Immunomodulation profile of the biosimilar trastuzumab MYL-1401O in a bioequivalence phase I study.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 06 2024
Historique:
received: 05 06 2023
accepted: 03 05 2024
medline: 5 6 2024
pubmed: 5 6 2024
entrez: 4 6 2024
Statut: epublish

Résumé

The initial Phase-I single centre, single dose, randomized, double-blind, cross-over study was planned to assess the pharmacokinetic and pharmacodynamic bioequivalence of the trastuzumab biosimilar (MYL-1401O) compared to the reference Herceptin

Identifiants

pubmed: 38834577
doi: 10.1038/s41598-024-61265-2
pii: 10.1038/s41598-024-61265-2
doi:

Substances chimiques

Trastuzumab P188ANX8CK
Biosimilar Pharmaceuticals 0
Cytokines 0

Types de publication

Journal Article Clinical Trial, Phase I Randomized Controlled Trial

Langues

eng

Sous-ensembles de citation

IM

Pagination

12872

Informations de copyright

© 2024. The Author(s).

Références

Chtioui H, Vallotton L, Audran R, Dao K, Rothuisen LE, Winterfeld U, et al., editors. A bioequivalence study for Hercules, a biosimilar trastuzumab candidate in development. poster n°: 0370. 5th British Pharmacology Society; 2015; Edinburgh.
Maadi, H., Soheilifar, M. H., Choi, W. S., Moshtaghian, A. & Wang, Z. Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers (Basel) 13, 3540. https://doi.org/10.3390/cancers13143540 (2021).
doi: 10.3390/cancers13143540 pubmed: 34298754
Nimmerjahn, F. & Ravetch, J. V. Antibodies, Fc receptors and cancer. Curr. Opin Immunol. 19(2), 239–245. https://doi.org/10.1016/j.coi.2007.01.005 (2007).
doi: 10.1016/j.coi.2007.01.005 pubmed: 17291742
Reim, F. et al. Immunoselection of breast and ovarian cancer cells with Trastuzumab and natural killer cells: Selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res. 69(20), 8058–8066. https://doi.org/10.1158/0008-5472.can-09-0834 (2009).
doi: 10.1158/0008-5472.can-09-0834 pubmed: 19826050
Varchetta, S. et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under Trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 67(24), 11991–11999. https://doi.org/10.1158/0008-5472.can-07-2068 (2007).
doi: 10.1158/0008-5472.can-07-2068 pubmed: 18089830
Beano, A. et al. Correlation between NK function and response to trastuzumab in metastatic breast cancer patients. J. Transl. Med. 6(1), 25. https://doi.org/10.1186/1479-5876-6-25 (2008).
doi: 10.1186/1479-5876-6-25 pubmed: 18485193 pmcid: 2415031
Park, S. et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2), 160–170. https://doi.org/10.1016/j.ccr.2010.06.014 (2010).
doi: 10.1016/j.ccr.2010.06.014 pubmed: 20708157 pmcid: 2923645
Brennan, F. R. et al. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. mAbs 2(3), 233–255 (2010).
doi: 10.4161/mabs.2.3.11782 pubmed: 20421713 pmcid: 2881251
Scientific Considerations in Demonstrating Biosimilarity to a Reference Product Guidance for Industry. FDA/CDER/CBER/2015.
Guideline on similar biological medicinal products containing monoclonal antibodies. EMA/CHMP/BMWP/403543/2010.
Leone, F. et al. Expression of the c-ErbB-2/HER2 proto-oncogene in normal hematopoietic cells. J. Leukoc. Biol. 74(4), 593–601. https://doi.org/10.1189/jlb.0203068 (2003).
doi: 10.1189/jlb.0203068 pubmed: 12960261
Kallergi, G. et al. Phosphorylated EGFR and PI3K/Akt signaling kinases are expressed in circulating tumor cells of breast cancer patients. Breast Cancer Res. 10(5), R80. https://doi.org/10.1186/bcr2149 (2008).
doi: 10.1186/bcr2149 pubmed: 18822183 pmcid: 2614515
Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use. EMA/CHMP/BMWP/86289/2010.
Vidal, J.-M. et al. In vitro cytokine release assays for predicting cytokine release syndrome: The current state-of-the-science report of a European medicines agency workshop. Cytokine 51(2), 213–215. https://doi.org/10.1016/j.cyto.2010.04.008 (2010).
doi: 10.1016/j.cyto.2010.04.008 pubmed: 20471854
Stebbings, R. et al. “Cytokine storm” in the phase I trial of monoclonal antibody TGN1412: Better understanding the causes to improve preclinical testing of immunotherapeutics. J. Immunol. 179(5), 3325–3331 (2007).
doi: 10.4049/jimmunol.179.5.3325 pubmed: 17709549
Stebbings, R., Eastwood, D., Poole, S. & Thorpe, R. After TGN1412: Recent developments in cytokine release assays. J. Immunotoxicol. 10(1), 75–82. https://doi.org/10.3109/1547691x.2012.711783 (2012).
doi: 10.3109/1547691x.2012.711783 pubmed: 22967038 pmcid: 3541671
Findlay, L. et al. Comparison of novel methods for predicting the risk of pro-inflammatory clinical infusion reactions during monoclonal antibody therapy. J. Immunol. Methods 371(1–2), 134–142. https://doi.org/10.1016/j.jim.2011.06.022 (2011).
doi: 10.1016/j.jim.2011.06.022 pubmed: 21741383
Findlay, L. et al. Improved in vitro methods to predict the in vivo toxicity in man of therapeutic monoclonal antibodies including TGN1412. J. Immunol. Methods 352(1–2), 1–12. https://doi.org/10.1016/j.jim.2009.10.013 (2010).
doi: 10.1016/j.jim.2009.10.013 pubmed: 19895813
Eastwood, D. et al. Severity of the TGN1412 trial disaster cytokine storm correlated with IL-2 release. Br. J. Clin. Pharmacol. https://doi.org/10.1111/bcp.12165 (2013).
doi: 10.1111/bcp.12165 pubmed: 23701319 pmcid: 3731604
Eastwood, D. et al. Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br. J. Pharmacol. 161(3), 512–526. https://doi.org/10.1111/j.1476-5381.2010.00922.x (2010).
doi: 10.1111/j.1476-5381.2010.00922.x pubmed: 20880392 pmcid: 2990151
Li, P. et al. Affinity and kinetic analysis of Fcγ receptor IIIa (CD16a) binding to IgG ligands. J. Biol. Chem. 282(9), 6210–6221. https://doi.org/10.1074/jbc.M609064200 (2007).
doi: 10.1074/jbc.M609064200 pubmed: 17202140
Wong, K. L. et al. The three human monocyte subsets: implications for health and disease. Immunol. Res. 53(1–3), 41–57. https://doi.org/10.1007/s12026-012-8297-3 (2012).
doi: 10.1007/s12026-012-8297-3 pubmed: 22430559
Hong, D. I., Bankova, L., Cahill, K. N., Kyin, T. & Castells, M. C. Allergy to monoclonal antibodies: Cutting-edge desensitization methods for cutting-edge therapies. Expert Rev. Clin. Immunol. 8(1), 43–54. https://doi.org/10.1586/eci.11.75 (2011).
doi: 10.1586/eci.11.75
Rugo, H. S. et al. Effect of a proposed Trastuzumab biosimilar compared with Trastuzumab on overall response rate in patients with ERBB2 (HER2)-positive metastatic breast cancer: A randomized clinical trial. JAMA 317(1), 37–47. https://doi.org/10.1001/jama.2016.18305 (2017).
doi: 10.1001/jama.2016.18305 pubmed: 27918780
Waller, C. F. et al. A pharmacokinetics phase 1 bioequivalence study of the Trastuzumab biosimilar MYL-1401O vs. EU-Trastuzumab and US-Trastuzumab. Br. J. Clin. Pharmacol. 84(10), 2336–2343. https://doi.org/10.1111/bcp.13689 (2018).
doi: 10.1111/bcp.13689 pubmed: 29926514 pmcid: 6138509
Berger, M. M. et al. Supplemental parenteral nutrition improves immunity with unchanged carbohydrate and protein metabolism in critically ill patients: The SPN2 randomized tracer study. Clin. Nutr. https://doi.org/10.1016/j.clnu.2018.10.023 (2018).
doi: 10.1016/j.clnu.2018.10.023 pubmed: 30448193
Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: Development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692. https://doi.org/10.1146/annurev.immunol.021908.132557 (2009).
doi: 10.1146/annurev.immunol.021908.132557 pubmed: 19132917
Roederer, M., Nozzi, J. L. & Nason, M. C. SPICE: Exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 79(2), 167–174. https://doi.org/10.1002/cyto.a.21015 (2011).
doi: 10.1002/cyto.a.21015 pubmed: 21265010 pmcid: 3072288

Auteurs

R Audran (R)

Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital Lausanne, rue du Bugnon, 1011, Lausanne, Switzerland.

H Chtioui (H)

Division of Clinical Pharmacology, CHUV- University Hospital Lausanne, Lausanne, Switzerland.

A C Thierry (AC)

Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital Lausanne, rue du Bugnon, 1011, Lausanne, Switzerland.

C E Mayor (CE)

Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital Lausanne, rue du Bugnon, 1011, Lausanne, Switzerland.

L Vallotton (L)

Clinical Trial Unit, CHUV - University Hospital Lausanne, Lausanne, Switzerland.

K Dao (K)

Division of Clinical Pharmacology, CHUV- University Hospital Lausanne, Lausanne, Switzerland.

L E Rothuizen (LE)

Division of Clinical Pharmacology, CHUV- University Hospital Lausanne, Lausanne, Switzerland.

A Maghraoui (A)

Division of Clinical Pharmacology, CHUV- University Hospital Lausanne, Lausanne, Switzerland.

E J Pennella (EJ)

Mylan, Canonsburgh, PA, USA.

F Brunner-Ferber (F)

Brunner Naga, Pfaeffikon, Switzerland.

T Buclin (T)

Division of Clinical Pharmacology, CHUV- University Hospital Lausanne, Lausanne, Switzerland.

F Spertini (F)

Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital Lausanne, rue du Bugnon, 1011, Lausanne, Switzerland. francois.spertini@chuv.ch.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH