematopoietic cells. J. Leukoc. Biol. 74(4), 593–601. https://doi.org/10.1189/jlb.0203068 (2003).
doi: 10.1189/jlb.0203068
pubmed: 12960261
Kallergi, G. et al. Phosphorylated EGFR and PI3K/Akt signaling kinases are expressed in circulating tumor cells of breast cancer patients. Breast Cancer Res. 10(5), R80. https://doi.org/10.1186/bcr2149 (2008).
doi: 10.1186/bcr2149
pubmed: 18822183
pmcid: 2614515
Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use. EMA/CHMP/BMWP/86289/2010.
Vidal, J.-M. et al. In vitro cytokine release assays for predicting cytokine release syndrome: The current state-of-the-science report of a European medicines agency workshop. Cytokine 51(2), 213–215. https://doi.org/10.1016/j.cyto.2010.04.008 (2010).
doi: 10.1016/j.cyto.2010.04.008
pubmed: 20471854
Stebbings, R. et al. “Cytokine storm” in the phase I trial of monoclonal antibody TGN1412: Better understanding the causes to improve preclinical testing of immunotherapeutics. J. Immunol. 179(5), 3325–3331 (2007).
doi: 10.4049/jimmunol.179.5.3325
pubmed: 17709549
Stebbings, R., Eastwood, D., Poole, S. & Thorpe, R. After TGN1412: Recent developments in cytokine release assays. J. Immunotoxicol. 10(1), 75–82. https://doi.org/10.3109/1547691x.2012.711783 (2012).
doi: 10.3109/1547691x.2012.711783
pubmed: 22967038
pmcid: 3541671
Findlay, L. et al. Comparison of novel methods for predicting the risk of pro-inflammatory clinical infusion reactions during monoclonal antibody therapy. J. Immunol. Methods 371(1–2), 134–142. https://doi.org/10.1016/j.jim.2011.06.022 (2011).
doi: 10.1016/j.jim.2011.06.022
pubmed: 21741383
Findlay, L. et al. Improved in vitro methods to predict the in vivo toxicity in man of therapeutic monoclonal antibodies including TGN1412. J. Immunol. Methods 352(1–2), 1–12. https://doi.org/10.1016/j.jim.2009.10.013 (2010).
doi: 10.1016/j.jim.2009.10.013
pubmed: 19895813
Eastwood, D. et al. Severity of the TGN1412 trial disaster cytokine storm correlated with IL-2 release. Br. J. Clin. Pharmacol. https://doi.org/10.1111/bcp.12165 (2013).
doi: 10.1111/bcp.12165
pubmed: 23701319
pmcid: 3731604
Eastwood, D. et al. Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br. J. Pharmacol. 161(3), 512–526. https://doi.org/10.1111/j.1476-5381.2010.00922.x (2010).
doi: 10.1111/j.1476-5381.2010.00922.x
pubmed: 20880392
pmcid: 2990151
Li, P. et al. Affinity and kinetic analysis of Fcγ receptor IIIa (CD16a) binding to IgG ligands. J. Biol. Chem. 282(9), 6210–6221. https://doi.org/10.1074/jbc.M609064200 (2007).
doi: 10.1074/jbc.M609064200
pubmed: 17202140
Wong, K. L. et al. The three human monocyte subsets: implications for health and disease. Immunol. Res. 53(1–3), 41–57. https://doi.org/10.1007/s12026-012-8297-3 (2012).
doi: 10.1007/s12026-012-8297-3
pubmed: 22430559
Hong, D. I., Bankova, L., Cahill, K. N., Kyin, T. & Castells, M. C. Allergy to monoclonal antibodies: Cutting-edge desensitization methods for cutting-edge therapies. Expert Rev. Clin. Immunol. 8(1), 43–54. https://doi.org/10.1586/eci.11.75 (2011).
doi: 10.1586/eci.11.75
Rugo, H. S. et al. Effect of a proposed Trastuzumab biosimilar compared with Trastuzumab on overall response rate in patients with ERBB2 (HER2)-positive metastatic breast cancer: A randomized clinical trial. JAMA 317(1), 37–47. https://doi.org/10.1001/jama.2016.18305 (2017).
doi: 10.1001/jama.2016.18305
pubmed: 27918780
Waller, C. F. et al. A pharmacokinetics phase 1 bioequivalence study of the Trastuzumab biosimilar MYL-1401O vs. EU-Trastuzumab and US-Trastuzumab. Br. J. Clin. Pharmacol. 84(10), 2336–2343. https://doi.org/10.1111/bcp.13689 (2018).
doi: 10.1111/bcp.13689
pubmed: 29926514
pmcid: 6138509
Berger, M. M. et al. Supplemental parenteral nutrition improves immunity with unchanged carbohydrate and protein metabolism in critically ill patients: The SPN2 randomized tracer study. Clin. Nutr. https://doi.org/10.1016/j.clnu.2018.10.023 (2018).
doi: 10.1016/j.clnu.2018.10.023
pubmed: 30448193
Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: Development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692. https://doi.org/10.1146/annurev.immunol.021908.132557 (2009).
doi: 10.1146/annurev.immunol.021908.132557
pubmed: 19132917
Roederer, M., Nozzi, J. L. & Nason, M. C. SPICE: Exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 79(2), 167–174. https://doi.org/10.1002/cyto.a.21015 (2011).
doi: 10.1002/cyto.a.21015
pubmed: 21265010
pmcid: 3072288