PARP14 and PARP9/DTX3L regulate interferon-induced ADP-ribosylation.
ADP-ribosylation
Immune Response
Interferon Response
SARS-CoV2
Ubiquitin
Journal
The EMBO journal
ISSN: 1460-2075
Titre abrégé: EMBO J
Pays: England
ID NLM: 8208664
Informations de publication
Date de publication:
04 Jun 2024
04 Jun 2024
Historique:
received:
07
10
2023
accepted:
08
05
2024
revised:
01
05
2024
medline:
5
6
2024
pubmed:
5
6
2024
entrez:
4
6
2024
Statut:
aheadofprint
Résumé
PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.
Identifiants
pubmed: 38834853
doi: 10.1038/s44318-024-00126-0
pii: 10.1038/s44318-024-00126-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : UKRI | Biotechnology and Biological Sciences Research Council (BBSRC)
ID : BB/R007195/1
Organisme : UKRI | Biotechnology and Biological Sciences Research Council (BBSRC)
ID : BB/W016613/1
Organisme : Wellcome Trust
ID : 210634
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 223107
Pays : United Kingdom
Organisme : Oxford University Challenge Seed Fund
ID : USCF 456
Organisme : Ovarian Cancer Research Alliance (OCRA)
ID : 813369
Organisme : Agence Nationale de la Recherche (ANR)
ID : ANR-22-CE12-0039
Organisme : Fondation ARC pour la Recherche sur le Cancer (ARC)
ID : ARCPJA2022060005190
Organisme : Ligue Contre le Cancer (French League Against Cancer)
ID : CD53
Informations de copyright
© 2024. The Author(s).
Références
Abraham R, Hauer D, McPherson RL, Utt A, Kirby IT, Cohen MS, Merits A, Leung AKL, Griffin DE (2018) ADP-ribosyl–binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication. Proc Natl Acad Sci USA 115:E10457–E10466
pubmed: 30322911
pmcid: 6217424
doi: 10.1073/pnas.1812130115
Abraham R, McPherson Robert L, Dasovich M, Badiee M, Leung Anthony KL, Griffin Diane E (2020) Both ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macrodomain affect neurovirulence in mice. mBio 11, https://doi.org/10.1128/mbio.03253-03219
Aguiar RCT, Takeyama K, He C, Kreinbrink K, Shipp MA (2005) B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J Biol Chem 280:33756–33765
pubmed: 16061477
doi: 10.1074/jbc.M505408200
Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, West SC (2008) Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451:81–85
pubmed: 18172500
doi: 10.1038/nature06420
Ahmed SF, Buetow L, Gabrielsen M, Lilla S, Chatrin C, Sibbet GJ, Zanivan S, Huang DT (2020) DELTEX2 C-terminal domain recognizes and recruits ADP-ribosylated proteins for ubiquitination. Sci Adv 6:eabc0629
pubmed: 32937373
pmcid: 7442474
doi: 10.1126/sciadv.abc0629
Alhammad YM, Parthasarathy S, Ghimire R, Kerr CM, O’Connor JJ, Pfannenstiel JJ, Chanda D, Miller CA, Baumlin N, Salathe M et al (2023) SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice. Proc Natl Acad Sci USA 120:e2302083120
pubmed: 37607224
pmcid: 10468617
doi: 10.1073/pnas.2302083120
Ashok Y, Vela-Rodriguez C, Yang C, Alanen HI, Liu F, Paschal BM, Lehtio L (2022) Reconstitution of the DTX3L-PARP9 complex reveals determinants for high-affinity heterodimerization and multimeric assembly. Biochem J 479:289–304
pubmed: 35037691
doi: 10.1042/BCJ20210722
Bachmann SB, Frommel SC, Camicia R, Winkler HC, Santoro R, Hassa PO (2014) DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells. Mol Cancer 13:125
pubmed: 24886089
pmcid: 4070648
doi: 10.1186/1476-4598-13-125
Caprara G, Prosperini E, Piccolo V, Sigismondo G, Melacarne A, Cuomo A, Boothby M, Rescigno M, Bonaldi T, Natoli G (2018) PARP14 controls the nuclear accumulation of a subset of type I IFN-inducible proteins. J Immunol 200:2439–2454
pubmed: 29500242
doi: 10.4049/jimmunol.1701117
Carter-O’Connell I, Vermehren-Schmaedick A, Jin H, Morgan RK, David LL, Cohen MS (2018) Combining chemical genetics with proximity-dependent labeling reveals cellular targets of poly(ADP-ribose) polymerase 14 (PARP14). ACS Chem Biol 13:2841–2848
pubmed: 30247868
doi: 10.1021/acschembio.8b00567
Chatrin C, Gabrielsen M, Buetow L, Nakasone MA, Ahmed SF, Sumpton D, Sibbet GJ, Smith BO, Huang DT (2020) Structural insights into ADP-ribosylation of ubiquitin by Deltex family E3 ubiquitin ligases. Sci Adv 6:eabc0418
pubmed: 32948590
pmcid: 7500938
doi: 10.1126/sciadv.abc0418
DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, Klevit RE, Xu W (2015) Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517:223–226
pubmed: 25327252
doi: 10.1038/nature13826
Daugherty MD, Young JM, Kerns JA, Malik HS (2014) Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLOS Genet 10:e1004403
pubmed: 24875882
pmcid: 4038475
doi: 10.1371/journal.pgen.1004403
Delgado-Rodriguez SE, Ryan AP, Daugherty MD (2023) Recurrent loss of macrodomain activity in host immunity and viral proteins. Pathogens 12:674
pubmed: 37242344
pmcid: 10221186
doi: 10.3390/pathogens12050674
Dhoonmoon A, Nicolae CM (2023) Mono-ADP-ribosylation by PARP10 and PARP14 in genome stability. NAR Cancer 5:zcad009
pubmed: 36814782
pmcid: 9940457
doi: 10.1093/narcan/zcad009
Đukić N, Strømland Ø, Elsborg JD, Munnur D, Zhu K, Schuller M, Chatrin C, Kar P, Duma L, Suyari O et al (2023) PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities. Sci Adv 9:eadi2687
pubmed: 37703374
pmcid: 10499325
doi: 10.1126/sciadv.adi2687
Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J, Athmer J, Meyerholz David K, Ahel I, Perlman S (2016) The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. mBio 7, https://doi.org/10.1128/mbio.01721-01716
Fehr AR, Jankevicius G, Ahel I, Perlman S (2018) Viral macrodomains: unique mediators of viral replication and pathogenesis. Trends Microbiol 26:598–610
pubmed: 29268982
doi: 10.1016/j.tim.2017.11.011
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M (2020) The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev 34:341–359
pubmed: 32029454
pmcid: 7050484
doi: 10.1101/gad.334425.119
Fontana P, Buch-Larsen SC, Suyari O, Smith R, Suskiewicz MJ, Schützenhofer K, Ariza A, Rack JGM, Nielsen ML, Ahel I (2023) Serine ADP-ribosylation in Drosophila provides insights into the evolution of reversible ADP-ribosylation signalling. Nat Commun 14:3200
pubmed: 37268618
pmcid: 10238386
doi: 10.1038/s41467-023-38793-y
Gahbauer S, Correy GJ, Schuller M, Ferla MP, Doruk YU, Rachman M, Wu T, Diolaiti M, Wang S, Neitz RJ et al (2023) Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2. Proc Natl Acad Sci USA 120:e2212931120
pubmed: 36598939
pmcid: 9926234
doi: 10.1073/pnas.2212931120
Groslambert J, Prokhorova E, Ahel I (2021) ADP-ribosylation of DNA and RNA. DNA Repair 105:103144
pubmed: 34116477
pmcid: 8385414
doi: 10.1016/j.dnarep.2021.103144
Groslambert J, Prokhorova E, Wondisford AR, Tromans-Coia C, Giansanti C, Jansen J, Timinszky G, Dobbelstein M, Ahel D, O’Sullivan RJ et al (2023) The interplay of TARG1 and PARG protects against genomic instability. Cell Rep 42:113113
pubmed: 37676774
pmcid: 10933786
doi: 10.1016/j.celrep.2023.113113
Grunewald ME, Chen Y, Kuny C, Maejima T, Lease R, Ferraris D, Aikawa M, Sullivan CS, Perlman S, Fehr AR (2019) The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog 15:e1007756
pubmed: 31095648
pmcid: 6521996
doi: 10.1371/journal.ppat.1007756
Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31:101–126
pubmed: 28202539
pmcid: 5322727
doi: 10.1101/gad.291518.116
Huang J, Chen Z, Ye Y, Shao Y, Zhu P, Li X, Ma Y, Xu F, Zhou J, Wu M et al (2023) DTX3L enhances type I interferon antiviral response by promoting the ubiquitination and phosphorylation of TBK1. J Virol 97:e0068723
pubmed: 37255478
doi: 10.1128/jvi.00687-23
Iwata H, Goettsch C, Sharma A, Ricchiuto P, Goh WWB, Halu A, Yamada I, Yoshida H, Hara T, Wei M et al (2016) PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nat Commun 7:12849
pubmed: 27796300
pmcid: 5095532
doi: 10.1038/ncomms12849
Juszczynski P, Kutok JL, Li C, Mitra J, Aguiar RCT, Shipp MA (2006) BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol Cell Biol 26:5348–5359
pubmed: 16809771
pmcid: 1592708
doi: 10.1128/MCB.02351-05
Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG (2005) The macro domain is an ADP-ribose binding module. EMBO J 24:1911–1920
pubmed: 15902274
pmcid: 1142602
doi: 10.1038/sj.emboj.7600664
Kerns JA, Emerman M, Malik HS (2008) Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLOS Genet 4:e21
pubmed: 18225958
pmcid: 2213710
doi: 10.1371/journal.pgen.0040021
Kerr CM, Parthasarathy S, Schwarting N, O’Connor JJ, Pfannenstiel JJ, Giri E, More S, Orozco RC, Fehr AR (2023) PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell- and tissue-specific manner. J Virol 97:e0088523
pubmed: 37695054
doi: 10.1128/jvi.00885-23
Kerr CM, Pfannenstiel JJ, Alhammad YM, Roy A, O’Connor JJ, Ghimire R, Khattabi R, Shrestha R, McDonald PR, Gao P et al (2024) Mutation of highly conserved residues in loop 2 of the coronavirus macrodomain demonstrates that enhanced ADP-ribose binding is detrimental to infection. Preprint at https://doi.org/10.1101/2024.01.03.574082
Krieg S, Pott F, Potthoff L, Verheirstraeten M, Bütepage M, Golzmann A, Lippok B, Goffinet C, Lüscher B, Korn P (2023) Mono-ADP-ribosylation by PARP10 inhibits Chikungunya virus nsP2 proteolytic activity and viral replication. Cell Mol Life Sci 80:72
pubmed: 36840772
pmcid: 9959937
doi: 10.1007/s00018-023-04717-8
Leung AKL, Griffin DE, Bosch J, Fehr AR (2022) The conserved macrodomain is a potential therapeutic target for coronaviruses and alphaviruses. Pathogens 11:94
pubmed: 35056042
pmcid: 8780475
doi: 10.3390/pathogens11010094
Li C, Debing Y, Jankevicius G, Neyts J, Ahel I, Coutard B, Canard B (2016) Viral macro domains reverse protein ADP-ribosylation. J Virol 90:8478–8486
pubmed: 27440879
pmcid: 5021415
doi: 10.1128/JVI.00705-16
Longarini EJ, Dauben H, Locatelli C, Wondisford AR, Smith R, Muench C, Kolvenbach A, Lynskey ML, Pope A, Bonfiglio JJ et al (2023) Modular antibodies reveal DNA damage-induced mono-ADP-ribosylation as a second wave of PARP1 signaling. Mol Cell 83:1743–1760.e1711
pubmed: 37116497
pmcid: 10205078
doi: 10.1016/j.molcel.2023.03.027
Lüscher B, Ahel I, Altmeyer M, Ashworth A, Bai P, Chang P, Cohen M, Corda D, Dantzer F, Daugherty MD et al (2022) ADP-ribosyltransferases, an update on function and nomenclature. FEBS J 289:7399–7410
pubmed: 34323016
doi: 10.1111/febs.16142
McEntyre J, Sarkans U, Brazma A (2015) The BioStudies database. Mol Syst Biol 11:847
pubmed: 26700850
pmcid: 4704487
doi: 10.15252/msb.20156658
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19:679–682
pubmed: 35637307
pmcid: 9184281
doi: 10.1038/s41592-022-01488-1
Moore AM, Zhou L, Cui J, Li L, Wu N, Yu A, Poddar S, Liang K, Abt ER, Kim S et al (2021) NAD(+) depletion by type I interferon signaling sensitizes pancreatic cancer cells to NAMPT inhibition. Proc Natl Acad Sci USA 118:e2012469118
pubmed: 33597293
pmcid: 7923374
doi: 10.1073/pnas.2012469118
Müller S, Möller P, Bick Matthew J, Wurr S, Becker S, Günther S, Kümmerer Beate M (2007) Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 81:2391–2400
pubmed: 17182693
doi: 10.1128/JVI.01601-06
Munnur D, Ahel I (2017) Reversible mono-ADP-ribosylation of DNA breaks. FEBS J 284:4002–4016
pubmed: 29054115
pmcid: 5725667
doi: 10.1111/febs.14297
Munnur D, Bartlett E, Mikolčević P, Kirby IT, Rack JGM, Mikoč A, Cohen MS, Ahel I (2019) Reversible ADP-ribosylation of RNA. Nucleic Acids Res 47:5658–5669
pubmed: 31216043
pmcid: 6582358
doi: 10.1093/nar/gkz305
Nicolae CM, Aho ER, Choe KN, Constantin D, Hu HJ, Lee D, Myung K, Moldovan GL (2015) A novel role for the mono-ADP-ribosyltransferase PARP14/ARTD8 in promoting homologous recombination and protecting against replication stress. Nucleic Acids Res 43:3143–3153
pubmed: 25753673
pmcid: 4381061
doi: 10.1093/nar/gkv147
Perina D, Mikoč A, Ahel J, Ćetković H, Žaja R, Ahel I (2014) Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair 23:4–16
pubmed: 24865146
pmcid: 4245714
doi: 10.1016/j.dnarep.2014.05.003
Rack JGM, Palazzo L, Ahel I (2020) ADP-ribosyl)hydrolases: structure, function, and biology. Genes Dev 34:263–284
pubmed: 32029451
pmcid: 7050489
doi: 10.1101/gad.334631.119
Rack JGM, Zorzini V, Zhu Z, Schuller M, Ahel D, Ahel I (2020b) Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential. Open Biol 10:200237
pubmed: 33202171
pmcid: 7729036
doi: 10.1098/rsob.200237
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308
pubmed: 24157548
pmcid: 3969860
doi: 10.1038/nprot.2013.143
Roy A, Alhammad YM, McDonald P, Johnson DK, Zhuo J, Wazir S, Ferraris D, Lehtiö L, Leung AKL, Fehr AR (2022) Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening. Antivir Res 203:105344
pubmed: 35598780
doi: 10.1016/j.antiviral.2022.105344
Russo LC, Tomasin R, Matos IA, Manucci AC, Sowa ST, Dale K, Caldecott KW, Lehtio L, Schechtman D, Meotti FC et al (2021) The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling. J Biol Chem 297:101041
pubmed: 34358560
pmcid: 8332738
doi: 10.1016/j.jbc.2021.101041
Saleh H, Liloglou T, Rigden DJ, Parsons JL, Grundy GJ (2024) KH-like domains in PARP9/DTX3L and PARP14 coordinate protein–protein interactions to promote cancer cell survival. J Mol Biol 436:168434
pubmed: 38182103
pmcid: 11080071
doi: 10.1016/j.jmb.2023.168434
Schenkel LB, Molina JR, Swinger KK, Abo R, Blackwell DJ, Lu AZ, Cheung AE, Church WD, Kunii K, Kuplast-Barr KG et al (2021) A potent and selective PARP14 inhibitor decreases protumor macrophage gene expression and elicits inflammatory responses in tumor explants. Cell Chem Biol 28:1158–1168.e1113
pubmed: 33705687
doi: 10.1016/j.chembiol.2021.02.010
Schuller M, Raggiaschi R, Mikolcevic P, Rack JGM, Ariza A, Zhang Y, Ledermann R, Tang C, Mikoc A, Ahel I (2023a) Molecular basis for the reversible ADP-ribosylation of guanosine bases. Mol Cell 83:2303–2315.e2306
pubmed: 37390817
doi: 10.1016/j.molcel.2023.06.013
Schuller M, Zarganes-Tzitzikas T, Bennett J, De Cesco S, Fearon D, von Delft F, Fedorov O, Brennan PE, Ahel I (2023b) Discovery and development strategies for SARS-CoV-2 NSP3 macrodomain inhibitors. Pathogens 12:324
pubmed: 36839595
pmcid: 9965906
doi: 10.3390/pathogens12020324
Steinegger M, Söding J (2017) MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35:1026–1028
pubmed: 29035372
doi: 10.1038/nbt.3988
Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A (2021) CellProfiler 4: improvements in speed, utility and usability. BMC Bioinforma 22:433
doi: 10.1186/s12859-021-04344-9
Suskiewicz MJ, Munnur D, Strømland Ø, Yang J-C, Easton LE, Chatrin C, Zhu K, Baretić D, Goffinont S, Schuller M et al (2023) Updated protein domain annotation of the PARP protein family sheds new light on biological function. Nucleic Acids Res 51:8217–8236
Takeyama K, Aguiar RCT, Gu L, He C, Freeman GJ, Kutok JL, Aster JC, Shipp MA (2003) The BAL-binding protein BBAP and related deltex family members exhibit ubiquitin-protein isopeptide ligase activity. J Biol Chem 278:21930–21937
pubmed: 12670957
doi: 10.1074/jbc.M301157200
Teloni F, Altmeyer M (2016) Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 44:993–1006
pubmed: 26673700
doi: 10.1093/nar/gkv1383
Thirunavukkarasu S, Ahmed M, Rosa BA, Boothby M, Cho SH, Rangel-Moreno J, Mbandi SK, Schreiber V, Gupta A, Zuniga J et al (2023) Poly(ADP-ribose) polymerase 9 mediates early protection against Mycobacterium tuberculosis infection by regulating type I IFN production. J Clin Invest 133:e158630
pubmed: 37200107
pmcid: 10266794
doi: 10.1172/JCI158630
Torretta A, Chatzicharalampous C, Ebenwaldner C, Schuler H (2023) PARP14 is a writer, reader and eraser of mono-ADP-ribosylation. J Biol Chem 299:105096
pubmed: 37507011
pmcid: 10470015
doi: 10.1016/j.jbc.2023.105096
Voth LS, O’Connor JJ, Kerr CM, Doerger E, Schwarting N, Sperstad P, Johnson DK, Fehr AR (2021) Unique mutations in the murine hepatitis virus macrodomain differentially attenuate virus replication, indicating multiple roles for the macrodomain in coronavirus replication. J Virol 95:e0076621
pubmed: 34011547
doi: 10.1128/JVI.00766-21
Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426
pubmed: 25043379
doi: 10.1038/ncomms5426
Wigle TJ, Church WD, Majer CR, Swinger KK, Aybar D, Schenkel LB, Vasbinder MM, Brendes A, Beck C, Prahm M et al (2020) Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes. SLAS Discov 25:241–252
pubmed: 31855104
doi: 10.1177/2472555219883623
Xing J, Zhang A, Du Y, Fang M, Minze LJ, Liu YJ, Li XC, Zhang Z (2021) Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells. Nat Commun 12:2681
pubmed: 33976210
pmcid: 8113569
doi: 10.1038/s41467-021-23003-4
Yamada T, Horimoto H, Kameyama T, Hayakawa S, Yamato H, Dazai M, Takada A, Kida H, Bott D, Zhou AC et al (2016) Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat Immunol 17:687–694
pubmed: 27089381
doi: 10.1038/ni.3422
Yan Q, Ding J, Khan SJ, Lawton LN, Shipp MA (2023) DTX3L E3 ligase targets p53 for degradation at poly ADP-ribose polymerase-associated DNA damage sites. iScience 26:106444
pubmed: 37096048
pmcid: 10122052
doi: 10.1016/j.isci.2023.106444
Yan Q, Dutt S, Xu R, Graves K, Juszczynski P, Manis JP, Shipp MA (2009) BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol Cell 36:110–120
pubmed: 19818714
pmcid: 2913878
doi: 10.1016/j.molcel.2009.08.019
Yan Q, Xu R, Zhu L, Cheng X, Wang Z, Manis J, Shipp MA (2013) BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol Cell Biol 33:845–857
pubmed: 23230272
pmcid: 3571337
doi: 10.1128/MCB.00990-12
Yang CS, Jividen K, Kamata T, Dworak N, Oostdyk L, Remlein B, Pourfarjam Y, Kim I-K, Du K-P, Abbas T et al (2021) Androgen signaling uses a writer and a reader of ADP-ribosylation to regulate protein complex assembly. Nat Commun 12:2705
pubmed: 33976187
pmcid: 8113490
doi: 10.1038/s41467-021-23055-6
Yang CS, Jividen K, Spencer A, Dworak N, Ni L, Oostdyk LT, Chatterjee M, Kuśmider B, Reon B, Parlak M et al (2017) Ubiquitin modification by the E3 ligase/ADP-ribosyltransferase Dtx3L/Parp9. Mol Cell 66:503–516.e505
pubmed: 28525742
pmcid: 5556935
doi: 10.1016/j.molcel.2017.04.028
Zhang Y, Mao D, Roswit WT, Jin X, Patel AC, Patel DA, Agapov E, Wang Z, Tidwell RM, Atkinson JJ et al (2015) PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nat Immunol 16:1215–1227
pubmed: 26479788
pmcid: 4653074
doi: 10.1038/ni.3279
Zhu K, Suskiewicz MJ, Chatrin C, Strømland Ø, Dorsey BW, Aucagne V, Ahel D, Ahel I (2024) DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on nucleic acids. Nucleic Acids Res 52:801–815
pubmed: 38000390
doi: 10.1093/nar/gkad1119
Zhu K, Suskiewicz MJ, Hlousek-Kasun A, Meudal H, Mikoc A, Aucagne V, Ahel D, Ahel I (2022) DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates. Sci Adv 8:eadd4253
pubmed: 36197986
doi: 10.1126/sciadv.add4253
Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y, Sun J, Wu L, Zheng YT, Gao G (2011) Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci USA 108:15834–15839
pubmed: 21876179
pmcid: 3179061
doi: 10.1073/pnas.1101676108