Whole-genome sequencing identifies variants in ANK1, LRRN1, HAS1, and other genes and regulatory regions for stroke in type 1 diabetes.
Humans
Diabetes Mellitus, Type 1
/ genetics
Whole Genome Sequencing
Ankyrins
/ genetics
Stroke
/ genetics
Genome-Wide Association Study
Genetic Predisposition to Disease
Male
Female
Polymorphism, Single Nucleotide
Membrane Proteins
/ genetics
Adult
Middle Aged
Regulatory Sequences, Nucleic Acid
/ genetics
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
25
09
2023
accepted:
10
05
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
Individuals with type 1 diabetes (T1D) carry a markedly increased risk of stroke, with distinct clinical and neuroimaging characteristics as compared to those without diabetes. Using whole-exome or whole-genome sequencing of 1,051 individuals with T1D, we aimed to find rare and low-frequency genomic variants associated with stroke in T1D. We analysed the genome comprehensively with single-variant analyses, gene aggregate analyses, and aggregate analyses on genomic windows, enhancers and promoters. In addition, we attempted replication in T1D using a genome-wide association study (N = 3,945) and direct genotyping (N = 3,263), and in the general population from the large-scale population-wide FinnGen project and UK Biobank summary statistics. We identified a rare missense variant on SREBF1 exome-wide significantly associated with stroke (rs114001633, p.Pro227Leu, p-value = 7.30 × 10
Identifiants
pubmed: 38862513
doi: 10.1038/s41598-024-61840-7
pii: 10.1038/s41598-024-61840-7
doi:
Substances chimiques
Ankyrins
0
ANK1 protein, human
0
Membrane Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13453Subventions
Organisme : Wellcome Trust
ID : 220027
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 220027
Pays : United Kingdom
Organisme : Helsinki University Central Hospital Research Funds
ID : TYH2018207
Organisme : Novo Nordisk Foundation
ID : NNFOC0013659
Organisme : Academy of Finland
ID : 316664
Organisme : Academy of Finland
ID : 299200
Organisme : Novo Nordisk Fonden
ID : NNF23OC0082732
Investigateurs
Anni A Antikainen
(AA)
Jani K Haukka
(JK)
Anmol Kumar
(A)
Anna Syreeni
(A)
Stefanie Hägg-Holmberg
(S)
Anni Ylinen
(A)
Jukka Putaala
(J)
Lena M Thorn
(LM)
Valma Harjutsalo
(V)
Per-Henrik Groop
(PH)
Niina Sandholm
(N)
Informations de copyright
© 2024. The Author(s).
Références
Harjutsalo, V., Barlovic, D. P. & Groop, P.-H. Long-term population-based trends in the incidence of cardiovascular disease in individuals with type 1 diabetes from Finland: A retrospective, nationwide, cohort study. Lancet Diabetes Endocrinol. 9, 575–585 (2021).
pubmed: 34303414
doi: 10.1016/S2213-8587(21)00172-8
Sun, H. et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183 (2022).
Forlenza, G. P. & Rewers, M. The epidemic of type 1 diabetes: what is it telling us?. Curr. Opin. Endocrinol. Diabetes Obes. 18, 248–251 (2011).
pubmed: 21844707
doi: 10.1097/MED.0b013e32834872ce
Ståhl, C. H. et al. Glycaemic control and excess risk of ischaemic and haemorrhagic stroke in patients with type 1 diabetes: a cohort study of 33 453 patients. J. Intern. Med. 281, 261–272 (2017).
pubmed: 27925333
doi: 10.1111/joim.12572
Janghorbani, M. et al. Prospective study of type 1 and type 2 diabetes and risk of stroke subtypes: the Nurses’ Health Study. Diabetes Care 30, 1730–1735 (2007).
pubmed: 17389335
doi: 10.2337/dc06-2363
Thorn, L. M. et al. Clinical and MRI features of cerebral small-vessel disease in type 1 diabetes. Diabetes Care 42, 327–330 (2019).
pubmed: 30552131
doi: 10.2337/dc18-1302
Putaala, J. et al. Diabetes mellitus and ischemic stroke in the young. Neurology 76, 1831–1837 (2011).
pubmed: 21606455
doi: 10.1212/WNL.0b013e31821cccc2
Hägg, S. et al. Incidence of stroke according to presence of diabetic nephropathy and severe diabetic retinopathy in patients with type 1 diabetes. Diabetes Care 36, 4140–4146 (2013).
pubmed: 24101700
pmcid: 3836162
doi: 10.2337/dc13-0669
Dichgans, M., Pulit, S. L. & Rosand, J. Stroke genetics: discovery, biology, and clinical applications. Lancet Neurol. 18, 587–599 (2019).
pubmed: 30975520
doi: 10.1016/S1474-4422(19)30043-2
Debette, S. & Markus, H. S. Stroke genetics: discovery, insight into mechanisms, and clinical perspectives. Circ. Res. 130, 1095–1111 (2022).
pubmed: 35420914
doi: 10.1161/CIRCRESAHA.122.319950
Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115–123 (2022).
pubmed: 36180795
pmcid: 9524349
doi: 10.1038/s41586-022-05165-3
Ylinen, A. et al. The impact of parental risk factors on the risk of stroke in type 1 diabetes. Acta Diabetol. 58, 911–917 (2021).
pubmed: 33721078
pmcid: 8187180
doi: 10.1007/s00592-021-01694-x
Syreeni, A. et al. Haptoglobin genotype does not confer a risk of stroke in type 1 diabetes. Diabetes 71, 2728–2738 (2022).
pubmed: 36409784
doi: 10.2337/db22-0327
Dahlström, E. H. et al. The low-expression variant of FABP4 is associated with cardiovascular disease in type 1 diabetes. Diabetes 70, 2391–2401 (2021).
pubmed: 34244239
doi: 10.2337/db21-0056
Vujkovic, M. et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 52, 680–691 (2020).
pubmed: 32541925
pmcid: 7343592
doi: 10.1038/s41588-020-0637-y
Antikainen, A. A. V. et al. Genome-wide association study on coronary artery disease in type 1 diabetes suggests beta-defensin 127 as a risk locus. Cardiovasc. Res. 117, 600–612 (2021).
pubmed: 32077919
doi: 10.1093/cvr/cvaa045
Qi, L. et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310, 821–828 (2013).
pubmed: 23982368
doi: 10.1001/jama.2013.276305
Fall, T., Gustafsson, S., Orho-Melander, M. & Ingelsson, E. Genome-wide association study of coronary artery disease among individuals with diabetes: the UK Biobank. Diabetologia 61, 2174–2179 (2018).
pubmed: 30003307
pmcid: 6133153
doi: 10.1007/s00125-018-4686-z
Grami, N. et al. Global assessment of Mendelian stroke genetic prevalence in 101 635 individuals from 7 ethnic groups. Stroke 51, 1290–1293 (2020).
pubmed: 32106772
doi: 10.1161/STROKEAHA.119.028840
Si, Y., Vanderwerff, B. & Zöllner, S. Why are rare variants hard to impute? Coalescent models reveal theoretical limits in existing algorithms. Genetics 217, 0011 (2021).
doi: 10.1093/genetics/iyab011
Sandholm, N. et al. Whole-exome sequencing identifies novel protein-altering variants associated with serum apolipoprotein and lipid concentrations. Genome Med. 14, 132 (2022).
pubmed: 36419110
pmcid: 9685920
doi: 10.1186/s13073-022-01135-6
Hu, Y. et al. Whole-genome sequencing association analyses of stroke and its subtypes in ancestrally diverse populations from trans-omics for precision medicine project. Stroke 53, 875–885 (2022).
pubmed: 34727735
doi: 10.1161/STROKEAHA.120.031792
Jurgens, S. J. et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat. Genet. 54, 240–250 (2022).
pubmed: 35177841
pmcid: 8930703
doi: 10.1038/s41588-021-01011-w
Locke, A. E. et al. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature 572, 323–328 (2019).
pubmed: 31367044
pmcid: 6697530
doi: 10.1038/s41586-019-1457-z
Thorn, L. M. et al. Metabolic syndrome in type 1 diabetes: Association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care 28, 2019–2024 (2005).
pubmed: 16043748
doi: 10.2337/diacare.28.8.2019
Zinnanti, W. J. et al. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I. Acta Neuropathol. Commun. 2, 13 (2014).
pubmed: 24468193
pmcid: 3940023
doi: 10.1186/2051-5960-2-13
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK biobank participants. Nature 599, 628–634 (2021).
pubmed: 34662886
pmcid: 8596853
doi: 10.1038/s41586-021-04103-z
Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).
pubmed: 34475573
pmcid: 8432599
doi: 10.1038/s41588-021-00913-z
Wang, Y. et al. The 3D genome browser: A web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 19, 151 (2018).
pubmed: 30286773
pmcid: 6172833
doi: 10.1186/s13059-018-1519-9
Zong, P., Lin, Q., Feng, J. & Yue, L. A systemic review of the integral role of TRPM2 in ischemic stroke: From upstream risk factors to ultimate neuronal death. Cells 11, 491 (2022).
pubmed: 35159300
pmcid: 8834171
doi: 10.3390/cells11030491
Belrose, J. C. & Jackson, M. F. TRPM2: A candidate therapeutic target for treating neurological diseases. Acta Pharmacol. Sin. 39, 722–732 (2018).
pubmed: 29671419
pmcid: 5943913
doi: 10.1038/aps.2018.31
DeBose-Boyd, R. A. & Ye, J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci. 43, 358–368 (2018).
pubmed: 29500098
pmcid: 5923433
doi: 10.1016/j.tibs.2018.01.005
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
pubmed: 20354512
pmcid: 2855889
doi: 10.1038/nmeth0410-248
Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).
pubmed: 19561590
doi: 10.1038/nprot.2009.86
Park, J. et al. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin. Genet. 90, 69–78 (2016).
pubmed: 26830532
doi: 10.1111/cge.12749
Yan, R. et al. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene. Sci. Rep. 6, 25105 (2016).
pubmed: 27121283
pmcid: 4848520
doi: 10.1038/srep25105
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).
pubmed: 29531354
pmcid: 5968830
doi: 10.1038/s41588-018-0058-3
Siiskonen, H., Oikari, S., Pasonen-Seppänen, S. & Rilla, K. Hyaluronan synthase 1: A mysterious enzyme with unexpected functions. Front. Immunol. 6, 1–11 (2015).
doi: 10.3389/fimmu.2015.00043
Katarzyna Greda, A. & Nowicka, D. Hyaluronidase inhibition accelerates functional recovery from stroke in the mouse brain. J. Neurochem. 157, 781–801 (2021).
pubmed: 33345310
doi: 10.1111/jnc.15279
Wang, G., Tiemeier, G. L., van den Berg, B. M. & Rabelink, T. J. Endothelial glycocalyx hyaluronan: Regulation and role in prevention of diabetic complications. Am. J. Pathol. 190, 781–790 (2020).
pubmed: 32035886
doi: 10.1016/j.ajpath.2019.07.022
Li, X. et al. Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nat. Genet. 52, 969–983 (2020).
pubmed: 32839606
pmcid: 7483769
doi: 10.1038/s41588-020-0676-4
Abugessaisa, I. et al. FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 genome assemblies. Sci. Data 4, 1–10 (2017).
doi: 10.1038/sdata.2017.107
Sandholm, N. et al. The genetic landscape of renal complications in type 1 diabetes. J. Am. Soc. Nephrol. 28, 557–574 (2017).
pubmed: 27647854
doi: 10.1681/ASN.2016020231
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).
pubmed: 22728672
doi: 10.4161/fly.19695
Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: An efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 32, 1423–1426 (2016).
pubmed: 27153000
pmcid: 4848408
doi: 10.1093/bioinformatics/btw079
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Ma, C., Blackwell, T., Boehnke, M. & Scott, L. J. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. Genet. Epidemiol. 37, 539–550 (2013).
pubmed: 23788246
pmcid: 4049324
doi: 10.1002/gepi.21742
Hägg, S. et al. Different risk factor profiles for ischemic and hemorrhagic stroke in type 1 diabetes mellitus. Stroke 45, 2558–2562 (2014).
pubmed: 25061078
doi: 10.1161/STROKEAHA.114.005724
Lee, S., Teslovich, T. M., Boehnke, M. & Lin, X. General framework for meta-analysis of rare variants in sequencing association studies. Am. J. Hum. Genet. 93, 42–53 (2013).
pubmed: 23768515
pmcid: 3710762
doi: 10.1016/j.ajhg.2013.05.010
Rivas, M. A. et al. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 348, 666–669 (2015).
pubmed: 25954003
pmcid: 4537935
doi: 10.1126/science.1261877
Lee, S., Wu, M. C. & Lin, X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13, 762–775 (2012).
pubmed: 22699862
pmcid: 3440237
doi: 10.1093/biostatistics/kxs014
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).
pubmed: 30371827
doi: 10.1093/nar/gky1016
Fantom Consortium. A promoter-level mammalian expression atlas. Nature 507, 462 (2014).
doi: 10.1038/nature13182
Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).
pubmed: 24670763
pmcid: 5215096
doi: 10.1038/nature12787
Moore, C. M., Jacobson, S. A. & Fingerlin, T. E. Power and sample size calculations for genetic association studies in the presence of genetic model misspecification. Hum. Hered. 84, 256–271 (2019).
pubmed: 32721961
doi: 10.1159/000508558
Chen, H. et al. Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole-genome sequencing studies. Am. J. Hum. Genet. 104, 260–274 (2019).
pubmed: 30639324
pmcid: 6372261
doi: 10.1016/j.ajhg.2018.12.012
Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).
pubmed: 22706312
pmcid: 3386377
doi: 10.1038/ng.2310
Boyle, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).
pubmed: 22955989
pmcid: 3431494
doi: 10.1101/gr.137323.112
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795
pmcid: 4893825
doi: 10.1186/s13059-016-0974-4
Pruim, R. J. et al. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).
pubmed: 20634204
pmcid: 2935401
doi: 10.1093/bioinformatics/btq419
Hahne, F. & Ivanek, R. Visualizing genomic data using gviz and bioconductor. In Statistical Genomics: Methods and Protocols Vol. 1418 (eds Mathé, E. & Davis, S.) 335–351 (Humana Press, New York, 2016).
doi: 10.1007/978-1-4939-3578-9_16