Neutrophil-specific expression of JAK2-V617F or CALRmut induces distinct inflammatory profiles in myeloproliferative neoplasia.


Journal

Journal of hematology & oncology
ISSN: 1756-8722
Titre abrégé: J Hematol Oncol
Pays: England
ID NLM: 101468937

Informations de publication

Date de publication:
09 Jun 2024
Historique:
received: 22 03 2024
accepted: 29 05 2024
medline: 10 6 2024
pubmed: 10 6 2024
entrez: 9 6 2024
Statut: epublish

Résumé

Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1β. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.

Sections du résumé

BACKGROUND BACKGROUND
Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils.
METHODS METHODS
Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1β. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied.
RESULTS RESULTS
Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals.
CONCLUSIONS CONCLUSIONS
Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.

Identifiants

pubmed: 38853260
doi: 10.1186/s13045-024-01562-5
pii: 10.1186/s13045-024-01562-5
doi:

Substances chimiques

Janus Kinase 2 EC 2.7.10.2
Calreticulin 0
Jak2 protein, mouse EC 2.7.10.2
JAK2 protein, human EC 2.7.10.2
CALR protein, human 0
Cytokines 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

43

Informations de copyright

© 2024. The Author(s).

Références

Kralovics R, et al. A gain-of-function mutation of JAK2 in Myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.
pubmed: 15858187 doi: 10.1056/NEJMoa051113
Levine RL, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.
pubmed: 15837627 doi: 10.1016/j.ccr.2005.03.023
James C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.
pubmed: 15793561 doi: 10.1038/nature03546
Nangalia J, et al. Somatic CALR mutations in Myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.
pubmed: 24325359 pmcid: 3966280 doi: 10.1056/NEJMoa1312542
Klampfl T, et al. Somatic mutations of Calreticulin in Myeloproliferative Neoplasms. N Engl J Med. 2013;369(25):2379–90.
pubmed: 24325356 doi: 10.1056/NEJMoa1311347
How J, Hobbs GS, Mullally A. Mutant calreticulin in myeloproliferative neoplasms. Blood. 2019;134(25):2242–8.
pubmed: 31562135 pmcid: 6923668 doi: 10.1182/blood.2019000622
Araki M, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127(10):1307–16.
pubmed: 26817954 doi: 10.1182/blood-2015-09-671172
Chachoua I, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325–35.
pubmed: 26668133 doi: 10.1182/blood-2015-11-681932
Elf S, et al. Mutant calreticulin requires both its mutant C-terminus and the Thrombopoietin receptor for Oncogenic Transformation. Cancer Discov. 2016;6(4):368–81.
pubmed: 26951227 pmcid: 4851866 doi: 10.1158/2159-8290.CD-15-1434
Salati S, et al. Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants. Sci Rep. 2019;9(1):10558.
pubmed: 31332222 pmcid: 6646313 doi: 10.1038/s41598-019-46843-z
Ibarra J, et al. Type I but not type II calreticulin mutations activate the IRE1α/XBP1 pathway of the unfolded protein response to Drive Myeloproliferative Neoplasms. Blood Cancer Discov. 2022;3(4):298–315.
pubmed: 35405004 pmcid: 9338758 doi: 10.1158/2643-3230.BCD-21-0144
Lau WWY, et al. The JAK-STAT signaling pathway is differentially activated in CALR-positive compared with JAK2V617F-positive ET patients. Blood. 2015;125(10):1679–81.
pubmed: 25745188 pmcid: 4471770 doi: 10.1182/blood-2014-12-618074
Di Buduo CA, et al. Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood. 2020;135(2):133–44.
pubmed: 31697806 pmcid: 6952826 doi: 10.1182/blood.2019001103
Pronier E, et al. Targeting the CALR interactome in myeloproliferative neoplasms. JCI Insight. 2018;3(22):e122703.
pubmed: 30429377 pmcid: 6302938 doi: 10.1172/jci.insight.122703
Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667–79.
pubmed: 28028029 doi: 10.1182/blood-2016-10-695940
Grinfeld J, et al. Classification and personalized prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379(15):1416–30.
pubmed: 30304655 pmcid: 7030948 doi: 10.1056/NEJMoa1716614
Rai S, et al. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm. Nat Commun. 2022;13(1):5346.
pubmed: 36100613 pmcid: 9470591 doi: 10.1038/s41467-022-32927-4
Rahman MF-U, et al. Interleukin-1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK2V617F-induced myeloproliferative neoplasm. Nat Commun. 2022;13(1):5347.
pubmed: 36100596 pmcid: 9470702 doi: 10.1038/s41467-022-32928-3
Masselli E, et al. Cytokine profiling in Myeloproliferative neoplasms: overview on phenotype correlation, Outcome Prediction, and role of genetic variants. Cells. 2020;9(9):2136.
pubmed: 32967342 pmcid: 7564952 doi: 10.3390/cells9092136
Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood. 2012;119(14):3219–25.
pubmed: 22318201 doi: 10.1182/blood-2011-11-394775
Rodriguez-Meira A, et al. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat Genet. 2023;55(9):1531–41.
pubmed: 37666991 pmcid: 10484789 doi: 10.1038/s41588-023-01480-1
Barbui T, et al. Polycythemia Vera: the natural history of 1213 patients followed for 20 years. Ann Intern Med. 1995;123(9):656.
doi: 10.7326/0003-4819-123-9-199511010-00003
Tefferi A, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1874–81.
pubmed: 23739289 pmcid: 3768558 doi: 10.1038/leu.2013.163
Kroll MH, Michaelis LC, Verstovsek S. Mechanisms of thrombogenesis in polycythemia vera. Blood Rev. 2015;29(4):215–21.
pubmed: 25577686 doi: 10.1016/j.blre.2014.12.002
Pei YQ, et al. Prognostic value of CALR vs. JAK2V617F mutations on splenomegaly, leukemic transformation, thrombosis, and overall survival in patients with primary fibrosis: a meta-analysis. Ann Hematol. 2016;95(9):1391–8.
pubmed: 27376361 doi: 10.1007/s00277-016-2712-0
Palova M, et al. Effect of CALR and JAK2 mutations on the clinical and hematological phenotypes of the disease in patients with myelofibrosis - long-term experience from a single center. Neoplasma. 2018;65(2):296–303.
pubmed: 29534592 doi: 10.4149/neo_2018_170426N313
Rumi E, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544–51.
pubmed: 24366362 pmcid: 3945864 doi: 10.1182/blood-2013-11-539098
De Grandis M, et al. JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood. 2013;121(4):658–65.
pubmed: 23160466 doi: 10.1182/blood-2012-07-440487
Hobbs CM, et al. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood. 2013;122(23):3787–97.
pubmed: 24085768 pmcid: 3843237 doi: 10.1182/blood-2013-06-501452
Etheridge SL, et al. JAK2V 617 F-positive endothelial cells contribute to clotting abnormalities in myeloproliferative neoplasms. Proc Natl Acad Sci. 2014;111(6):2295–300.
pubmed: 24469804 pmcid: 3926040 doi: 10.1073/pnas.1312148111
Falanga A, et al. Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol. 2005;33(5):523–30.
pubmed: 15850829 doi: 10.1016/j.exphem.2005.01.015
Alvarez-Larrán A, et al. Increased platelet, leukocyte, and coagulation activation in primary myelofibrosis. Ann Hematol. 2008;87(4):269–76.
pubmed: 17899078 doi: 10.1007/s00277-007-0386-3
Gupta N, et al. JAK2-V617F activates β1-integrin-mediated adhesion of granulocytes to vascular cell adhesion molecule 1. Leukemia. 2017;31(5):1223–6.
pubmed: 28096537 pmcid: 5420787 doi: 10.1038/leu.2017.26
Marković D, et al. Neutrophil Death in Myeloproliferative neoplasms: shedding more light on neutrophils as a pathogenic link to chronic inflammation. Int J Mol Sci. 2022;23(3):1490.
pubmed: 35163413 pmcid: 8836089 doi: 10.3390/ijms23031490
Barbui T, et al. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood. 2009;114(4):759–63.
pubmed: 19372254 pmcid: 2716019 doi: 10.1182/blood-2009-02-206797
Ferrer-Marín F, et al. Emerging role of neutrophils in the thrombosis of chronic myeloproliferative neoplasms. Int J Mol Sci. 2021;22(3):1143.
pubmed: 33498945 pmcid: 7866001 doi: 10.3390/ijms22031143
Bhuria V, et al. Thromboinflammation in Myeloproliferative Neoplasms (MPN)—A puzzle still to be solved. Int J Mol Sci. 2022;23(6):3206.
pubmed: 35328626 pmcid: 8954909 doi: 10.3390/ijms23063206
Hasselbalch HC, Elvers M, Schafer AI. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood. 2021;137(16):2152–60.
pubmed: 33649757 doi: 10.1182/blood.2020008109
Edelmann B, et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest. 2018;128(10):4359–71.
pubmed: 30024857 pmcid: 6159978 doi: 10.1172/JCI90312
Mullally A, et al. Physiological Jak2V617F expression causes a Lethal Myeloproliferative Neoplasm with Differential effects on hematopoietic stem and progenitor cells. Cancer Cell. 2010;17(6):584–96.
pubmed: 20541703 pmcid: 2909585 doi: 10.1016/j.ccr.2010.05.015
Hasenberg A, et al. Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat Methods. 2015;12(5):445–52.
pubmed: 25775045 doi: 10.1038/nmeth.3322
Li J, et al. Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage. Blood. 2018;131(6):649–61.
pubmed: 29282219 doi: 10.1182/blood-2017-09-806356
Müller P, et al. Anti-inflammatory treatment in MPN: targeting TNFR1 and TNFR2 in JAK2-V617F–induced disease. Blood Adv. 2021;5(23):5349–59.
pubmed: 34592754 pmcid: 9153051 doi: 10.1182/bloodadvances.2021004438
Mohr J, et al. The cell fate determinant Scribble is required for maintenance of hematopoietic stem cell function. Leukemia. 2018;32(5):1211–21.
pubmed: 29467485 doi: 10.1038/s41375-018-0025-0
Faas M, et al. IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity. 2021;54(11):2531–e25465.
pubmed: 34644537 doi: 10.1016/j.immuni.2021.09.010
Friščić J, et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity. 2021;54(5):1002–e102110.
pubmed: 33761330 doi: 10.1016/j.immuni.2021.03.003
Hasenberg M, et al. Rapid Immunomagnetic Negative Enrichment of Neutrophil Granulocytes from Murine Bone Marrow for Functional studies in Vitro and in vivo. PLoS ONE. 2011;6(2):e17314.
pubmed: 21383835 pmcid: 3044161 doi: 10.1371/journal.pone.0017314
Okano M, et al. Vivo imaging of venous Thrombus and pulmonary embolism using Novel Murine venous thromboembolism model. JACC Basic Transl Sci. 2020;5(4):344–56.
pubmed: 32368694 pmcid: 7188875 doi: 10.1016/j.jacbts.2020.01.010
Formaglio P, et al. Nitric oxide controls proliferation of Leishmania major by inhibiting the recruitment of permissive host cells. Immunity. 2021;54(12):2724–e273910.
pubmed: 34687607 pmcid: 8691385 doi: 10.1016/j.immuni.2021.09.021
Dudeck J, et al. Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity. 2021;54(3):468–e4835.
pubmed: 33484643 doi: 10.1016/j.immuni.2020.12.017
Lévesque J-P, et al. Role of macrophages and phagocytes in orchestrating normal and pathologic hematopoietic niches. Exp Hematol. 2021;100:12–e311.
pubmed: 34298116 doi: 10.1016/j.exphem.2021.07.001
Cossío I, Lucas D, Hidalgo A. Neutrophils as regulators of the hematopoietic niche. Blood. 2019;133(20):2140–8.
pubmed: 30898859 pmcid: 6524561 doi: 10.1182/blood-2018-10-844571
Guo BB, et al. Megakaryocytes in Myeloproliferative Neoplasms have unique somatic mutations. Am J Pathol. 2017;187(7):1512–22.
pubmed: 28502479 pmcid: 5500825 doi: 10.1016/j.ajpath.2017.03.009
Fisher DAC, et al. Inflammatory pathophysiology as a contributor to Myeloproliferative Neoplasms. Front Immunol. 2021;12:683401.
pubmed: 34140953 pmcid: 8204249 doi: 10.3389/fimmu.2021.683401
Hoermann G, Greiner G, Valent P. Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms. Mediators Inflamm. 2015;2015:1–17.
doi: 10.1155/2015/869242
Turner MD, et al. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta - Mol Cell Res. 2014;1843(11):2563–82.
doi: 10.1016/j.bbamcr.2014.05.014
Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol. 2014;5(OCT):1–7.
Brizzi MF, et al. Regulation of polymorphonuclear cell activation by thrombopoietin. J Clin Invest. 1997;99(7). https://doi.org/10.1172/JCI119320 .
Terada Y, et al. Thrombopoietin stimulates ex vivo expansion of mature neutrophils in the early stages of differentiation. Ann Hematol. 2003;82(11):671–6.
pubmed: 14530871 doi: 10.1007/s00277-003-0729-7
Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Mootha VK, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.
pubmed: 12808457 doi: 10.1038/ng1180
Liberzon A, et al. The Molecular signatures Database Hallmark Gene Set Collection. Cell Syst. 2015;1(6):417–25.
pubmed: 26771021 pmcid: 4707969 doi: 10.1016/j.cels.2015.12.004
Kleppe M, et al. JAK–STAT pathway activation in malignant and nonmalignant cells contributes to MPN Pathogenesis and Therapeutic Response. Cancer Discov. 2015;5(3):316–31.
pubmed: 25572172 pmcid: 4355105 doi: 10.1158/2159-8290.CD-14-0736
Ley K, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.
pubmed: 17717539 doi: 10.1038/nri2156
Guenther C. β2-Integrins – Regulatory and Executive bridges in the Signaling Network Controlling leukocyte trafficking and Migration. Front Immunol. 2022;13(JAN). https://doi.org/10.3389/fimmu.2022.809590 .
De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell. 2017;28(14):1833–46.
pubmed: 28684609 pmcid: 5541834 doi: 10.1091/mbc.e17-03-0134
Nourshargh S, Alon R. Leukocyte Migration into Inflamed tissues. Immunity. 2014;41(5):694–707.
pubmed: 25517612 doi: 10.1016/j.immuni.2014.10.008
Zengel P, et al. µ-Slide Chemotaxis: a new chamber for long-term chemotaxis studies. BMC Cell Biol. 2011;12(1):21.
pubmed: 21592329 pmcid: 3118187 doi: 10.1186/1471-2121-12-21
Neumann J, et al. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol. 2015;129(2):259–77.
pubmed: 25391494 doi: 10.1007/s00401-014-1355-2
Huttenlocher A, Ginsberg MH, Horwitz AF. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J Cell Biol. 1996;134(6):1551–62.
pubmed: 8830782 doi: 10.1083/jcb.134.6.1551
Buensuceso CS, et al. The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration. J Cell Sci. 2001;114(9):1691–8.
pubmed: 11309199 doi: 10.1242/jcs.114.9.1691
Silva M, Videira P, Sackstein R. E-Selectin ligands in the human mononuclear Phagocyte System: implications for infection, inflammation, and Immunotherapy. Front Immunol. 2018;8(JAN). https://doi.org/10.3389/fimmu.2017.01878 .
Zhan H, et al. JAK2V617F-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation. Leukemia. 2016;30(12):2332–41.
pubmed: 27133820 pmcid: 5158308 doi: 10.1038/leu.2016.114
Woods B, et al. Activation of JAK/STAT signaling in Megakaryocytes sustains myeloproliferation in vivo. Clin Cancer Res. 2019;25(19):5901–12.
pubmed: 31217200 pmcid: 6774846 doi: 10.1158/1078-0432.CCR-18-4089
Müller-Newen G, et al. Development of platelets during steady state and inflammation. J Leukoc Biol. 2017;101(5):1109–17.
pubmed: 28235774 doi: 10.1189/jlb.1RU0916-391RR
Nishimura S, et al. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol. 2015;209(3):453–66.
pubmed: 25963822 pmcid: 4427781 doi: 10.1083/jcb.201410052
Tilburg J, Becker IC, Italiano JE. Don’t you forget about me(gakaryocytes). Blood. 2022;139(22):3245–54.
pubmed: 34582554 pmcid: 9164737 doi: 10.1182/blood.2020009302
Verstovsek S, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363(12):1117–27.
pubmed: 20843246 pmcid: 5187954 doi: 10.1056/NEJMoa1002028
Tefferi A, et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a Comprehensive Cytokine Profiling Study. J Clin Oncol. 2011;29(10):1356–63.
pubmed: 21300928 doi: 10.1200/JCO.2010.32.9490
Vaidya R, et al. Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. Am J Hematol. 2012;87(11):1003–5.
pubmed: 22965887 doi: 10.1002/ajh.23295
Ozono Y, et al. Neoplastic fibrocytes play an essential role in bone marrow fibrosis in Jak2V617F-induced primary myelofibrosis mice. Leukemia. 2021;35(2):454–67.
pubmed: 32472085 doi: 10.1038/s41375-020-0880-3
Erba BG, et al. Endothelial-to-mesenchymal transition in bone marrow and spleen of primary myelofibrosis. Am J Pathol. 2017;187(8):1879–92.
pubmed: 28728747 doi: 10.1016/j.ajpath.2017.04.006
Hermouet S. Mutations, inflammation and phenotype of myeloproliferative neoplasms. Front Oncol. 2023;13(May):1196817.
pubmed: 37284191 pmcid: 10239955 doi: 10.3389/fonc.2023.1196817
Rai S, et al. IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK2-mutant hematopoietic stem cells. Blood Adv. 2024;8(5):1234–49.
pubmed: 38207211 pmcid: 10912850 doi: 10.1182/bloodadvances.2023011338
Allain-Maillet S, et al. Anti-glucosylsphingosine Autoimmunity, JAK2V617F-Dependent Interleukin-1β and JAK2V617F-Independent cytokines in Myeloproliferative Neoplasms. Cancers (Basel). 2020;12(9):2446.
pubmed: 32872203 doi: 10.3390/cancers12092446
Slezak S, et al. Gene and microRNA analysis of neutrophils from patients with polycythemia vera and essential thrombocytosis: down-regulation of micro RNA-1 and – 133a. J Transl Med. 2009;7(1):39.
pubmed: 19497108 pmcid: 2701925 doi: 10.1186/1479-5876-7-39
Kleppe M, et al. Dual targeting of oncogenic activation and Inflammatory Signaling increases therapeutic efficacy in Myeloproliferative Neoplasms. Cancer Cell. 2018;33(1):29–e437.
pubmed: 29249691 doi: 10.1016/j.ccell.2017.11.009
Fisher DAC, et al. Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFκB signaling. Leukemia. 2019;33(8):1978–95.
pubmed: 30718771 pmcid: 6813809 doi: 10.1038/s41375-019-0379-y
Rao TN, et al. JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood. 2019;134(21):1832–46.
pubmed: 31511238 pmcid: 6872961 doi: 10.1182/blood.2019000162
Eaton N, et al. Bleeding diathesis in mice lacking JAK2 in platelets. Blood Adv. 2021;5(15):2969–81.
pubmed: 34342643 pmcid: 8361459 doi: 10.1182/bloodadvances.2020003032
Matsuura S, et al. Platelet dysfunction and thrombosis in JAK2V617F-Mutated primary myelofibrotic mice. Arterioscler Thromb Vasc Biol. 2020;40(10):E262–72.
pubmed: 32814440 pmcid: 7605151 doi: 10.1161/ATVBAHA.120.314760
Lamrani L, et al. Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm. Blood. 2014;124(7):1136–45.
pubmed: 24951423 pmcid: 4133486 doi: 10.1182/blood-2013-10-530832
Kraus RF, Gruber MA. Neutrophils—from bone marrow to First-Line Defense of the Innate Immune System. Front Immunol. 2021;12:767175.
pubmed: 35003081 pmcid: 8732951 doi: 10.3389/fimmu.2021.767175
Wolach O, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):172–87.
doi: 10.1126/scitranslmed.aan8292
Guy A, et al. Platelets and neutrophils cooperate to induce increased neutrophil extracellular trap formation in JAK2V617F myeloproliferative neoplasms. J Thromb Haemost. 2024;22(1):172–87.
pubmed: 37678548 doi: 10.1016/j.jtha.2023.08.028
Hu K, et al. Differential transmission of actin motion within focal adhesions. Sci (80-). 2007;315(5808):111–5.
doi: 10.1126/science.1135085
Swaminathan V, Waterman CM. The molecular clutch model for mechanotransduction evolves. Nat Cell Biol. 2016;18(5):459–61.
pubmed: 27117328 pmcid: 6792288 doi: 10.1038/ncb3350
Sixt M, et al. Cell adhesion and Migration properties of β2-Integrin negative polymorphonuclear granulocytes on defined Extracellular Matrix molecules. J Biol Chem. 2001;276(22):18878–87.
pubmed: 11278780 doi: 10.1074/jbc.M010898200
Lindbom L, Werr J. Integrin-dependent neutrophil migration in extravascular tissue. Semin Immunol. 2002;14(2):115–21.
pubmed: 11978083 doi: 10.1006/smim.2001.0348
Burns AR, Smith CW, Walker DC. Unique structural features that influence neutrophil emigration into the lung. Physiol Rev. 2003;83(2):309–36.
pubmed: 12663861 doi: 10.1152/physrev.00023.2002
von Brühl ML, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.
doi: 10.1084/jem.20112322
Darbousset R, et al. Tissue factor–positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012;120(10):2133–43.
pubmed: 22837532 doi: 10.1182/blood-2012-06-437772
Ruf W, Ruggeri ZM. Neutrophils release brakes of coagulation. Nat Med. 2010;16(8):851–2.
pubmed: 20689544 doi: 10.1038/nm0810-851
Kanamori A, et al. Distinct sulfation requirements of selectins disclosed using cells that support rolling mediated by all three selectins under shear flow. L-selectin prefers carbohydrate 6-sulfation to tyrosine sulfation, whereas P-selectin does not. J Biol Chem. 2002;277(36):32578–86.
pubmed: 12068018 doi: 10.1074/jbc.M204400200
Culmer DL, et al. E-selectin inhibition with GMI-1271 decreases venous thrombosis without profoundly affecting tail vein bleeding in a mouse model. Thromb Haemost. 2017;117(6):1171–781.
pubmed: 28300869 doi: 10.1160/TH16-04-0323
Myers D, et al. A new way to treat proximal deep venous thrombosis using E-selectin inhibition. J Vasc Surg Venous Lymphat Disord. 2020;8(2):268–78.
pubmed: 32067728 pmcid: 9006622 doi: 10.1016/j.jvsv.2019.08.016
Devata S, et al. Use of GMI-1271, an E-selectin antagonist, in healthy subjects and in 2 patients with calf vein thrombosis. Res Pract Thromb Haemost. 2020;4(2):193–204.
pubmed: 32110749 pmcid: 7040550 doi: 10.1002/rth2.12279
Schürch PM, et al. Calreticulin mutations affect its chaperone function and perturb the glycoproteome. Cell Rep. 2022;41(8):111689.
pubmed: 36417879 doi: 10.1016/j.celrep.2022.111689
Bhuria V, et al. Activating mutations in JAK2 and CALR differentially affect intracellular calcium flux in store operated calcium entry. Cell Commun Signal. 2024;22(1):186.
pubmed: 38509561 pmcid: 10956330 doi: 10.1186/s12964-024-01530-z

Auteurs

Tobias Ronny Haage (TR)

Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.

Emmanouil Charakopoulos (E)

Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.

Vikas Bhuria (V)

Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.

Conny K Baldauf (CK)

Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.

Mark Korthals (M)

Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.

Juliane Handschuh (J)

Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.

Peter Müller (P)

Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.

Juan Li (J)

Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England.

Kunjan Harit (K)

Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.

Gopala Nishanth (G)

Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.

Stephanie Frey (S)

Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.

Martin Böttcher (M)

Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.

Klaus-Dieter Fischer (KD)

Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.

Jan Dudeck (J)

Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.

Anne Dudeck (A)

Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.

Daniel B Lipka (DB)

Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.
Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany.

Burkhart Schraven (B)

Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.

Anthony R Green (AR)

Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England.

Andreas J Müller (AJ)

Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
Helmholtz Centre for Infection Research, Braunschweig, Germany.

Dimitrios Mougiakakos (D)

Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.

Thomas Fischer (T)

Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany. thomas.fischer@med.ovgu.de.
Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. thomas.fischer@med.ovgu.de.
Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany. thomas.fischer@med.ovgu.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH