Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 26 07 2023
accepted: 04 06 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: epublish

Résumé

In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.

Identifiants

pubmed: 38862536
doi: 10.1038/s41467-024-49370-2
pii: 10.1038/s41467-024-49370-2
doi:

Substances chimiques

Histones 0
p300-CBP Transcription Factors EC 2.3.1.48
Histone Acetyltransferases EC 2.3.1.48
Lysine K3Z4F929H6

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4962

Subventions

Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF14CC0001
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF22OC0074677
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R347-2020-2170

Informations de copyright

© 2024. The Author(s).

Références

Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc. Natl Acad. Sci. USA 51, 786–794 (1964).
pubmed: 14172992 pmcid: 300163 doi: 10.1073/pnas.51.5.786
Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006).
pubmed: 16916647 doi: 10.1016/j.molcel.2006.06.026
Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).
pubmed: 19608861 doi: 10.1126/science.1175371
Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).
pubmed: 25053359 doi: 10.1038/nrm3841
Ali, I., Conrad, R. J., Verdin, E. & Ott, M. Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem. Rev. 118, 1216–1252 (2018).
pubmed: 29405707 pmcid: 6609103 doi: 10.1021/acs.chemrev.7b00181
Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).
pubmed: 30467427 doi: 10.1038/s41580-018-0081-3
Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017).
pubmed: 27924077 doi: 10.1038/nrm.2016.140
Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).
pubmed: 25549891 doi: 10.1038/nrm3931
Drazic, A., Myklebust, L. M., Ree, R. & Arnesen, T. The world of protein acetylation. Biochim Biophys. Acta 1864, 1372–1401 (2016).
pubmed: 27296530 doi: 10.1016/j.bbapap.2016.06.007
Imhof, A. & Wolffe, A. P. Transcription: gene control by targeted histone acetylation. Curr. Biol. 8, R422–424, (1998).
pubmed: 9637914 doi: 10.1016/S0960-9822(98)70268-4
Sterner, D. E. & Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol Mol. Biol. Rev. 64, 435–459 (2000).
pubmed: 10839822 pmcid: 98999 doi: 10.1128/MMBR.64.2.435-459.2000
Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 (1998).
pubmed: 9499396 doi: 10.1101/gad.12.5.599
Edwards, G. S. & Allfrey, V. G. Aflatoxin B1 and actinomycin D effects on histone: acetylation and deacetylation in the liver. Biochim Biophys. Acta 299, 354–366 (1973).
pubmed: 4706459 doi: 10.1016/0005-2787(73)90360-2
Moore, M., Jackson, V., Sealy, L. & Chalkley, R. Comparative studies on highly metabolically active histone acetylation. Biochim Biophys. Acta 561, 248–260 (1979).
pubmed: 105758 doi: 10.1016/0005-2787(79)90508-2
Pogo, B. G., Allfrey, V. G. & Mirsky, A. E. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc. Natl Acad. Sci. USA 55, 805–812 (1966).
pubmed: 5219687 pmcid: 224233 doi: 10.1073/pnas.55.4.805
Clayton, A. L., Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. Histone acetylation and gene induction in human cells. FEBS Lett. 336, 23–26 (1993).
pubmed: 8262210 doi: 10.1016/0014-5793(93)81601-U
Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988).
pubmed: 3409869 pmcid: 458389 doi: 10.1002/j.1460-2075.1988.tb02956.x
Kuo, M. H., Zhou, J., Jambeck, P., Churchill, M. E. & Allis, C. D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12, 627–639 (1998).
pubmed: 9499399 pmcid: 316582 doi: 10.1101/gad.12.5.627
Martinez-Balbas, M. A. et al. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 17, 2886–2893 (1998).
pubmed: 9582282 pmcid: 1170629 doi: 10.1093/emboj/17.10.2886
Yan, Y., Barlev, N. A., Haley, R. H., Berger, S. L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6, 1195–1205 (2000).
pubmed: 11106757 doi: 10.1016/S1097-2765(00)00116-7
Allard, S. et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 18, 5108–5119 (1999).
pubmed: 10487762 pmcid: 1171581 doi: 10.1093/emboj/18.18.5108
Chakravarti, D. et al. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96, 393–403 (1999).
pubmed: 10025405 doi: 10.1016/S0092-8674(00)80552-8
Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet 39, 311–318 (2007).
pubmed: 17277777 doi: 10.1038/ng1966
Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet 40, 897–903 (2008).
pubmed: 18552846 pmcid: 2769248 doi: 10.1038/ng.154
Karlic, R., Chung, H. R., Lasserre, J., Vlahovicek, K. & Vingron, M. Histone modification levels are predictive for gene expression. Proc. Natl Acad. Sci. USA 107, 2926–2931 (2010).
pubmed: 20133639 pmcid: 2814872 doi: 10.1073/pnas.0909344107
Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).
pubmed: 21131905 doi: 10.1038/emboj.2010.318
Sato, Y. et al. Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development 146, dev179127 (2019).
Narita, T. et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol. Cell 81, 2166–2182 e2166 (2021).
pubmed: 33765415 doi: 10.1016/j.molcel.2021.03.008
Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu Rev. Biochem 76, 75–100 (2007).
pubmed: 17362198 doi: 10.1146/annurev.biochem.76.052705.162114
Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet 27, 389–396 (2011).
pubmed: 21764166 doi: 10.1016/j.tig.2011.06.006
Chen, P. B., Chen, H. V., Acharya, D., Rando, O. J. & Fazzio, T. G. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat. Struct. Mol. Biol. 22, 999–1007 (2015).
pubmed: 26551076 pmcid: 4677832 doi: 10.1038/nsmb.3122
Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).
pubmed: 19698979 pmcid: 2750862 doi: 10.1016/j.cell.2009.06.049
Bose, D. A. et al. RNA binding to CBP stimulates histone acetylation and transcription. Cell 168, 135–149.e122 (2017).
pubmed: 28086087 pmcid: 5325706 doi: 10.1016/j.cell.2016.12.020
Martin, B. J. E. et al. Transcription shapes genome-wide histone acetylation patterns. Nat. Commun. 12, 210 (2021).
pubmed: 33431884 pmcid: 7801501 doi: 10.1038/s41467-020-20543-z
Wang, Z. et al. Prediction of histone post-translational modification patterns based on nascent transcription data. Nat. Genet 54, 295–305 (2022).
pubmed: 35273399 pmcid: 9444190 doi: 10.1038/s41588-022-01026-x
Adelman, K. Nascent transcription as a predictor and driver of histone modifications. Nat. Genet 54, 223–224 (2022).
pubmed: 35273400 doi: 10.1038/s41588-021-01004-9
Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23 (2005).
pubmed: 16289629 doi: 10.1016/j.gene.2005.09.010
Fournier, M. et al. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification. Nat. Commun. 7, 13227 (2016).
pubmed: 27796307 pmcid: 5095585 doi: 10.1038/ncomms13227
Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244.e212 (2018).
pubmed: 29804834 pmcid: 6078418 doi: 10.1016/j.cell.2018.04.033
Sobell, H. M. Actinomycin and DNA transcription. Proc. Natl Acad. Sci. USA 82, 5328–5331 (1985).
pubmed: 2410919 pmcid: 390561 doi: 10.1073/pnas.82.16.5328
Olson, C. M. et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol. 14, 163–170 (2018).
pubmed: 29251720 doi: 10.1038/nchembio.2538
Titov, D. V. et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat. Chem. Biol. 7, 182–188 (2011).
pubmed: 21278739 pmcid: 3622543 doi: 10.1038/nchembio.522
Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017).
pubmed: 28953875 pmcid: 6050590 doi: 10.1038/nature24028
Kim, J. et al. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459–471 (2009).
pubmed: 19410543 pmcid: 2678028 doi: 10.1016/j.cell.2009.02.027
Davie, J. R. & Murphy, L. C. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry 29, 4752–4757 (1990).
pubmed: 2163669 doi: 10.1021/bi00472a002
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).
pubmed: 21106759 pmcid: 3003124 doi: 10.1073/pnas.1016071107
Narita, T. et al. Acetylation of histone H2B marks active enhancers and predicts CBP/p300 target genes. Nat. Genet 55, 679–692 (2023).
pubmed: 37024579 pmcid: 10101849 doi: 10.1038/s41588-023-01348-4
Ortega, E. et al. Transcription factor dimerization activates the p300 acetyltransferase. Nature 562, 538–544 (2018).
pubmed: 30323286 pmcid: 6914384 doi: 10.1038/s41586-018-0621-1
Thompson, P. R. et al. Regulation of the p300 HAT domain via a novel activation loop. Nat. Struct. Mol. Biol. 11, 308–315 (2004).
pubmed: 15004546 doi: 10.1038/nsmb740
Rosencrance, C. D. et al. Chromatin hyperacetylation impacts chromosome folding by forming a nuclear subcompartment. Mol. Cell 78, 112–126.e112 (2020).
pubmed: 32243828 pmcid: 7164681 doi: 10.1016/j.molcel.2020.03.018
Jaeger, M. G. et al. Selective mediator dependence of cell-type-specifying transcription. Nat. Genet 52, 719–727 (2020).
pubmed: 32483291 pmcid: 7610447 doi: 10.1038/s41588-020-0635-0
Zheng, Y., Tipton, J. D., Thomas, P. M., Kelleher, N. L. & Sweet, S. M. Site-specific human histone H3 methylation stability: fast K4me3 turnover. Proteomics 14, 2190–2199 (2014).
pubmed: 24826939 pmcid: 4184988 doi: 10.1002/pmic.201400060
Zheng, Y., Thomas, P. M. & Kelleher, N. L. Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat. Commun. 4, 2203 (2013).
pubmed: 23892279 doi: 10.1038/ncomms3203
Long, Y. et al. RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat. Genet 52, 931–938 (2020).
pubmed: 32632336 pmcid: 10353856 doi: 10.1038/s41588-020-0662-x
Bradley, W. D. et al. EZH2 inhibitor efficacy in non-Hodgkin’s lymphoma does not require suppression of H3K27 monomethylation. Chem. Biol. 21, 1463–1475 (2014).
pubmed: 25457180 doi: 10.1016/j.chembiol.2014.09.017
Jadhav, U. et al. Replicational dilution of H3K27me3 in mammalian cells and the role of poised promoters. Mol. Cell 78, 141–151.e145 (2020).
pubmed: 32027840 pmcid: 7376365 doi: 10.1016/j.molcel.2020.01.017
Kireeva, M. L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).
pubmed: 11931762 doi: 10.1016/S1097-2765(02)00472-0
Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).
pubmed: 12934006 doi: 10.1126/science.1085703
Ramachandran, S., Ahmad, K. & Henikoff, S. Transcription and remodeling produce asymmetrically unwrapped nucleosomal intermediates. Mol. Cell 68, 1038–1053.e1034 (2017).
pubmed: 29225036 pmcid: 6421108 doi: 10.1016/j.molcel.2017.11.015
Narita, T. et al. A unique H2B acetylation signature marks active enhancers and predicts their target genes. bioRxiv https://doi.org/10.1101/2022.07.18.500459 (2022).
Chen, S., Chen, S., Duan, Q. & Xu, G. Site-specific acetyl lysine antibodies reveal differential regulation of histone acetylation upon kinase inhibition. Cell Biochem. Biophys. 75, 119–129 (2017).
pubmed: 27990613 doi: 10.1007/s12013-016-0777-y
Voss, A. K. & Thomas, T. Histone lysine and genomic targets of histone acetyltransferases in mammals. Bioessays 40, e1800078 (2018).
pubmed: 30144132 doi: 10.1002/bies.201800078
Hansen, B. K. et al. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat. Commun. 10, 1055 (2019).
pubmed: 30837475 pmcid: 6401094 doi: 10.1038/s41467-019-09024-0
Scholz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–423 (2015).
pubmed: 25751058 doi: 10.1038/nbt.3130
Tatham, M. H. et al. A proteomic approach to analyze the aspirin-mediated lysine acetylome. Mol. Cell Proteom. 16, 310–326 (2017).
doi: 10.1074/mcp.O116.065219
Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteom. 1, 376–386 (2002).
doi: 10.1074/mcp.M200025-MCP200
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
pubmed: 17703201 doi: 10.1038/nprot.2007.261
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).
pubmed: 35561197 pmcid: 9113351 doi: 10.1093/bioinformatics/btac166
Jung, Y. & Han, D. BWA-MEME: BWA-MEM emulated with a machine learning approach. Bioinformatics 38, 2404–2413 (2022).
pubmed: 35253835 doi: 10.1093/bioinformatics/btac137
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Hentges, L. D. et al. LanceOtron: a deep learning peak caller for genome sequencing experiments. Bioinformatics 38, 4255–4263 (2022).
pubmed: 35866989 pmcid: 9477537 doi: 10.1093/bioinformatics/btac525
Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–165, (2016).
pubmed: 27079975 pmcid: 4987876 doi: 10.1093/nar/gkw257
Gu, Z., Eils, R., Schlesner, M. & Ishaque, N. EnrichedHeatmap: an R/bioconductor package for comprehensive visualization of genomic signal associations. BMC Genom. 19, 234 (2018).
doi: 10.1186/s12864-018-4625-x
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038

Auteurs

Tim Liebner (T)

Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.

Sinan Kilic (S)

Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.

Jonas Walter (J)

Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.

Hitoshi Aibara (H)

Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.

Takeo Narita (T)

Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.

Chunaram Choudhary (C)

Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. chuna.choudhary@cpr.ku.dk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH