Whole-genome sequencing identifies variants in ANK1, LRRN1, HAS1, and other genes and regulatory regions for stroke in type 1 diabetes.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 25 09 2023
accepted: 10 05 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: epublish

Résumé

Individuals with type 1 diabetes (T1D) carry a markedly increased risk of stroke, with distinct clinical and neuroimaging characteristics as compared to those without diabetes. Using whole-exome or whole-genome sequencing of 1,051 individuals with T1D, we aimed to find rare and low-frequency genomic variants associated with stroke in T1D. We analysed the genome comprehensively with single-variant analyses, gene aggregate analyses, and aggregate analyses on genomic windows, enhancers and promoters. In addition, we attempted replication in T1D using a genome-wide association study (N = 3,945) and direct genotyping (N = 3,263), and in the general population from the large-scale population-wide FinnGen project and UK Biobank summary statistics. We identified a rare missense variant on SREBF1 exome-wide significantly associated with stroke (rs114001633, p.Pro227Leu, p-value = 7.30 × 10

Identifiants

pubmed: 38862513
doi: 10.1038/s41598-024-61840-7
pii: 10.1038/s41598-024-61840-7
doi:

Substances chimiques

Ankyrins 0
ANK1 protein, human 0
Membrane Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13453

Subventions

Organisme : Wellcome Trust
ID : 220027
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 220027
Pays : United Kingdom
Organisme : Helsinki University Central Hospital Research Funds
ID : TYH2018207
Organisme : Novo Nordisk Foundation
ID : NNFOC0013659
Organisme : Academy of Finland
ID : 316664
Organisme : Academy of Finland
ID : 299200
Organisme : Novo Nordisk Fonden
ID : NNF23OC0082732

Investigateurs

Anni A Antikainen (AA)
Jani K Haukka (JK)
Anmol Kumar (A)
Anna Syreeni (A)
Stefanie Hägg-Holmberg (S)
Anni Ylinen (A)
Jukka Putaala (J)
Lena M Thorn (LM)
Valma Harjutsalo (V)
Per-Henrik Groop (PH)
Niina Sandholm (N)

Informations de copyright

© 2024. The Author(s).

Références

Harjutsalo, V., Barlovic, D. P. & Groop, P.-H. Long-term population-based trends in the incidence of cardiovascular disease in individuals with type 1 diabetes from Finland: A retrospective, nationwide, cohort study. Lancet Diabetes Endocrinol. 9, 575–585 (2021).
pubmed: 34303414 doi: 10.1016/S2213-8587(21)00172-8
Sun, H. et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183 (2022).
Forlenza, G. P. & Rewers, M. The epidemic of type 1 diabetes: what is it telling us?. Curr. Opin. Endocrinol. Diabetes Obes. 18, 248–251 (2011).
pubmed: 21844707 doi: 10.1097/MED.0b013e32834872ce
Ståhl, C. H. et al. Glycaemic control and excess risk of ischaemic and haemorrhagic stroke in patients with type 1 diabetes: a cohort study of 33 453 patients. J. Intern. Med. 281, 261–272 (2017).
pubmed: 27925333 doi: 10.1111/joim.12572
Janghorbani, M. et al. Prospective study of type 1 and type 2 diabetes and risk of stroke subtypes: the Nurses’ Health Study. Diabetes Care 30, 1730–1735 (2007).
pubmed: 17389335 doi: 10.2337/dc06-2363
Thorn, L. M. et al. Clinical and MRI features of cerebral small-vessel disease in type 1 diabetes. Diabetes Care 42, 327–330 (2019).
pubmed: 30552131 doi: 10.2337/dc18-1302
Putaala, J. et al. Diabetes mellitus and ischemic stroke in the young. Neurology 76, 1831–1837 (2011).
pubmed: 21606455 doi: 10.1212/WNL.0b013e31821cccc2
Hägg, S. et al. Incidence of stroke according to presence of diabetic nephropathy and severe diabetic retinopathy in patients with type 1 diabetes. Diabetes Care 36, 4140–4146 (2013).
pubmed: 24101700 pmcid: 3836162 doi: 10.2337/dc13-0669
Dichgans, M., Pulit, S. L. & Rosand, J. Stroke genetics: discovery, biology, and clinical applications. Lancet Neurol. 18, 587–599 (2019).
pubmed: 30975520 doi: 10.1016/S1474-4422(19)30043-2
Debette, S. & Markus, H. S. Stroke genetics: discovery, insight into mechanisms, and clinical perspectives. Circ. Res. 130, 1095–1111 (2022).
pubmed: 35420914 doi: 10.1161/CIRCRESAHA.122.319950
Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115–123 (2022).
pubmed: 36180795 pmcid: 9524349 doi: 10.1038/s41586-022-05165-3
Ylinen, A. et al. The impact of parental risk factors on the risk of stroke in type 1 diabetes. Acta Diabetol. 58, 911–917 (2021).
pubmed: 33721078 pmcid: 8187180 doi: 10.1007/s00592-021-01694-x
Syreeni, A. et al. Haptoglobin genotype does not confer a risk of stroke in type 1 diabetes. Diabetes 71, 2728–2738 (2022).
pubmed: 36409784 doi: 10.2337/db22-0327
Dahlström, E. H. et al. The low-expression variant of FABP4 is associated with cardiovascular disease in type 1 diabetes. Diabetes 70, 2391–2401 (2021).
pubmed: 34244239 doi: 10.2337/db21-0056
Vujkovic, M. et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 52, 680–691 (2020).
pubmed: 32541925 pmcid: 7343592 doi: 10.1038/s41588-020-0637-y
Antikainen, A. A. V. et al. Genome-wide association study on coronary artery disease in type 1 diabetes suggests beta-defensin 127 as a risk locus. Cardiovasc. Res. 117, 600–612 (2021).
pubmed: 32077919 doi: 10.1093/cvr/cvaa045
Qi, L. et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310, 821–828 (2013).
pubmed: 23982368 doi: 10.1001/jama.2013.276305
Fall, T., Gustafsson, S., Orho-Melander, M. & Ingelsson, E. Genome-wide association study of coronary artery disease among individuals with diabetes: the UK Biobank. Diabetologia 61, 2174–2179 (2018).
pubmed: 30003307 pmcid: 6133153 doi: 10.1007/s00125-018-4686-z
Grami, N. et al. Global assessment of Mendelian stroke genetic prevalence in 101 635 individuals from 7 ethnic groups. Stroke 51, 1290–1293 (2020).
pubmed: 32106772 doi: 10.1161/STROKEAHA.119.028840
Si, Y., Vanderwerff, B. & Zöllner, S. Why are rare variants hard to impute? Coalescent models reveal theoretical limits in existing algorithms. Genetics 217, 0011 (2021).
doi: 10.1093/genetics/iyab011
Sandholm, N. et al. Whole-exome sequencing identifies novel protein-altering variants associated with serum apolipoprotein and lipid concentrations. Genome Med. 14, 132 (2022).
pubmed: 36419110 pmcid: 9685920 doi: 10.1186/s13073-022-01135-6
Hu, Y. et al. Whole-genome sequencing association analyses of stroke and its subtypes in ancestrally diverse populations from trans-omics for precision medicine project. Stroke 53, 875–885 (2022).
pubmed: 34727735 doi: 10.1161/STROKEAHA.120.031792
Jurgens, S. J. et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat. Genet. 54, 240–250 (2022).
pubmed: 35177841 pmcid: 8930703 doi: 10.1038/s41588-021-01011-w
Locke, A. E. et al. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature 572, 323–328 (2019).
pubmed: 31367044 pmcid: 6697530 doi: 10.1038/s41586-019-1457-z
Thorn, L. M. et al. Metabolic syndrome in type 1 diabetes: Association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care 28, 2019–2024 (2005).
pubmed: 16043748 doi: 10.2337/diacare.28.8.2019
Zinnanti, W. J. et al. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I. Acta Neuropathol. Commun. 2, 13 (2014).
pubmed: 24468193 pmcid: 3940023 doi: 10.1186/2051-5960-2-13
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK biobank participants. Nature 599, 628–634 (2021).
pubmed: 34662886 pmcid: 8596853 doi: 10.1038/s41586-021-04103-z
Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).
pubmed: 34475573 pmcid: 8432599 doi: 10.1038/s41588-021-00913-z
Wang, Y. et al. The 3D genome browser: A web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 19, 151 (2018).
pubmed: 30286773 pmcid: 6172833 doi: 10.1186/s13059-018-1519-9
Zong, P., Lin, Q., Feng, J. & Yue, L. A systemic review of the integral role of TRPM2 in ischemic stroke: From upstream risk factors to ultimate neuronal death. Cells 11, 491 (2022).
pubmed: 35159300 pmcid: 8834171 doi: 10.3390/cells11030491
Belrose, J. C. & Jackson, M. F. TRPM2: A candidate therapeutic target for treating neurological diseases. Acta Pharmacol. Sin. 39, 722–732 (2018).
pubmed: 29671419 pmcid: 5943913 doi: 10.1038/aps.2018.31
DeBose-Boyd, R. A. & Ye, J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci. 43, 358–368 (2018).
pubmed: 29500098 pmcid: 5923433 doi: 10.1016/j.tibs.2018.01.005
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
pubmed: 20354512 pmcid: 2855889 doi: 10.1038/nmeth0410-248
Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).
pubmed: 19561590 doi: 10.1038/nprot.2009.86
Park, J. et al. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin. Genet. 90, 69–78 (2016).
pubmed: 26830532 doi: 10.1111/cge.12749
Yan, R. et al. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene. Sci. Rep. 6, 25105 (2016).
pubmed: 27121283 pmcid: 4848520 doi: 10.1038/srep25105
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).
pubmed: 29531354 pmcid: 5968830 doi: 10.1038/s41588-018-0058-3
Siiskonen, H., Oikari, S., Pasonen-Seppänen, S. & Rilla, K. Hyaluronan synthase 1: A mysterious enzyme with unexpected functions. Front. Immunol. 6, 1–11 (2015).
doi: 10.3389/fimmu.2015.00043
Katarzyna Greda, A. & Nowicka, D. Hyaluronidase inhibition accelerates functional recovery from stroke in the mouse brain. J. Neurochem. 157, 781–801 (2021).
pubmed: 33345310 doi: 10.1111/jnc.15279
Wang, G., Tiemeier, G. L., van den Berg, B. M. & Rabelink, T. J. Endothelial glycocalyx hyaluronan: Regulation and role in prevention of diabetic complications. Am. J. Pathol. 190, 781–790 (2020).
pubmed: 32035886 doi: 10.1016/j.ajpath.2019.07.022
Li, X. et al. Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nat. Genet. 52, 969–983 (2020).
pubmed: 32839606 pmcid: 7483769 doi: 10.1038/s41588-020-0676-4
Abugessaisa, I. et al. FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 genome assemblies. Sci. Data 4, 1–10 (2017).
doi: 10.1038/sdata.2017.107
Sandholm, N. et al. The genetic landscape of renal complications in type 1 diabetes. J. Am. Soc. Nephrol. 28, 557–574 (2017).
pubmed: 27647854 doi: 10.1681/ASN.2016020231
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).
pubmed: 22728672 doi: 10.4161/fly.19695
Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: An efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 32, 1423–1426 (2016).
pubmed: 27153000 pmcid: 4848408 doi: 10.1093/bioinformatics/btw079
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Ma, C., Blackwell, T., Boehnke, M. & Scott, L. J. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. Genet. Epidemiol. 37, 539–550 (2013).
pubmed: 23788246 pmcid: 4049324 doi: 10.1002/gepi.21742
Hägg, S. et al. Different risk factor profiles for ischemic and hemorrhagic stroke in type 1 diabetes mellitus. Stroke 45, 2558–2562 (2014).
pubmed: 25061078 doi: 10.1161/STROKEAHA.114.005724
Lee, S., Teslovich, T. M., Boehnke, M. & Lin, X. General framework for meta-analysis of rare variants in sequencing association studies. Am. J. Hum. Genet. 93, 42–53 (2013).
pubmed: 23768515 pmcid: 3710762 doi: 10.1016/j.ajhg.2013.05.010
Rivas, M. A. et al. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 348, 666–669 (2015).
pubmed: 25954003 pmcid: 4537935 doi: 10.1126/science.1261877
Lee, S., Wu, M. C. & Lin, X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13, 762–775 (2012).
pubmed: 22699862 pmcid: 3440237 doi: 10.1093/biostatistics/kxs014
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).
pubmed: 30371827 doi: 10.1093/nar/gky1016
Fantom Consortium. A promoter-level mammalian expression atlas. Nature 507, 462 (2014).
doi: 10.1038/nature13182
Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).
pubmed: 24670763 pmcid: 5215096 doi: 10.1038/nature12787
Moore, C. M., Jacobson, S. A. & Fingerlin, T. E. Power and sample size calculations for genetic association studies in the presence of genetic model misspecification. Hum. Hered. 84, 256–271 (2019).
pubmed: 32721961 doi: 10.1159/000508558
Chen, H. et al. Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole-genome sequencing studies. Am. J. Hum. Genet. 104, 260–274 (2019).
pubmed: 30639324 pmcid: 6372261 doi: 10.1016/j.ajhg.2018.12.012
Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).
pubmed: 22706312 pmcid: 3386377 doi: 10.1038/ng.2310
Boyle, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).
pubmed: 22955989 pmcid: 3431494 doi: 10.1101/gr.137323.112
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795 pmcid: 4893825 doi: 10.1186/s13059-016-0974-4
Pruim, R. J. et al. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).
pubmed: 20634204 pmcid: 2935401 doi: 10.1093/bioinformatics/btq419
Hahne, F. & Ivanek, R. Visualizing genomic data using gviz and bioconductor. In Statistical Genomics: Methods and Protocols Vol. 1418 (eds Mathé, E. & Davis, S.) 335–351 (Humana Press, New York, 2016).
doi: 10.1007/978-1-4939-3578-9_16

Auteurs

Anni A Antikainen (AA)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Jani K Haukka (JK)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Anmol Kumar (A)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Anna Syreeni (A)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Stefanie Hägg-Holmberg (S)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Anni Ylinen (A)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Elina Kilpeläinen (E)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Anastasia Kytölä (A)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Aarno Palotie (A)

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Jukka Putaala (J)

Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

Lena M Thorn (LM)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

Valma Harjutsalo (V)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Per-Henrik Groop (PH)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland. per-henrik.groop@helsinki.fi.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. per-henrik.groop@helsinki.fi.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland. per-henrik.groop@helsinki.fi.
Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia. per-henrik.groop@helsinki.fi.

Niina Sandholm (N)

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland. niina.sandholm@helsinki.fi.
Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. niina.sandholm@helsinki.fi.
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland. niina.sandholm@helsinki.fi.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH