Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
26
07
2023
accepted:
04
06
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.
Identifiants
pubmed: 38862536
doi: 10.1038/s41467-024-49370-2
pii: 10.1038/s41467-024-49370-2
doi:
Substances chimiques
Histones
0
p300-CBP Transcription Factors
EC 2.3.1.48
Histone Acetyltransferases
EC 2.3.1.48
Lysine
K3Z4F929H6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4962Subventions
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF14CC0001
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF22OC0074677
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R347-2020-2170
Informations de copyright
© 2024. The Author(s).
Références
Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc. Natl Acad. Sci. USA 51, 786–794 (1964).
pubmed: 14172992
pmcid: 300163
doi: 10.1073/pnas.51.5.786
Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006).
pubmed: 16916647
doi: 10.1016/j.molcel.2006.06.026
Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).
pubmed: 19608861
doi: 10.1126/science.1175371
Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).
pubmed: 25053359
doi: 10.1038/nrm3841
Ali, I., Conrad, R. J., Verdin, E. & Ott, M. Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem. Rev. 118, 1216–1252 (2018).
pubmed: 29405707
pmcid: 6609103
doi: 10.1021/acs.chemrev.7b00181
Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).
pubmed: 30467427
doi: 10.1038/s41580-018-0081-3
Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017).
pubmed: 27924077
doi: 10.1038/nrm.2016.140
Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).
pubmed: 25549891
doi: 10.1038/nrm3931
Drazic, A., Myklebust, L. M., Ree, R. & Arnesen, T. The world of protein acetylation. Biochim Biophys. Acta 1864, 1372–1401 (2016).
pubmed: 27296530
doi: 10.1016/j.bbapap.2016.06.007
Imhof, A. & Wolffe, A. P. Transcription: gene control by targeted histone acetylation. Curr. Biol. 8, R422–424, (1998).
pubmed: 9637914
doi: 10.1016/S0960-9822(98)70268-4
Sterner, D. E. & Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol Mol. Biol. Rev. 64, 435–459 (2000).
pubmed: 10839822
pmcid: 98999
doi: 10.1128/MMBR.64.2.435-459.2000
Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 (1998).
pubmed: 9499396
doi: 10.1101/gad.12.5.599
Edwards, G. S. & Allfrey, V. G. Aflatoxin B1 and actinomycin D effects on histone: acetylation and deacetylation in the liver. Biochim Biophys. Acta 299, 354–366 (1973).
pubmed: 4706459
doi: 10.1016/0005-2787(73)90360-2
Moore, M., Jackson, V., Sealy, L. & Chalkley, R. Comparative studies on highly metabolically active histone acetylation. Biochim Biophys. Acta 561, 248–260 (1979).
pubmed: 105758
doi: 10.1016/0005-2787(79)90508-2
Pogo, B. G., Allfrey, V. G. & Mirsky, A. E. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc. Natl Acad. Sci. USA 55, 805–812 (1966).
pubmed: 5219687
pmcid: 224233
doi: 10.1073/pnas.55.4.805
Clayton, A. L., Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. Histone acetylation and gene induction in human cells. FEBS Lett. 336, 23–26 (1993).
pubmed: 8262210
doi: 10.1016/0014-5793(93)81601-U
Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988).
pubmed: 3409869
pmcid: 458389
doi: 10.1002/j.1460-2075.1988.tb02956.x
Kuo, M. H., Zhou, J., Jambeck, P., Churchill, M. E. & Allis, C. D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12, 627–639 (1998).
pubmed: 9499399
pmcid: 316582
doi: 10.1101/gad.12.5.627
Martinez-Balbas, M. A. et al. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 17, 2886–2893 (1998).
pubmed: 9582282
pmcid: 1170629
doi: 10.1093/emboj/17.10.2886
Yan, Y., Barlev, N. A., Haley, R. H., Berger, S. L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6, 1195–1205 (2000).
pubmed: 11106757
doi: 10.1016/S1097-2765(00)00116-7
Allard, S. et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 18, 5108–5119 (1999).
pubmed: 10487762
pmcid: 1171581
doi: 10.1093/emboj/18.18.5108
Chakravarti, D. et al. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96, 393–403 (1999).
pubmed: 10025405
doi: 10.1016/S0092-8674(00)80552-8
Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet 39, 311–318 (2007).
pubmed: 17277777
doi: 10.1038/ng1966
Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet 40, 897–903 (2008).
pubmed: 18552846
pmcid: 2769248
doi: 10.1038/ng.154
Karlic, R., Chung, H. R., Lasserre, J., Vlahovicek, K. & Vingron, M. Histone modification levels are predictive for gene expression. Proc. Natl Acad. Sci. USA 107, 2926–2931 (2010).
pubmed: 20133639
pmcid: 2814872
doi: 10.1073/pnas.0909344107
Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).
pubmed: 21131905
doi: 10.1038/emboj.2010.318
Sato, Y. et al. Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development 146, dev179127 (2019).
Narita, T. et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol. Cell 81, 2166–2182 e2166 (2021).
pubmed: 33765415
doi: 10.1016/j.molcel.2021.03.008
Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu Rev. Biochem 76, 75–100 (2007).
pubmed: 17362198
doi: 10.1146/annurev.biochem.76.052705.162114
Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet 27, 389–396 (2011).
pubmed: 21764166
doi: 10.1016/j.tig.2011.06.006
Chen, P. B., Chen, H. V., Acharya, D., Rando, O. J. & Fazzio, T. G. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat. Struct. Mol. Biol. 22, 999–1007 (2015).
pubmed: 26551076
pmcid: 4677832
doi: 10.1038/nsmb.3122
Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).
pubmed: 19698979
pmcid: 2750862
doi: 10.1016/j.cell.2009.06.049
Bose, D. A. et al. RNA binding to CBP stimulates histone acetylation and transcription. Cell 168, 135–149.e122 (2017).
pubmed: 28086087
pmcid: 5325706
doi: 10.1016/j.cell.2016.12.020
Martin, B. J. E. et al. Transcription shapes genome-wide histone acetylation patterns. Nat. Commun. 12, 210 (2021).
pubmed: 33431884
pmcid: 7801501
doi: 10.1038/s41467-020-20543-z
Wang, Z. et al. Prediction of histone post-translational modification patterns based on nascent transcription data. Nat. Genet 54, 295–305 (2022).
pubmed: 35273399
pmcid: 9444190
doi: 10.1038/s41588-022-01026-x
Adelman, K. Nascent transcription as a predictor and driver of histone modifications. Nat. Genet 54, 223–224 (2022).
pubmed: 35273400
doi: 10.1038/s41588-021-01004-9
Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23 (2005).
pubmed: 16289629
doi: 10.1016/j.gene.2005.09.010
Fournier, M. et al. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification. Nat. Commun. 7, 13227 (2016).
pubmed: 27796307
pmcid: 5095585
doi: 10.1038/ncomms13227
Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244.e212 (2018).
pubmed: 29804834
pmcid: 6078418
doi: 10.1016/j.cell.2018.04.033
Sobell, H. M. Actinomycin and DNA transcription. Proc. Natl Acad. Sci. USA 82, 5328–5331 (1985).
pubmed: 2410919
pmcid: 390561
doi: 10.1073/pnas.82.16.5328
Olson, C. M. et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol. 14, 163–170 (2018).
pubmed: 29251720
doi: 10.1038/nchembio.2538
Titov, D. V. et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat. Chem. Biol. 7, 182–188 (2011).
pubmed: 21278739
pmcid: 3622543
doi: 10.1038/nchembio.522
Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017).
pubmed: 28953875
pmcid: 6050590
doi: 10.1038/nature24028
Kim, J. et al. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459–471 (2009).
pubmed: 19410543
pmcid: 2678028
doi: 10.1016/j.cell.2009.02.027
Davie, J. R. & Murphy, L. C. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry 29, 4752–4757 (1990).
pubmed: 2163669
doi: 10.1021/bi00472a002
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).
pubmed: 21106759
pmcid: 3003124
doi: 10.1073/pnas.1016071107
Narita, T. et al. Acetylation of histone H2B marks active enhancers and predicts CBP/p300 target genes. Nat. Genet 55, 679–692 (2023).
pubmed: 37024579
pmcid: 10101849
doi: 10.1038/s41588-023-01348-4
Ortega, E. et al. Transcription factor dimerization activates the p300 acetyltransferase. Nature 562, 538–544 (2018).
pubmed: 30323286
pmcid: 6914384
doi: 10.1038/s41586-018-0621-1
Thompson, P. R. et al. Regulation of the p300 HAT domain via a novel activation loop. Nat. Struct. Mol. Biol. 11, 308–315 (2004).
pubmed: 15004546
doi: 10.1038/nsmb740
Rosencrance, C. D. et al. Chromatin hyperacetylation impacts chromosome folding by forming a nuclear subcompartment. Mol. Cell 78, 112–126.e112 (2020).
pubmed: 32243828
pmcid: 7164681
doi: 10.1016/j.molcel.2020.03.018
Jaeger, M. G. et al. Selective mediator dependence of cell-type-specifying transcription. Nat. Genet 52, 719–727 (2020).
pubmed: 32483291
pmcid: 7610447
doi: 10.1038/s41588-020-0635-0
Zheng, Y., Tipton, J. D., Thomas, P. M., Kelleher, N. L. & Sweet, S. M. Site-specific human histone H3 methylation stability: fast K4me3 turnover. Proteomics 14, 2190–2199 (2014).
pubmed: 24826939
pmcid: 4184988
doi: 10.1002/pmic.201400060
Zheng, Y., Thomas, P. M. & Kelleher, N. L. Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat. Commun. 4, 2203 (2013).
pubmed: 23892279
doi: 10.1038/ncomms3203
Long, Y. et al. RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat. Genet 52, 931–938 (2020).
pubmed: 32632336
pmcid: 10353856
doi: 10.1038/s41588-020-0662-x
Bradley, W. D. et al. EZH2 inhibitor efficacy in non-Hodgkin’s lymphoma does not require suppression of H3K27 monomethylation. Chem. Biol. 21, 1463–1475 (2014).
pubmed: 25457180
doi: 10.1016/j.chembiol.2014.09.017
Jadhav, U. et al. Replicational dilution of H3K27me3 in mammalian cells and the role of poised promoters. Mol. Cell 78, 141–151.e145 (2020).
pubmed: 32027840
pmcid: 7376365
doi: 10.1016/j.molcel.2020.01.017
Kireeva, M. L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).
pubmed: 11931762
doi: 10.1016/S1097-2765(02)00472-0
Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).
pubmed: 12934006
doi: 10.1126/science.1085703
Ramachandran, S., Ahmad, K. & Henikoff, S. Transcription and remodeling produce asymmetrically unwrapped nucleosomal intermediates. Mol. Cell 68, 1038–1053.e1034 (2017).
pubmed: 29225036
pmcid: 6421108
doi: 10.1016/j.molcel.2017.11.015
Narita, T. et al. A unique H2B acetylation signature marks active enhancers and predicts their target genes. bioRxiv https://doi.org/10.1101/2022.07.18.500459 (2022).
Chen, S., Chen, S., Duan, Q. & Xu, G. Site-specific acetyl lysine antibodies reveal differential regulation of histone acetylation upon kinase inhibition. Cell Biochem. Biophys. 75, 119–129 (2017).
pubmed: 27990613
doi: 10.1007/s12013-016-0777-y
Voss, A. K. & Thomas, T. Histone lysine and genomic targets of histone acetyltransferases in mammals. Bioessays 40, e1800078 (2018).
pubmed: 30144132
doi: 10.1002/bies.201800078
Hansen, B. K. et al. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat. Commun. 10, 1055 (2019).
pubmed: 30837475
pmcid: 6401094
doi: 10.1038/s41467-019-09024-0
Scholz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–423 (2015).
pubmed: 25751058
doi: 10.1038/nbt.3130
Tatham, M. H. et al. A proteomic approach to analyze the aspirin-mediated lysine acetylome. Mol. Cell Proteom. 16, 310–326 (2017).
doi: 10.1074/mcp.O116.065219
Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteom. 1, 376–386 (2002).
doi: 10.1074/mcp.M200025-MCP200
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
pubmed: 17703201
doi: 10.1038/nprot.2007.261
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
doi: 10.1038/nbt.1511
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).
pubmed: 35561197
pmcid: 9113351
doi: 10.1093/bioinformatics/btac166
Jung, Y. & Han, D. BWA-MEME: BWA-MEM emulated with a machine learning approach. Bioinformatics 38, 2404–2413 (2022).
pubmed: 35253835
doi: 10.1093/bioinformatics/btac137
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Hentges, L. D. et al. LanceOtron: a deep learning peak caller for genome sequencing experiments. Bioinformatics 38, 4255–4263 (2022).
pubmed: 35866989
pmcid: 9477537
doi: 10.1093/bioinformatics/btac525
Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–165, (2016).
pubmed: 27079975
pmcid: 4987876
doi: 10.1093/nar/gkw257
Gu, Z., Eils, R., Schlesner, M. & Ishaque, N. EnrichedHeatmap: an R/bioconductor package for comprehensive visualization of genomic signal associations. BMC Genom. 19, 234 (2018).
doi: 10.1186/s12864-018-4625-x
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038