Neutrophil-specific expression of JAK2-V617F or CALRmut induces distinct inflammatory profiles in myeloproliferative neoplasia.
CALR mutations
Inflammation
JAK2-V617F
MPN
Neutrophils
Journal
Journal of hematology & oncology
ISSN: 1756-8722
Titre abrégé: J Hematol Oncol
Pays: England
ID NLM: 101468937
Informations de publication
Date de publication:
09 Jun 2024
09 Jun 2024
Historique:
received:
22
03
2024
accepted:
29
05
2024
medline:
10
6
2024
pubmed:
10
6
2024
entrez:
9
6
2024
Statut:
epublish
Résumé
Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1β. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.
Sections du résumé
BACKGROUND
BACKGROUND
Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils.
METHODS
METHODS
Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1β. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied.
RESULTS
RESULTS
Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals.
CONCLUSIONS
CONCLUSIONS
Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.
Identifiants
pubmed: 38853260
doi: 10.1186/s13045-024-01562-5
pii: 10.1186/s13045-024-01562-5
doi:
Substances chimiques
Janus Kinase 2
EC 2.7.10.2
Calreticulin
0
Jak2 protein, mouse
EC 2.7.10.2
JAK2 protein, human
EC 2.7.10.2
CALR protein, human
0
Cytokines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
43Informations de copyright
© 2024. The Author(s).
Références
Kralovics R, et al. A gain-of-function mutation of JAK2 in Myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.
pubmed: 15858187
doi: 10.1056/NEJMoa051113
Levine RL, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.
pubmed: 15837627
doi: 10.1016/j.ccr.2005.03.023
James C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.
pubmed: 15793561
doi: 10.1038/nature03546
Nangalia J, et al. Somatic CALR mutations in Myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.
pubmed: 24325359
pmcid: 3966280
doi: 10.1056/NEJMoa1312542
Klampfl T, et al. Somatic mutations of Calreticulin in Myeloproliferative Neoplasms. N Engl J Med. 2013;369(25):2379–90.
pubmed: 24325356
doi: 10.1056/NEJMoa1311347
How J, Hobbs GS, Mullally A. Mutant calreticulin in myeloproliferative neoplasms. Blood. 2019;134(25):2242–8.
pubmed: 31562135
pmcid: 6923668
doi: 10.1182/blood.2019000622
Araki M, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127(10):1307–16.
pubmed: 26817954
doi: 10.1182/blood-2015-09-671172
Chachoua I, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325–35.
pubmed: 26668133
doi: 10.1182/blood-2015-11-681932
Elf S, et al. Mutant calreticulin requires both its mutant C-terminus and the Thrombopoietin receptor for Oncogenic Transformation. Cancer Discov. 2016;6(4):368–81.
pubmed: 26951227
pmcid: 4851866
doi: 10.1158/2159-8290.CD-15-1434
Salati S, et al. Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants. Sci Rep. 2019;9(1):10558.
pubmed: 31332222
pmcid: 6646313
doi: 10.1038/s41598-019-46843-z
Ibarra J, et al. Type I but not type II calreticulin mutations activate the IRE1α/XBP1 pathway of the unfolded protein response to Drive Myeloproliferative Neoplasms. Blood Cancer Discov. 2022;3(4):298–315.
pubmed: 35405004
pmcid: 9338758
doi: 10.1158/2643-3230.BCD-21-0144
Lau WWY, et al. The JAK-STAT signaling pathway is differentially activated in CALR-positive compared with JAK2V617F-positive ET patients. Blood. 2015;125(10):1679–81.
pubmed: 25745188
pmcid: 4471770
doi: 10.1182/blood-2014-12-618074
Di Buduo CA, et al. Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood. 2020;135(2):133–44.
pubmed: 31697806
pmcid: 6952826
doi: 10.1182/blood.2019001103
Pronier E, et al. Targeting the CALR interactome in myeloproliferative neoplasms. JCI Insight. 2018;3(22):e122703.
pubmed: 30429377
pmcid: 6302938
doi: 10.1172/jci.insight.122703
Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667–79.
pubmed: 28028029
doi: 10.1182/blood-2016-10-695940
Grinfeld J, et al. Classification and personalized prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379(15):1416–30.
pubmed: 30304655
pmcid: 7030948
doi: 10.1056/NEJMoa1716614
Rai S, et al. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm. Nat Commun. 2022;13(1):5346.
pubmed: 36100613
pmcid: 9470591
doi: 10.1038/s41467-022-32927-4
Rahman MF-U, et al. Interleukin-1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK2V617F-induced myeloproliferative neoplasm. Nat Commun. 2022;13(1):5347.
pubmed: 36100596
pmcid: 9470702
doi: 10.1038/s41467-022-32928-3
Masselli E, et al. Cytokine profiling in Myeloproliferative neoplasms: overview on phenotype correlation, Outcome Prediction, and role of genetic variants. Cells. 2020;9(9):2136.
pubmed: 32967342
pmcid: 7564952
doi: 10.3390/cells9092136
Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood. 2012;119(14):3219–25.
pubmed: 22318201
doi: 10.1182/blood-2011-11-394775
Rodriguez-Meira A, et al. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat Genet. 2023;55(9):1531–41.
pubmed: 37666991
pmcid: 10484789
doi: 10.1038/s41588-023-01480-1
Barbui T, et al. Polycythemia Vera: the natural history of 1213 patients followed for 20 years. Ann Intern Med. 1995;123(9):656.
doi: 10.7326/0003-4819-123-9-199511010-00003
Tefferi A, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1874–81.
pubmed: 23739289
pmcid: 3768558
doi: 10.1038/leu.2013.163
Kroll MH, Michaelis LC, Verstovsek S. Mechanisms of thrombogenesis in polycythemia vera. Blood Rev. 2015;29(4):215–21.
pubmed: 25577686
doi: 10.1016/j.blre.2014.12.002
Pei YQ, et al. Prognostic value of CALR vs. JAK2V617F mutations on splenomegaly, leukemic transformation, thrombosis, and overall survival in patients with primary fibrosis: a meta-analysis. Ann Hematol. 2016;95(9):1391–8.
pubmed: 27376361
doi: 10.1007/s00277-016-2712-0
Palova M, et al. Effect of CALR and JAK2 mutations on the clinical and hematological phenotypes of the disease in patients with myelofibrosis - long-term experience from a single center. Neoplasma. 2018;65(2):296–303.
pubmed: 29534592
doi: 10.4149/neo_2018_170426N313
Rumi E, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544–51.
pubmed: 24366362
pmcid: 3945864
doi: 10.1182/blood-2013-11-539098
De Grandis M, et al. JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood. 2013;121(4):658–65.
pubmed: 23160466
doi: 10.1182/blood-2012-07-440487
Hobbs CM, et al. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood. 2013;122(23):3787–97.
pubmed: 24085768
pmcid: 3843237
doi: 10.1182/blood-2013-06-501452
Etheridge SL, et al. JAK2V 617 F-positive endothelial cells contribute to clotting abnormalities in myeloproliferative neoplasms. Proc Natl Acad Sci. 2014;111(6):2295–300.
pubmed: 24469804
pmcid: 3926040
doi: 10.1073/pnas.1312148111
Falanga A, et al. Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol. 2005;33(5):523–30.
pubmed: 15850829
doi: 10.1016/j.exphem.2005.01.015
Alvarez-Larrán A, et al. Increased platelet, leukocyte, and coagulation activation in primary myelofibrosis. Ann Hematol. 2008;87(4):269–76.
pubmed: 17899078
doi: 10.1007/s00277-007-0386-3
Gupta N, et al. JAK2-V617F activates β1-integrin-mediated adhesion of granulocytes to vascular cell adhesion molecule 1. Leukemia. 2017;31(5):1223–6.
pubmed: 28096537
pmcid: 5420787
doi: 10.1038/leu.2017.26
Marković D, et al. Neutrophil Death in Myeloproliferative neoplasms: shedding more light on neutrophils as a pathogenic link to chronic inflammation. Int J Mol Sci. 2022;23(3):1490.
pubmed: 35163413
pmcid: 8836089
doi: 10.3390/ijms23031490
Barbui T, et al. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood. 2009;114(4):759–63.
pubmed: 19372254
pmcid: 2716019
doi: 10.1182/blood-2009-02-206797
Ferrer-Marín F, et al. Emerging role of neutrophils in the thrombosis of chronic myeloproliferative neoplasms. Int J Mol Sci. 2021;22(3):1143.
pubmed: 33498945
pmcid: 7866001
doi: 10.3390/ijms22031143
Bhuria V, et al. Thromboinflammation in Myeloproliferative Neoplasms (MPN)—A puzzle still to be solved. Int J Mol Sci. 2022;23(6):3206.
pubmed: 35328626
pmcid: 8954909
doi: 10.3390/ijms23063206
Hasselbalch HC, Elvers M, Schafer AI. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood. 2021;137(16):2152–60.
pubmed: 33649757
doi: 10.1182/blood.2020008109
Edelmann B, et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest. 2018;128(10):4359–71.
pubmed: 30024857
pmcid: 6159978
doi: 10.1172/JCI90312
Mullally A, et al. Physiological Jak2V617F expression causes a Lethal Myeloproliferative Neoplasm with Differential effects on hematopoietic stem and progenitor cells. Cancer Cell. 2010;17(6):584–96.
pubmed: 20541703
pmcid: 2909585
doi: 10.1016/j.ccr.2010.05.015
Hasenberg A, et al. Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat Methods. 2015;12(5):445–52.
pubmed: 25775045
doi: 10.1038/nmeth.3322
Li J, et al. Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage. Blood. 2018;131(6):649–61.
pubmed: 29282219
doi: 10.1182/blood-2017-09-806356
Müller P, et al. Anti-inflammatory treatment in MPN: targeting TNFR1 and TNFR2 in JAK2-V617F–induced disease. Blood Adv. 2021;5(23):5349–59.
pubmed: 34592754
pmcid: 9153051
doi: 10.1182/bloodadvances.2021004438
Mohr J, et al. The cell fate determinant Scribble is required for maintenance of hematopoietic stem cell function. Leukemia. 2018;32(5):1211–21.
pubmed: 29467485
doi: 10.1038/s41375-018-0025-0
Faas M, et al. IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity. 2021;54(11):2531–e25465.
pubmed: 34644537
doi: 10.1016/j.immuni.2021.09.010
Friščić J, et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity. 2021;54(5):1002–e102110.
pubmed: 33761330
doi: 10.1016/j.immuni.2021.03.003
Hasenberg M, et al. Rapid Immunomagnetic Negative Enrichment of Neutrophil Granulocytes from Murine Bone Marrow for Functional studies in Vitro and in vivo. PLoS ONE. 2011;6(2):e17314.
pubmed: 21383835
pmcid: 3044161
doi: 10.1371/journal.pone.0017314
Okano M, et al. Vivo imaging of venous Thrombus and pulmonary embolism using Novel Murine venous thromboembolism model. JACC Basic Transl Sci. 2020;5(4):344–56.
pubmed: 32368694
pmcid: 7188875
doi: 10.1016/j.jacbts.2020.01.010
Formaglio P, et al. Nitric oxide controls proliferation of Leishmania major by inhibiting the recruitment of permissive host cells. Immunity. 2021;54(12):2724–e273910.
pubmed: 34687607
pmcid: 8691385
doi: 10.1016/j.immuni.2021.09.021
Dudeck J, et al. Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity. 2021;54(3):468–e4835.
pubmed: 33484643
doi: 10.1016/j.immuni.2020.12.017
Lévesque J-P, et al. Role of macrophages and phagocytes in orchestrating normal and pathologic hematopoietic niches. Exp Hematol. 2021;100:12–e311.
pubmed: 34298116
doi: 10.1016/j.exphem.2021.07.001
Cossío I, Lucas D, Hidalgo A. Neutrophils as regulators of the hematopoietic niche. Blood. 2019;133(20):2140–8.
pubmed: 30898859
pmcid: 6524561
doi: 10.1182/blood-2018-10-844571
Guo BB, et al. Megakaryocytes in Myeloproliferative Neoplasms have unique somatic mutations. Am J Pathol. 2017;187(7):1512–22.
pubmed: 28502479
pmcid: 5500825
doi: 10.1016/j.ajpath.2017.03.009
Fisher DAC, et al. Inflammatory pathophysiology as a contributor to Myeloproliferative Neoplasms. Front Immunol. 2021;12:683401.
pubmed: 34140953
pmcid: 8204249
doi: 10.3389/fimmu.2021.683401
Hoermann G, Greiner G, Valent P. Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms. Mediators Inflamm. 2015;2015:1–17.
doi: 10.1155/2015/869242
Turner MD, et al. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta - Mol Cell Res. 2014;1843(11):2563–82.
doi: 10.1016/j.bbamcr.2014.05.014
Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol. 2014;5(OCT):1–7.
Brizzi MF, et al. Regulation of polymorphonuclear cell activation by thrombopoietin. J Clin Invest. 1997;99(7). https://doi.org/10.1172/JCI119320 .
Terada Y, et al. Thrombopoietin stimulates ex vivo expansion of mature neutrophils in the early stages of differentiation. Ann Hematol. 2003;82(11):671–6.
pubmed: 14530871
doi: 10.1007/s00277-003-0729-7
Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Mootha VK, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.
pubmed: 12808457
doi: 10.1038/ng1180
Liberzon A, et al. The Molecular signatures Database Hallmark Gene Set Collection. Cell Syst. 2015;1(6):417–25.
pubmed: 26771021
pmcid: 4707969
doi: 10.1016/j.cels.2015.12.004
Kleppe M, et al. JAK–STAT pathway activation in malignant and nonmalignant cells contributes to MPN Pathogenesis and Therapeutic Response. Cancer Discov. 2015;5(3):316–31.
pubmed: 25572172
pmcid: 4355105
doi: 10.1158/2159-8290.CD-14-0736
Ley K, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.
pubmed: 17717539
doi: 10.1038/nri2156
Guenther C. β2-Integrins – Regulatory and Executive bridges in the Signaling Network Controlling leukocyte trafficking and Migration. Front Immunol. 2022;13(JAN). https://doi.org/10.3389/fimmu.2022.809590 .
De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell. 2017;28(14):1833–46.
pubmed: 28684609
pmcid: 5541834
doi: 10.1091/mbc.e17-03-0134
Nourshargh S, Alon R. Leukocyte Migration into Inflamed tissues. Immunity. 2014;41(5):694–707.
pubmed: 25517612
doi: 10.1016/j.immuni.2014.10.008
Zengel P, et al. µ-Slide Chemotaxis: a new chamber for long-term chemotaxis studies. BMC Cell Biol. 2011;12(1):21.
pubmed: 21592329
pmcid: 3118187
doi: 10.1186/1471-2121-12-21
Neumann J, et al. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol. 2015;129(2):259–77.
pubmed: 25391494
doi: 10.1007/s00401-014-1355-2
Huttenlocher A, Ginsberg MH, Horwitz AF. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J Cell Biol. 1996;134(6):1551–62.
pubmed: 8830782
doi: 10.1083/jcb.134.6.1551
Buensuceso CS, et al. The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration. J Cell Sci. 2001;114(9):1691–8.
pubmed: 11309199
doi: 10.1242/jcs.114.9.1691
Silva M, Videira P, Sackstein R. E-Selectin ligands in the human mononuclear Phagocyte System: implications for infection, inflammation, and Immunotherapy. Front Immunol. 2018;8(JAN). https://doi.org/10.3389/fimmu.2017.01878 .
Zhan H, et al. JAK2V617F-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation. Leukemia. 2016;30(12):2332–41.
pubmed: 27133820
pmcid: 5158308
doi: 10.1038/leu.2016.114
Woods B, et al. Activation of JAK/STAT signaling in Megakaryocytes sustains myeloproliferation in vivo. Clin Cancer Res. 2019;25(19):5901–12.
pubmed: 31217200
pmcid: 6774846
doi: 10.1158/1078-0432.CCR-18-4089
Müller-Newen G, et al. Development of platelets during steady state and inflammation. J Leukoc Biol. 2017;101(5):1109–17.
pubmed: 28235774
doi: 10.1189/jlb.1RU0916-391RR
Nishimura S, et al. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol. 2015;209(3):453–66.
pubmed: 25963822
pmcid: 4427781
doi: 10.1083/jcb.201410052
Tilburg J, Becker IC, Italiano JE. Don’t you forget about me(gakaryocytes). Blood. 2022;139(22):3245–54.
pubmed: 34582554
pmcid: 9164737
doi: 10.1182/blood.2020009302
Verstovsek S, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363(12):1117–27.
pubmed: 20843246
pmcid: 5187954
doi: 10.1056/NEJMoa1002028
Tefferi A, et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a Comprehensive Cytokine Profiling Study. J Clin Oncol. 2011;29(10):1356–63.
pubmed: 21300928
doi: 10.1200/JCO.2010.32.9490
Vaidya R, et al. Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. Am J Hematol. 2012;87(11):1003–5.
pubmed: 22965887
doi: 10.1002/ajh.23295
Ozono Y, et al. Neoplastic fibrocytes play an essential role in bone marrow fibrosis in Jak2V617F-induced primary myelofibrosis mice. Leukemia. 2021;35(2):454–67.
pubmed: 32472085
doi: 10.1038/s41375-020-0880-3
Erba BG, et al. Endothelial-to-mesenchymal transition in bone marrow and spleen of primary myelofibrosis. Am J Pathol. 2017;187(8):1879–92.
pubmed: 28728747
doi: 10.1016/j.ajpath.2017.04.006
Hermouet S. Mutations, inflammation and phenotype of myeloproliferative neoplasms. Front Oncol. 2023;13(May):1196817.
pubmed: 37284191
pmcid: 10239955
doi: 10.3389/fonc.2023.1196817
Rai S, et al. IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK2-mutant hematopoietic stem cells. Blood Adv. 2024;8(5):1234–49.
pubmed: 38207211
pmcid: 10912850
doi: 10.1182/bloodadvances.2023011338
Allain-Maillet S, et al. Anti-glucosylsphingosine Autoimmunity, JAK2V617F-Dependent Interleukin-1β and JAK2V617F-Independent cytokines in Myeloproliferative Neoplasms. Cancers (Basel). 2020;12(9):2446.
pubmed: 32872203
doi: 10.3390/cancers12092446
Slezak S, et al. Gene and microRNA analysis of neutrophils from patients with polycythemia vera and essential thrombocytosis: down-regulation of micro RNA-1 and – 133a. J Transl Med. 2009;7(1):39.
pubmed: 19497108
pmcid: 2701925
doi: 10.1186/1479-5876-7-39
Kleppe M, et al. Dual targeting of oncogenic activation and Inflammatory Signaling increases therapeutic efficacy in Myeloproliferative Neoplasms. Cancer Cell. 2018;33(1):29–e437.
pubmed: 29249691
doi: 10.1016/j.ccell.2017.11.009
Fisher DAC, et al. Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFκB signaling. Leukemia. 2019;33(8):1978–95.
pubmed: 30718771
pmcid: 6813809
doi: 10.1038/s41375-019-0379-y
Rao TN, et al. JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood. 2019;134(21):1832–46.
pubmed: 31511238
pmcid: 6872961
doi: 10.1182/blood.2019000162
Eaton N, et al. Bleeding diathesis in mice lacking JAK2 in platelets. Blood Adv. 2021;5(15):2969–81.
pubmed: 34342643
pmcid: 8361459
doi: 10.1182/bloodadvances.2020003032
Matsuura S, et al. Platelet dysfunction and thrombosis in JAK2V617F-Mutated primary myelofibrotic mice. Arterioscler Thromb Vasc Biol. 2020;40(10):E262–72.
pubmed: 32814440
pmcid: 7605151
doi: 10.1161/ATVBAHA.120.314760
Lamrani L, et al. Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm. Blood. 2014;124(7):1136–45.
pubmed: 24951423
pmcid: 4133486
doi: 10.1182/blood-2013-10-530832
Kraus RF, Gruber MA. Neutrophils—from bone marrow to First-Line Defense of the Innate Immune System. Front Immunol. 2021;12:767175.
pubmed: 35003081
pmcid: 8732951
doi: 10.3389/fimmu.2021.767175
Wolach O, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):172–87.
doi: 10.1126/scitranslmed.aan8292
Guy A, et al. Platelets and neutrophils cooperate to induce increased neutrophil extracellular trap formation in JAK2V617F myeloproliferative neoplasms. J Thromb Haemost. 2024;22(1):172–87.
pubmed: 37678548
doi: 10.1016/j.jtha.2023.08.028
Hu K, et al. Differential transmission of actin motion within focal adhesions. Sci (80-). 2007;315(5808):111–5.
doi: 10.1126/science.1135085
Swaminathan V, Waterman CM. The molecular clutch model for mechanotransduction evolves. Nat Cell Biol. 2016;18(5):459–61.
pubmed: 27117328
pmcid: 6792288
doi: 10.1038/ncb3350
Sixt M, et al. Cell adhesion and Migration properties of β2-Integrin negative polymorphonuclear granulocytes on defined Extracellular Matrix molecules. J Biol Chem. 2001;276(22):18878–87.
pubmed: 11278780
doi: 10.1074/jbc.M010898200
Lindbom L, Werr J. Integrin-dependent neutrophil migration in extravascular tissue. Semin Immunol. 2002;14(2):115–21.
pubmed: 11978083
doi: 10.1006/smim.2001.0348
Burns AR, Smith CW, Walker DC. Unique structural features that influence neutrophil emigration into the lung. Physiol Rev. 2003;83(2):309–36.
pubmed: 12663861
doi: 10.1152/physrev.00023.2002
von Brühl ML, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.
doi: 10.1084/jem.20112322
Darbousset R, et al. Tissue factor–positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012;120(10):2133–43.
pubmed: 22837532
doi: 10.1182/blood-2012-06-437772
Ruf W, Ruggeri ZM. Neutrophils release brakes of coagulation. Nat Med. 2010;16(8):851–2.
pubmed: 20689544
doi: 10.1038/nm0810-851
Kanamori A, et al. Distinct sulfation requirements of selectins disclosed using cells that support rolling mediated by all three selectins under shear flow. L-selectin prefers carbohydrate 6-sulfation to tyrosine sulfation, whereas P-selectin does not. J Biol Chem. 2002;277(36):32578–86.
pubmed: 12068018
doi: 10.1074/jbc.M204400200
Culmer DL, et al. E-selectin inhibition with GMI-1271 decreases venous thrombosis without profoundly affecting tail vein bleeding in a mouse model. Thromb Haemost. 2017;117(6):1171–781.
pubmed: 28300869
doi: 10.1160/TH16-04-0323
Myers D, et al. A new way to treat proximal deep venous thrombosis using E-selectin inhibition. J Vasc Surg Venous Lymphat Disord. 2020;8(2):268–78.
pubmed: 32067728
pmcid: 9006622
doi: 10.1016/j.jvsv.2019.08.016
Devata S, et al. Use of GMI-1271, an E-selectin antagonist, in healthy subjects and in 2 patients with calf vein thrombosis. Res Pract Thromb Haemost. 2020;4(2):193–204.
pubmed: 32110749
pmcid: 7040550
doi: 10.1002/rth2.12279
Schürch PM, et al. Calreticulin mutations affect its chaperone function and perturb the glycoproteome. Cell Rep. 2022;41(8):111689.
pubmed: 36417879
doi: 10.1016/j.celrep.2022.111689
Bhuria V, et al. Activating mutations in JAK2 and CALR differentially affect intracellular calcium flux in store operated calcium entry. Cell Commun Signal. 2024;22(1):186.
pubmed: 38509561
pmcid: 10956330
doi: 10.1186/s12964-024-01530-z