POF-based biosensors for cortisol detection in seawater as a tool for aquaculture systems.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 Jun 2024
Historique:
received: 24 04 2024
accepted: 03 06 2024
medline: 8 6 2024
pubmed: 8 6 2024
entrez: 7 6 2024
Statut: epublish

Résumé

A surface plasmon resonance (SPR) phenomenon implemented via D-shaped polymer optical fiber (POF) is exploited to realize cortisol biosensors. In this work, two immonosensors are designed and developed for the qualitative as well as quantitative measurement of cortisol in artificial and real samples. The performances of the POF-based biosensors in cortisol recognition are achieved using different functionalization protocols to make the same antibody receptor layer over the SPR surface via cysteamine and lipoic acid, achieving a limit of detection (LOD) of 0.8 pg/mL and 0.2 pg/mL, respectively. More specifically, the use of cysteamine or lipoic acid changes the distance between the receptor layer and the SPR surface, improving the sensitivity at low concentrations of about one order of magnitude in the configuration based on lipoic acid. The LODs of both cortisol biosensors are achieved well competitively with other sensor systems but without the need for amplification or sample treatments. In order to obtain the selectivity tests, cholesterol and testosterone were used as interfering substances. Moreover, tests in simulated seawater were performed for the same cortisol concentration range achieved in buffer solution to assess the immunosensor response to the complex matrix. Finally, the developed cortisol biosensor was used in a real seawater sample to estimate the cortisol concentration value. The gold standard method has confirmed the estimated cortisol concentration value in real seawater samples. Liquid-liquid extraction was implemented to maximize the response of cortisol in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis.

Identifiants

pubmed: 38849511
doi: 10.1038/s41598-024-63870-7
pii: 10.1038/s41598-024-63870-7
doi:

Substances chimiques

Hydrocortisone WI4X0X7BPJ
Polymers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13117

Subventions

Organisme : European Commission
ID : PRIN2022 - 2022JRKETK
Organisme : European Commission
ID : CZ.10.03.01/00/22_003/0000048
Organisme : European Commission
ID : PRIN2022 - 2022JRKETK
Organisme : European Commission
ID : PRIN2022 - 2022JRKETK
Organisme : European Commission
ID : CZ.10.03.01/00/22_003/0000048
Organisme : Fundação para a Ciência e a Tecnologia
ID : PTDC/EEI-EEE/0415/2021, LA/P/0006/2020, UIDB/50011/2020, UIDP/50011/2020, LA/P/0037/2020, UIDB/50025/2020, UIDP/50025/2020
Organisme : Fundação para a Ciência e a Tecnologia
ID : PTDC/EEI-EEE/0415/2021, LA/P/0006/2020, UIDB/50011/2020, UIDP/50011/2020, LA/P/0037/2020, UIDB/50025/2020, UIDP/50025/2020
Organisme : Fundação para a Ciência e a Tecnologia
ID : PTDC/EEI-EEE/0415/2021, LA/P/0006/2020, UIDB/50011/2020, UIDP/50011/2020, LA/P/0037/2020, UIDB/50025/2020, UIDP/50025/2020
Organisme : Fundação para a Ciência e a Tecnologia
ID : PTDC/EEI-EEE/0415/2021, LA/P/0006/2020, UIDB/50011/2020, UIDP/50011/2020, LA/P/0037/2020, UIDB/50025/2020, UIDP/50025/2020

Informations de copyright

© 2024. The Author(s).

Références

United Nations, World Population Prospects 2019 (2019).
Ranganathan, J., Waite, R., Searchinger, T. & Hanson, C. How to sustainably feed 10 billion people by 2050. In 21 Charts - World Resources Institute, 2018. [Online]. https://www.wri.org/insights/how-sustainably-feed-10-billion-people-2050-21-charts?utm_campaign=socialmedia&utm_source=twitter.com&utm_medium=worldresources&utm_content=bloggraphic . Accessed 06 Oct 2023.
Bregnballe, J. A Guide to Recirculation Aquaculture: An introduction to the new environmentally friendly and highly productive closed fish farming systems. Food Agric. Organ. 1–100 (2015).
Food and Agriculture Organization, The State of World Fisheries and Aquaculture—Meeting the sustainable development goals (2018).
European Commission, Monitoring Progress in national initiatives on digitising industry. Country report (2019).
European Commission, "Sustainable Development." [Online]. https://ec.europa.eu/environment/eussd/ . Accessed 06 Oct 2023.
Ogawa, K. et al. Effects of acid stress on reproductive functions in immature Carp, CYPRIMUS CARPIO. Water Air Soil Pollut. 130, 887–892 (2001).
doi: 10.1023/A:1013803517375
Barton, B. A. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 42(3), 517–525 (2002).
doi: 10.1093/icb/42.3.517 pubmed: 21708747
Scott, A. P. & Ellis, T. Measurement of fish steroids in water-a review. Gen. Comp. Endocrinol. 153, 392–400 (2007).
doi: 10.1016/j.ygcen.2006.11.006 pubmed: 17188270
Tintos, A., Míguez, J. M., Mancera, J. M. & Soengas, J. L. Development of a microtitre plate indirect ELISA for measuring cortisol in teleosts, and evaluation of stress responses in rainbow trout and gilthead sea bream. J. Fish Biol. 68(1), 251–263 (2006).
doi: 10.1111/j.0022-1112.2006.00898.x
Fanouraki, E. et al. Water cortisol is a reliable indicator of stress in European sea bass, Dicentrarchus labrax. Behaviour 145(10), 1267–1281 (2008).
doi: 10.1163/156853908785765818
Aguiar, D., Marques, C. & Pereira, A. C. The importance of monitoring cortisol in the agri-food sector—a systematic review. Metabolites 13(6), 1–14 (2023).
doi: 10.3390/metabo13060692
Cennamo, N., Massarotti, D., Conte, L. & Zeni, L. Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 11(12), 11752–11760 (2011).
doi: 10.3390/s111211752 pubmed: 22247691 pmcid: 3252008
Shukla, S., Sharma, N. K. & Sajal, V. Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: A theoretical study. Sens. Actuat. B Chem. 206, 463–470 (2015).
doi: 10.1016/j.snb.2014.09.083
Cennamo, N., Pesavento, M. & Zeni, L. A review on simple and highly sensitive plastic optical fiber probes for bio-chemical sensing. Sens. Actuat. B Chem. 331, 129393 (2021).
doi: 10.1016/j.snb.2020.129393
Pasquardini, L. et al. Immuno-SPR biosensor for the detection of Brucella abortus. Sci. Rep. 13, 22832 (2023).
doi: 10.1038/s41598-023-50344-5 pubmed: 38129569 pmcid: 10739931
Cennamo, N. et al. Plasmon resonance biosensor for interleukin-1β point-of-care determination: A tool for early periodontitis diagnosis. IScience 27, 108741 (2024).
doi: 10.1016/j.isci.2023.108741 pubmed: 38269096
Annunziata, M. et al. A novel plasmonic optical-fiber-based point-of-care test for periodontal MIP-1α detection. iScience 26, 108539 (2023).
doi: 10.1016/j.isci.2023.108539 pubmed: 38089574 pmcid: 10711496
Kurganov, B. I., Lobanov, A. V., Borisov, I. A. & Reshetilov, A. N. Criterion for Hill equation validity for description of biosensor calibration curves. Anal. Chim. Acta 427, 11–19 (2001).
doi: 10.1016/S0003-2670(00)01167-3
Ricci, F. et al. Using nature’s “tricks” to rationally tune the binding properties of biomolecular receptors. Acc. Chem. Res. 49, 1884–1892 (2016).
doi: 10.1021/acs.accounts.6b00276 pubmed: 27564548 pmcid: 5660318
Thompson, M., Ellison, S. L. R. & Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 74, 835–855 (2002).
doi: 10.1351/pac200274050835
Weng, X., Fu, Z., Zhang, C., Jiang, W. & Jiang, H. A portable 3D microfluidic origami biosensor for cortisol detection in human sweat. Anal. Chem. 94, 3526–3534 (2022).
doi: 10.1021/acs.analchem.1c04508 pubmed: 35170939
Zangheri, M. et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosensors Bioelectron. 64, 63–68 (2015).
doi: 10.1016/j.bios.2014.08.048
Pinto, V., Sousa, P., Catarino, S. O., Correia-Neves, M. & Minas, G. Microfluidic immunosensor for rapid and highly-sensitive salivary cortisol quantification. Biosensors Bioelectron. 90, 308–313 (2017).
doi: 10.1016/j.bios.2016.11.067
Dhull, N., Kaur, G., Gupta, V. & Tomar, M. Highly sensitive and non-invasive electrochemical immunosensor for salivary cortisol detection. Sensors Actuat. B Chem. 293, 281–288 (2019).
doi: 10.1016/j.snb.2019.05.020
Gomes, H. C. et al. Laser-Induced graphene-based Fabry-Pérot cavity label-free immunosensors for the quantification of cortisol. Sensors Actuators Rep. 7, 100186 (2024).
doi: 10.1016/j.snr.2024.100186
Nan, M. et al. Wearable localized surface plasmon resonance-based biosensor with highly sensitive and direct detection of cortisol in human sweat. Biosensors 13, 184 (2023).
doi: 10.3390/bios13020184 pubmed: 36831950 pmcid: 9953546
Liu, X. et al. SFFO cortisol biosensor: Highly sensitive s-flex fiber optic plasmonic biosensor for label-free cortisol detection. IEEE Sensors J. 24, 1494–1501 (2024).
doi: 10.1109/JSEN.2023.3336414
Mugo, S. M. & Alberkant, J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal. Bioanal. Chem. 412, 1825–1833 (2020).
doi: 10.1007/s00216-020-02430-0 pubmed: 32002581
Murase, N. et al. A molecularly imprinted nanocavity-based fluorescence polarization assay platform for cortisol sensing. J. Mater. Chem. B 4, 1770–1777 (2016).
doi: 10.1039/C5TB02069G pubmed: 32263054
Duan, D. et al. A molecularly imprinted electrochemical sensors based on bamboo-like carbon nanotubes loaded with nickel nanoclusters for highly selective detection of cortisol. Microchem. J. 175, 107231 (2022).
doi: 10.1016/j.microc.2022.107231
Iga, M., Seki, A. & Watanabe, K. Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sensors Actuators B Chem. 106, 363–368 (2005).
doi: 10.1016/j.snb.2004.08.017
Gasior, K., Martynkien, T. & Urbanczyk, W. Effect of constructional parameters on the performance of a surface plasmon resonance sensor based on a multimode polymer optical fiber. Appl. Opt. 53, 8167–8174 (2014).
doi: 10.1364/AO.53.008167 pubmed: 25608056

Auteurs

Francesco Arcadio (F)

Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy.

Simone Soares (S)

CICECO -Aveiro Institute of Materials & Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
I3N & Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.

Jan Nedoma (J)

Department of Telecommunications, VSB - Technical University of Ostrava, Ostrava, 70800, Czech Republic.

Dayana Aguiar (D)

ISOPlexis, Centre for Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.

Ana Cristina Pereira (AC)

ISOPlexis, Centre for Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Pólo II-Rua Sílvio Lima, 3030-790, Coimbra, Portugal.

Luigi Zeni (L)

Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy.

Nunzio Cennamo (N)

Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy. nunzio.cennamo@unicampania.it.

Carlos Marques (C)

CICECO -Aveiro Institute of Materials & Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal. carlos.marques@ua.pt.
Department of Physics, VSB - Technical University of Ostrava, Ostrava, 70800, Czech Republic. carlos.marques@ua.pt.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Huntington Disease Mitochondria Neurons Mice
Perylene Dopamine Electrochemical Techniques Imides Luminescent Measurements

Classifications MeSH