Synthesis of homologous series of surfactants from renewable resources, structure-properties relationship, surface active performance, evaluation of their antimicrobial and anticancer potentialities.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 Jun 2024
Historique:
received: 09 02 2024
accepted: 22 05 2024
medline: 9 6 2024
pubmed: 9 6 2024
entrez: 8 6 2024
Statut: epublish

Résumé

Sugar esters display surface-active properties, wetting, emulsifying, and other physicochemical phenomena following their amphipathic nature and recognize distinct biological activity. The development of nutritional pharmaceuticals and other applications remains of great interest. Herein, three novel homologous series of several N-mono-fatty acyl amino acid glucosyl esters were synthesized, and their physicochemical properties and biological activities were evaluated. The design and preparation of these esters were chemically performed via the reaction of glucose with different fatty acyl amino acids as renewable starting materials, with the suggestion that they would acquire functional characteristics superior and competitive to certain conventional surfactants. The synthesized products are characterized using FTIR,

Identifiants

pubmed: 38851845
doi: 10.1038/s41598-024-62905-3
pii: 10.1038/s41598-024-62905-3
doi:

Substances chimiques

Antineoplastic Agents 0
Surface-Active Agents 0
Anti-Infective Agents 0
Esters 0
Amino Acids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13201

Informations de copyright

© 2024. The Author(s).

Références

Otache, M. A., Duru, R. U., Ozioma, A. & Abayeh, J. O. Catalytic methods for the synthesis of sugar esters. Catal. Ind. 14, 115–130. https://doi.org/10.1134/S2070050422010068 (2022).
doi: 10.1134/S2070050422010068
Yuliani, H. et al. Antimicrobial activity of biosurfactant derived from Bacillus subtilis C19. Energy. Proc. 153, 274–278. https://doi.org/10.1016/j.egypro.2018.10.043 (2018).
doi: 10.1016/j.egypro.2018.10.043
Marchant, R. & Banat, I. M. Biosurfactants: A sustainable replacement for chemical surfactants?. Biotechnol. Lett. 34, 1597–1605 (2012).
doi: 10.1007/s10529-012-0956-x pubmed: 22618240
Wang, L. & Queneau, Y. Carbohydrate-based amphiphiles: Resource for bio-based surfactants. Green Chem. Chem. Eng. 349–383. https://hal-udl.archives-ouvertes.fr/hal-02110894 (2019).
Pal, A., Mondal, M. H., Adhikari, A., Bhattarai, A. & Saha, B. Scientific information about sugar-based emulsifiers: A comprehensive review. RSC Adv. 11, 33004–33016. https://doi.org/10.1039/D1RA04968B (2021).
doi: 10.1039/D1RA04968B pubmed: 35493572 pmcid: 9042091
Siebenhaller, S. et al. Lipase-catalyzed synthesis of sugar esters in honey and agave syrup. Front. Chem. 6, 1–9. https://doi.org/10.3389/fchem.2018.00024 (2018).
doi: 10.3389/fchem.2018.00024
Ren, K. & Lamsal, B. P. Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions. Food Chem. 214, 556–563. https://doi.org/10.1016/j.foodchem.2016.07.031 (2017).
doi: 10.1016/j.foodchem.2016.07.031 pubmed: 27507510
Zhu, J. P. et al. Enzymatic synthesis of an homologous series of long-and very long-chain sucrose esters and evaluation of their emulsifying and biological properties. Food Hydrocolloids. 124, 1–12. https://doi.org/10.1016/j.foodhyd.2021.107149 (2022).
doi: 10.1016/j.foodhyd.2021.107149
Ye, R. et al. Solvent-free lipase-catalyzed synthesis of technical-grade sugar esters and evaluation of their physicochemical and bioactive properties. Catalysts 6, 1–13. https://doi.org/10.3390/catal6060078 (2016).
doi: 10.3390/catal6060078
Neta, N. S., Teixeira, J. A. & Rodrigues, L. R. Sugar ester surfactants: Enzymatic synthesis and applications in food industry. Crit. Rev. Food Sci. Nutr. 55, 595–610. https://doi.org/10.1080/10408398.2012.667461 (2015).
doi: 10.1080/10408398.2012.667461 pubmed: 24915370
Sarubbo, L. A. et al. Biosurfactants: Production, properties, applications, trends, and general perspectives. Bio. Eng. J. 181, 108377. https://doi.org/10.1016/j.bej.2022.108377 (2022).
doi: 10.1016/j.bej.2022.108377
Suhail, M., Janakiraman, A. K., Khan, A., Naeem, A. & Badshah, S. F. Surfactants and their role in pharmaceutical product development: An overview. J. Pharm. Pharm. 6, 72–82. https://doi.org/10.15436/2377-1313.19.2601 (2019).
doi: 10.15436/2377-1313.19.2601
Ibrahim, S. S. The role of surface active agents in ophthalmic drug delivery: A comprehensive review. J. Pharm. Sci. 108, 1923–1933. https://doi.org/10.1016/j.xphs.2019.01.016 (2019).
doi: 10.1016/j.xphs.2019.01.016 pubmed: 30684539
Liang, M. Y., Chen, Y., Banwell, M. G., Wang, Y. & Lan, P. Enzymatic preparation of a homologous series of long-chain 6-O-acylglucose esters and their evaluation as emulsifiers. J. Agric. Food Chem. 66, 3949–3956. https://doi.org/10.1021/acs.jafc.8b00913 (2018).
doi: 10.1021/acs.jafc.8b00913 pubmed: 29597347
Yang, Z. & Huang, Z. L. Enzymatic synthesis of sugar fatty acid esters in ionic liquids. Catal. Sci. Technol. 2, 1767–1775. https://doi.org/10.1039/C2CY20109G (2012).
doi: 10.1039/C2CY20109G
Sebatini, A. M., Jain, M., Radha, P., Kiruthika, S. & Tamilarasan, K. Immobilized lipase catalyzing glucose stearate synthesis and their surfactant properties analysis. 3 Biotech 6, 1–8. https://doi.org/10.1007/s13205-016-0501-z (2016).
doi: 10.1007/s13205-016-0501-z
Benvegnu, T., Plusquellec, D. & Lemiègre, L. Surfactants from renewable sources: Synthesis and applications. Monomers Polym. Compos. Renew. Resour. https://doi.org/10.1016/B978-0-08-045316-3.00007-7 (2008)
Polat, T. & Linhardt, R. J. Syntheses and applications of sucrose-based esters. J. Surfactants. Detegr. 4, 415–421. https://doi.org/10.1007/s11743-001-0196-y (2001).
doi: 10.1007/s11743-001-0196-y
El-Laithy, H. M., Shoukry, O. & Mahran, L. G. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: Preclinical and clinical studies. Eur. J. Pharm. Biopharm. 77, 43–55. https://doi.org/10.1016/j.ejpb.2010.10.011 (2011).
doi: 10.1016/j.ejpb.2010.10.011 pubmed: 21056658
Koumba Ibinga, S. K., Fabre, J. F., Bikanga, R. & Mouloungui, Z. Atypical reaction media and organized systems for the synthesis of low-substitution sugar esters. Front. Chem. 7, 1–7. https://doi.org/10.3389/fchem.2019.00587 (2019).
doi: 10.3389/fchem.2019.00587
Anestopoulos, I. et al. Surface active agents and their health-promoting properties: Molecules of multifunctional significance. Pharmaceutics 12, 1–35. https://doi.org/10.3390/pharmaceutics12070688 (2020).
doi: 10.3390/pharmaceutics12070688
Abdelaziz, S., Ahmed, E. & Sadek, M. A reliable solvent-free transesterification synthesis of carbohydrate fatty acid esters: Optimization, structure-surface activity relationships and antimicrobial efficacy. Egypt. J. Chem. 66, 495–517. https://doi.org/10.21608/ejchem.2022.149263.6446 (2023).
doi: 10.21608/ejchem.2022.149263.6446
Nagai, Y. et al. Solubility testing of sucrose esters of fatty acids in international food additive specifications. Biol. Pharm. Bull. 40, 284–289. https://doi.org/10.1248/bpb.b16-00738 (2017).
doi: 10.1248/bpb.b16-00738 pubmed: 28003606
McClements, D. J. & Gumus, C. E. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloids Interfaces Sci. 234, 3–26. https://doi.org/10.1016/j.cis.2016.03.002 (2016).
doi: 10.1016/j.cis.2016.03.002
Stubbs, S., Yousaf, S. & Khan, I. A review on the synthesis of bio-based surfactants using green chemistry principles. DARU J. Pharm. Sci. 30, 407–426. https://doi.org/10.1007/s40199-022-00450-y (2022).
doi: 10.1007/s40199-022-00450-y
Ahsan, F., Arnold, J. J., Meezan, E. & Pillion, D. J. Sucrose cocoate, a component of cosmetic preparations, enhances nasal and ocular peptide absorption. Int. J. Pharm. 251, 195–203. https://doi.org/10.1016/S0378-5173(02)00597-5 (2003).
doi: 10.1016/S0378-5173(02)00597-5 pubmed: 12527189
Takada, H., Takashima, Y., Yokotsuka, A., Eyelash, Y. S. Cosmetic composition containing sucrose fatty acid esters. U.S. Patent 6,024,950 4–10 (2000).
Zheng, Y. et al. Sugar fatty acid esters. Polar Lipids Biol. Chem. Technol. 215–243. https://doi.org/10.1016/B978-1-63067-044-3.50012-1 (2015).
Pérez, B., Anankanbil, S. & Guo, Z. Synthesis of sugar fatty acid esters and their industrial utilizations. Fatty Acids Chem. Synth. Appl. 329–354. https://doi.org/10.1016/B978-0-12-809521-8.00010-6 (2017).
Seto, M. Cosmetic oil gels containing sucrose fatty acid esters and surfactants. Japan. Patent 11,349,441 (1999).
Chaiwut, P., Jirarat, A., Tiensri, N., Sangthong, S. & Pintathong, P. Green synthesis optimization of glucose palm oleate and its potential use as natural surfactant in cosmetic emulsion. Cosmetics 9, 1–15. https://doi.org/10.3390/cosmetics9040076 (2022).
doi: 10.3390/cosmetics9040076
Markande, A. R., Patel, D. & Varjani, S. A review on biosurfactants: Properties, applications and current developments. Bioresour. Technol. 330, 124963. https://doi.org/10.1016/j.biortech.2021.124963 (2021).
doi: 10.1016/j.biortech.2021.124963 pubmed: 33744735
An, D. & Feng, D. X. Synthesis, characterization and in vitro antitumor activity of glucosyl ester derivatives containing amino acid linker. Chem. Select. 3, 5828–5832. https://doi.org/10.1002/slct.201800486 (2018).
doi: 10.1002/slct.201800486
Pinazo, A. et al. Amino acid-based surfactants: New antimicrobial agents. Adv. Colloid. Interface Sci. 228, 17–39. https://doi.org/10.1016/j.cis.2015.11.007 (2016).
doi: 10.1016/j.cis.2015.11.007 pubmed: 26792016
Behnia, I., Yuan, Z., Charpentier, P. & Xu, C. Production of methane and hydrogen via supercritical water gasification of renewable glucose at a relatively low temperature: Effects of metal catalysts and supports. Fuel Proc. Technol. 143, 27–34. https://doi.org/10.1016/j.fuproc.2015.11.006 (2016).
doi: 10.1016/j.fuproc.2015.11.006
Dong, Z., Zheng, Y. & Zhao, J. Synthesis, physico-chemical properties and enhanced oil recovery flooding evaluation of novel zwitterionic gemini surfactants. J. Surfactants. Deterg. 17, 1213–2122. https://doi.org/10.1007/s11743-014-1616-z (2014).
doi: 10.1007/s11743-014-1616-z
Kang, Z., Zhang, C., Du, G. & Chen, J. Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Appl. Biochem. Biotechnol. 172, 2012–2021. https://doi.org/10.1007/s12010-013-0659-3 (2014).
doi: 10.1007/s12010-013-0659-3 pubmed: 24318591
Nobmann, P., Smith, A., Dunne, J., Henehan, G. & Bourke, P. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms. Int. J. Food Microbiol. 128, 440–445. https://doi.org/10.1016/j.ijfoodmicro.2008.10.008 (2009).
doi: 10.1016/j.ijfoodmicro.2008.10.008 pubmed: 19012983
Ferrer, M. et al. Synthesis of sugar esters in solvent mixtures by lipases from thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme Microb Technol. 36(391), 398. https://doi.org/10.1016/j.enzmictec.2004.02.009 (2005).
doi: 10.1016/j.enzmictec.2004.02.009
do Neta, N. A. S., et al. Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions. Food Hydrol. 27, 324–331. https://doi.org/10.1016/j.foodhyd.2011.10.009 (2012).
doi: 10.1016/j.foodhyd.2011.10.009
Enayati, M., Gong, Y., Goddard, J. M. & Abbaspourrad, A. Synthesis and characterization of lactose fatty acid ester biosurfactants using free and immobilized lipases in organic solvents. Food Chem. 266, 508–513. https://doi.org/10.1016/j.foodchem.2018.06.051 (2018).
doi: 10.1016/j.foodchem.2018.06.051 pubmed: 30381219
Sales-Campos, H., Reis de Souza, P., Crema Peghini, B., Santana da Silva, J. & Ribeiro Cardoso, C. An overview of the modulatory effects of oleic acid in health and disease. Mini-Rev. Med. Chem. 13, 201–210. https://doi.org/10.2174/138955713804805193 (2013).
Ault, W. C., Micich, T. J., Stirton, A. J., Bistline, R. J. Branched chain fatty acids and sulfonated derivatives. J. Am. Oil Chem. Soc. 42, 233–236 (1965).
Lasram, M. M., Dhouib, I. B., Annabi, A., El Fazaa, S. & Gharbi, N. A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin. Biochem. 48, 1200–1208. https://doi.org/10.1016/j.clinbiochem.2015.04.017 (2014).
doi: 10.1016/j.clinbiochem.2015.04.017
Pereira, S., Shah, A., George Fantus, I., Joseph, J. W. & Giacca, A. Effect of N-acetyl-L-cysteine on insulin resistance caused by prolonged free fatty acid elevation. J. Endocrinol. 225, 1–7. https://doi.org/10.1530/JOE-14-0676 (2015).
Meng, Y., Han, S., Gu, Z. & Wu, J. Cysteine-based biomaterials as drug nanocarriers. Adv. Ther. 3, 1–13. https://doi.org/10.1002/adtp.201900142 (2020).
doi: 10.1002/adtp.201900142
Abd-Elhamid, A. I., El-Gendi, H., Abdallah, A. E. & El-Fakharany, E. M. Novel nanocombinations of l-tryptophan and L-cysteine: Preparation, characterization, and their applications for antimicrobial and anticancer activities. Pharmaceutics 13, 1–18. https://doi.org/10.3390/pharmaceutics13101595 (2021).
doi: 10.3390/pharmaceutics13101595
Vaisman, B., Shikanov, A. & Domb, A. J. The isolation of ricinoleic acid from castor oil by salt-solubility-based fractionation for the biopharmaceutical applications. JAOCS J. Am. Oil Chem. Soc. 85, 169–184. https://doi.org/10.1007/s11746-007-1172-z (2008).
doi: 10.1007/s11746-007-1172-z
Yang, F., Li, G., Qi, J., Zhang, S. M. & Liu, R. Synthesis and surface activity properties of alkylphenol polyoxyethylene nonionic trimeric surfactants. Appl. Surf. Sci. 257, 312–318 (2010).
doi: 10.1016/j.apsusc.2010.06.094
An, D., Zhao, X. & Ye, Z. Enzymatic synthesis and characterization of galactosyl monoesters. Carbohydr. Res. 414, 32–38 (2015).
doi: 10.1016/j.carres.2015.05.011 pubmed: 26172090
An, D. et al. Synthesis, surface properties of glucosyl esters from renewable materials for use as biosurfactants. Colloids Surf. A Physicochem. Eng. Asp. 577, 257–264. https://doi.org/10.1016/j.colsurfa.2019.05.079 (2019).
doi: 10.1016/j.colsurfa.2019.05.079
An, D., Liang, F. & Feng, D. Synthesis and investigation of surface active properties of green glucosyl esters. J. Dispers. Sci. Technol. 40, 332–337. https://doi.org/10.1080/01932691.2018.146826 (2019).
doi: 10.1080/01932691.2018.146826
An, D. & Feng, D. Enzymic synthesis, physicochemical, and cell activity of glucosyl ester derivatives based on N-fatty acyl amino acid. Chem. Pap. 73, 653–662 (2019).
doi: 10.1007/s11696-018-0614-4
Soultani, S., Ognier, S., Engasser, J. M. & Ghoul, M. Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Colloids Surf. A Physicochem. Eng. Asp. 227, 35–44. https://doi.org/10.1016/S0927-7757(03)00360-1 (2003).
doi: 10.1016/S0927-7757(03)00360-1
Camp, M. & Durham, K. The foaming of sodium laurate solutions-factors influencing foam stability. J. Phys. Chem. 59, 993–997. https://doi.org/10.1021/j150532a001 (1955).
doi: 10.1021/j150532a001
Badr, E. E. Novel sulfanilamide as potent surfactants and antibacterial agents. J. Dispers. Sci. Technol. 29, 1143–1149. https://doi.org/10.1080/01932690701817966 (2008).
doi: 10.1080/01932690701817966
Savage, S. M., Martin, J. P. & Letey, J. Contribution of humic acid and a polysaccharide to water repellency in sand and soil. J. Am. Soil Sci. Soc. 33, 149–151. https://doi.org/10.2136/sssaj1969.03615995003300010039x (1969).
doi: 10.2136/sssaj1969.03615995003300010039x
El-Sharief, M. A. M. S. et al. New 1,3-diaryl-5-thioxo-imidazolidin-2,4-dione derivatives: Synthesis, reactions and evaluation of antibacterial and antifungal activities. Zeitschrift fur Naturforsch. Sect. B J. Chem. Sci. 71, 875–881. https://doi.org/10.1515/znb-2016-0054 (2016).
CLSI M07 Clinical and Laboratory Standards Institute Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-11th edition (2018).
Rodríguez-Tudela, J. L. et al. Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Clin. Microbiol. Infect. 9, 1–8 (2003).
doi: 10.1046/j.1469-0691.2003.00789.x
Raslan, R. R., Hessein, S. A., Fouad, S. A. & Shmiess, N. A. M. Synthesis and antitumor evaluation of some new thiazolopyridine, nicotinonitrile, pyrazolopyridine, and polyhydroquinoline derivatives using ceric ammonium nitrate as a green catalyst. J. Heterocycl. Chem. 59, 832–846. https://doi.org/10.1002/jhet.4423 (2022).
doi: 10.1002/jhet.4423
Parker, K. J., Khan, R. A. K. S. M. Process of making sucrose esters. U. S. Patent No.3,996,206. 1–6 (1976).
Queneau, Y., Chambert, S., Besset, C. & Cheaib, R. Recent progress in the synthesis of carbohydrate-based amphiphilic materials: The examples of sucrose and isomaltulose. Carbohydr. Res. 343, 1999–2009. https://doi.org/10.1016/j.carres.2008.02.008 (2008).
doi: 10.1016/j.carres.2008.02.008 pubmed: 18374317
Megahed, M. G. Preparation of sucrose fatty acid esters as food emulsifiers and evaluation of their surface active and emulsification properties. Grasas y Aceites 50, 280–282. https://doi.org/10.3989/gya.1999.v50.i4.668 (1999).
doi: 10.3989/gya.1999.v50.i4.668
Kasori, Y., Yamazaki, T. Solventless process for preparing sucrose fatty acid esters. Great Britain Patent 2,256,869 (1992).
Komya, S. Method for preparation and isolation as sucrose fatty acid esters as nonionic surfactants. Japan. Patent 07,118,285 (1995).
Degn, P. & Zimmermann, W. Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica. Biotechnol. Bioeng. 74, 483–491. https://doi.org/10.1002/bit.1139 (2001).
doi: 10.1002/bit.1139 pubmed: 11494215
H-Kittikun, A., Prasertsan, P., Zimmermann, W., Seesuriyachan, P. & Chaiyaso, T. Sugar ester synthesis by thermostable lipase from Streptomyces thermocarboxydus ME168. Appl. Biochem Biotechnol. 166, 1969–1982. https://doi.org/10.1007/s12010-012-9624-9 (2012).
Chaiyaso, T., H-kittikim, A. & Zimmermann, W. Biocatalytic acylation of carbohydrates with fatty acids from palm fatty acid distillates. J. Ind. Microbiol. Biotechnol. 33, 338–342. https://doi.org/10.1007/s10295-005-0073-0 (2006).
Moh, M. H., Tang, T. S. & Tan, G. H. Improved separation of sucrose ester isomers using gradient high performance liquid chromatography with evaporative light scattering detection. Food Chem. 69, 105–110. https://doi.org/10.1016/S0308-8146(99)00226-5 (2000).
doi: 10.1016/S0308-8146(99)00226-5
El-Baz, H. A. et al. Enzymatic synthesis of glucose fatty acid esters using scos as acyl group-donors and their biological activities. Appl. Sci. 11, 1–16. https://doi.org/10.3390/app11062700 (2021).
doi: 10.3390/app11062700
Dickinson, E. Food emulsions and foams: Stabilization by particles. Curr. Opin. Colloids Interfaces Sci. 15, 40–49. https://doi.org/10.1016/j.cocis.2009.11.001 (2010).
doi: 10.1016/j.cocis.2009.11.001
Bezelgues, J. B., Serieye, S., Crosset-Perrotin, L. & Leser, M. E. Interfacial and foaming properties of some food grade low molecular weight surfactants. Colloids Surf. A Physicochem. Eng. Asp. 331, 56–62. https://doi.org/10.1016/j.colsurfa.2008.07.022 (2008).
doi: 10.1016/j.colsurfa.2008.07.022
Guo, J. et al. Review: Progress in synthesis, properties and application of amino acid surfactants. Chem. Phys. Lett. 794, 139499. https://doi.org/10.1016/j.cplett.2022.139499 (2022).
doi: 10.1016/j.cplett.2022.139499
Zhao, H. et al. Study on foaming properties of N-acyl amino acid surfactants: Sodium N-acyl glycinate and sodium N-acyl phenylalaninate. Colloids Surf. A Physicochem. Eng. Asp. 567, 240–248. https://doi.org/10.1016/j.colsurfa.2019.01.073 (2019).
doi: 10.1016/j.colsurfa.2019.01.073
Van Kempen, S. E. H. J., Schols, H. A., van der Linden, E. & Sagis, L. M. C. Effect of variations in the fatty acid chain of oligofructose fatty acid esters on their foaming functionality. Food Biophys. 9, 114–124. https://doi.org/10.1007/s11483-013-9324-1 (2014).
doi: 10.1007/s11483-013-9324-1
Zhan, F. et al. Bulk, foam, and interfacial properties of tannic acid/sodium caseinate nanocomplexes. J. Agric. Food Chem. 66, 6832–6839. https://doi.org/10.1021/acs.jafc.8b00503 (2018).
doi: 10.1021/acs.jafc.8b00503 pubmed: 29883106
Atta, D. Y., Negash, B. M., Yekeen, N. & Habte, A. D. A state-of-the-art review on the application of natural surfactants in enhanced oil recovery. J. Mol. Liq. 321, 114888. https://doi.org/10.1016/j.molliq.2020.114888 (2021).
doi: 10.1016/j.molliq.2020.114888
Mondal, M. H., Malik, S., Roy, A., Saha, R. & Saha, B. Modernization of surfactant chemistry in the age of gemini and bio-surfactants: A review. RSC Adv. 5, 92707–92718. https://doi.org/10.1039/c5ra18462B (2015).
doi: 10.1039/c5ra18462B
Bhadoriya, S. S. & Madoriya, N. Biosurfactants: A new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem. Pharmacol. 2, 1–5. https://doi.org/10.4172/2167-0501.1000113 (2013).
doi: 10.4172/2167-0501.1000113
Draves, C. Z. & Clarkson, R. G. A new method for the evaluation of wetting agents. Dyst. Rep. 20, 109–115 (1931).
Micich, T. J. & Linfield, W. M. Oxyethylated sulfonamides as nonionic soil wetting agents. J. Am. Oil Chem. Soc. 61, 591–595. https://doi.org/10.1007/BF02677039 (1984).
doi: 10.1007/BF02677039
Castro, M. J. L., Ojeda, C. & Cirelli, A. F. Advances in surfactants for agrochemicals. Environ. Chem. Lett. 12, 85–95. https://doi.org/10.1007/s10311-013-0432-4 (2014).
doi: 10.1007/s10311-013-0432-4
Van Kempen, S. E. H. J. et al. Novel surface-active oligofructose fatty acid mono-esters by enzymatic esterification. Food Chem. 138, 1884–1891. https://doi.org/10.1016/j.foodchem.2012.09.133 (2013).
doi: 10.1016/j.foodchem.2012.09.133 pubmed: 23411321
Chauhan, S., Sharma, V. & Sharma, K. Maltodextrin-SDS interactions: Volumetric, viscometric and surface tension study. Fluid Phase Equilib. 354, 236–244. https://doi.org/10.1016/j.fluid.2013.06.051 (2013).
doi: 10.1016/j.fluid.2013.06.051
Aizawa, H. Novel pragmatic turbidimetric data analysis method for evaluating the stability of emulsions. Int. J. Food Proper. 17, 1264–1274. https://doi.org/10.1080/10942912.2012.685674 (2014).
doi: 10.1080/10942912.2012.685674
De, S., Malik, S., Ghosh, A., Saha, R. & Saha, B. A review on natural surfactants. RSC Adv. 5, 65757–65767. https://doi.org/10.1039/c5ra11101c (2015).
doi: 10.1039/c5ra11101c
Sharma, R., Deka, B., Mandal, A. & Mahto, V. Study the influence of sodium dodecyl sulfate on emulsification of heavy and waxy crude oils to improve their flow ability in low temperature conditions. Asia-Pac. J. Chem. Eng. 14, 1–16. https://doi.org/10.1002/apj.2279 (2019).
doi: 10.1002/apj.2279
Throckmorton, P. E., Egan, R. R., Aelony, D., Mulberry, G. K. & Otey, F. H. Biodegradable surfactants derived from corn starch. J. Am. Oil Chem. Soc. 51, 486–494. https://doi.org/10.1007/BF02635857 (1974).
doi: 10.1007/BF02635857
Teng, Y. et al. Sucrose fatty acid esters: Synthesis, emulsifying capacities, biological activities and structure-property profiles. Crit. Rev. Food Sci. Nutr. 61, 3297–3317. https://doi.org/10.1080/10408398.2020.1798346 (2021).
doi: 10.1080/10408398.2020.1798346 pubmed: 32746632
Shao, S. Y. et al. Lipase-catalyzed synthesis of sucrose monolaurate and its antibacterial property and mode of action against four pathogenic bacteria. Molecules 23, 1–18. https://doi.org/10.3390/molecules23051118 (2018).
doi: 10.3390/molecules23051118
Morin, C., Rousseau, É. & Fortin, S. Anti-proliferative effects of a new docosapentaenoic acid monoacylglyceride in colorectal carcinoma cells. Prostaglandins Leuko. Essen. F. A. 89, 203–213. https://doi.org/10.1016/j.plefa.2013.07.004 (2013).
doi: 10.1016/j.plefa.2013.07.004
Siena, L. et al. Electrophilic derivatives of omega-3 fatty acids counteract lung cancer cell growth. Cancer Chemo. Pharma. 81, 705–716. https://doi.org/10.1007/s00280-018-3538-3 (2018).
doi: 10.1007/s00280-018-3538-3
Campana, R. et al. Synthesis and evaluation of saccharide-based aliphatic and aromatic esters as antimicrobial and antibiofilm agents. Pharmaceuticals 12, 1–19. https://doi.org/10.3390/ph12040186 (2019).
doi: 10.3390/ph12040186
Petrova, K. T., Barros, M. T., Calhelha, R. C., Soković, M. & Ferreira, I. C. F. R. Antimicrobial and cytotoxic activities of short carbon chain unsaturated sucrose esters. Med. Chem. Res. 27, 980–988. https://doi.org/10.1007/s00044-017-2121-5 (2018).
doi: 10.1007/s00044-017-2121-5
Nishikawa, Y., Yoshimoto, K., Nishijima, M., Fukuoka, F. & Ikekawa, T. Chemical and biochemical studies on carbohydrate esters. IX. Antitumor effects of selectively fatty acylated products of maltose. Chem. Pharm. Bull. 29, 505–513. https://doi.org/10.1248/cpb.29.505 (1981).
doi: 10.1248/cpb.29.505
Lucarini, S. et al. Unsaturated fatty acids lactose esters: Cytotoxicity, permeability enhancement and antimicrobial activity. Eur. J. Pharm. Biopharm. 107, 88–96. https://doi.org/10.1016/j.ejpb.2016.06.022 (2016).
doi: 10.1016/j.ejpb.2016.06.022 pubmed: 27373754
Perinelli, D. R. et al. Lactose oleate as new biocompatible surfactant for pharmaceutical applications. Eur. J. Pharm. Biopharm. 124, 55–62. https://doi.org/10.1016/j.ejpb.2017.12.008 (2018).
doi: 10.1016/j.ejpb.2017.12.008 pubmed: 29258912
Nishikawa, Y., Yoshimoto, K., Okada, M., Ikekawa, T. & Abiko, N. F. F. Chemical and biochemical studies on carbohydrate esters. V. Anti Ehrlich ascites tumor effect and chromatographic behaviors of fatty acyl monoesters of sucrose and trehalose. Chem. Pharm. Bull. 7, 1717–1724. https://doi.org/10.1248/cpb.25.1717 (1977).
doi: 10.1248/cpb.25.1717
Okabe, S. et al. Disaccharide esters screened for inhibition of tumor necrosis factor-α release are new anti-cancer agents. Jpn. J. Cancer Res. 90, 669–676. https://doi.org/10.1111/j.1349-7006.1999.tb00799.x (1999).
doi: 10.1111/j.1349-7006.1999.tb00799.x pubmed: 10429660 pmcid: 5926112

Auteurs

Shimaa A Abdelaziz (SA)

Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt. Shimaaabdelaziz.59@azhar.edu.eg.

Entesar M Ahmed (EM)

Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.

M Sadek (M)

Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt. Mohamed.taher0940@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH