Internal initiation of reverse transcription in a Penelope-like retrotransposon.

GIY-YIG endonuclease Hammerhead ribozyme Reverse transcriptase

Journal

Mobile DNA
ISSN: 1759-8753
Titre abrégé: Mob DNA
Pays: England
ID NLM: 101519891

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 20 11 2023
accepted: 03 06 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: epublish

Résumé

Eukaryotic retroelements are generally divided into two classes: long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. A third class of eukaryotic retroelement, the Penelope-like elements (PLEs), has been well-characterized bioinformatically, but relatively little is known about the transposition mechanism of these elements. PLEs share some features with the R2 retrotransposon from Bombyx mori, which uses a target-primed reverse transcription (TPRT) mechanism, but their distinct phylogeny suggests PLEs may utilize a novel mechanism of mobilization. Using protein purified from E. coli, we report unique in vitro properties of a PLE from the green anole (Anolis carolinensis), revealing mechanistic aspects not shared by other retrotransposons. We found that reverse transcription is initiated at two adjacent sites within the transposon RNA that is not homologous to the cleaved DNA, a feature that is reflected in the genomic "tail" signature shared between and unique to PLEs. Our results for the first active PLE in vitro provide a starting point for understanding PLE mobilization and biology.

Identifiants

pubmed: 38863000
doi: 10.1186/s13100-024-00322-z
pii: 10.1186/s13100-024-00322-z
doi:

Types de publication

Journal Article

Langues

eng

Pagination

12

Subventions

Organisme : National Science Foundation
ID : NSF MCB-2139001

Informations de copyright

© 2024. The Author(s).

Références

Evgen’ev MB, et al. Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci USA. 1997;94:196–201.
doi: 10.1073/pnas.94.1.196 pubmed: 8990185 pmcid: 19282
Arkhipova IR, Pyatkov KI, Meselson M, Evgen’ev MB. Retroelements containing introns in diverse invertebrate taxa. Nat Genet. 2003;33:123–4.
doi: 10.1038/ng1074 pubmed: 12524543
Craig RJ, Yushenova IA, Rodriguez F, Arkhipova I.R. An ancient clade of Penelope-like retroelements with permuted domains is present in the green lineage and protists, and dominates many invertebrate genomes. Mol Biol Evol. 2021;38(11):5005–20.
Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993;72:595–605.
doi: 10.1016/0092-8674(93)90078-5 pubmed: 7679954
Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990;9:3353–62.
doi: 10.1002/j.1460-2075.1990.tb07536.x pubmed: 1698615 pmcid: 552073
Schostak N, et al. Molecular dissection of Penelope transposable element regulatory machinery. Nucleic Acids Res. 2008;36:2522–9.
doi: 10.1093/nar/gkm1166 pubmed: 18319284 pmcid: 2377424
Eickbush TH, Eickbush DG. Integration, regulation, and long-term stability of R2 retrotransposons. Microbiol Spectr. 2015;3(2):MDNA3–0011–2014.
Wilkinson ME, Frangieh CJ, Macrae RK, Zhang F. Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Science. 2023;380:301–8.
doi: 10.1126/science.adg7883 pubmed: 37023171 pmcid: 10499050
Thawani A, Ariza AJF, Nogales E, Collins K. Template and target-site recognition by human LINE-1 in retrotransposition. Nature. 2024;626:186–93.
doi: 10.1038/s41586-023-06933-5 pubmed: 38096901
Pyatkov KI, Arkhipova IR, Malkova NV, Finnegan DJ, Evgen’ev MB. Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc Natl Acad Sci USA. 2004;101:14719–24.
doi: 10.1073/pnas.0406281101 pubmed: 15465912 pmcid: 522041
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.
doi: 10.1038/s41586-021-03819-2 pubmed: 34265844 pmcid: 8371605
Mirdita M, et al. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–82.
doi: 10.1038/s41592-022-01488-1 pubmed: 35637307 pmcid: 9184281
Scott WG, Horan LH, Martick M. The hammerhead ribozyme: structure, catalysis, and gene regulation. Prog Mol Biol Transl Sci. 2013;120:1–23.
doi: 10.1016/B978-0-12-381286-5.00001-9 pubmed: 24156940 pmcid: 4008931
Cervera A, De la Peña M. Eukaryotic penelope-like retroelements encode hammerhead ribozyme motifs. Mol Biol Evol. 2014;31:2941–7.
doi: 10.1093/molbev/msu232 pubmed: 25135949 pmcid: 4209133
Martick M, Scott WG. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell. 2006;126:309–20.
doi: 10.1016/j.cell.2006.06.036 pubmed: 16859740 pmcid: 4447102
Kowalski JC, et al. Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Res. 1999;27:2115–25.
doi: 10.1093/nar/27.10.2115 pubmed: 10219084 pmcid: 148431
Sayers EW, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021;49:D10–7.
doi: 10.1093/nar/gkaa892 pubmed: 33095870
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
doi: 10.1038/nmeth.1923 pubmed: 22388286 pmcid: 3322381
Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. 2019;35:421–32.
doi: 10.1093/bioinformatics/bty648 pubmed: 30020410
Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol. 2014;1079:131–46.
doi: 10.1007/978-1-62703-646-7_8 pubmed: 24170399
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.
doi: 10.1093/bioinformatics/btp033 pubmed: 19151095 pmcid: 2672624
Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6:11.
doi: 10.1186/s13100-015-0041-9 pubmed: 26045719 pmcid: 4455052
Arkhipova IR. Distribution and phylogeny of Penelope-like elements in eukaryotes. Syst Biol. 2006;55:875–85.
doi: 10.1080/10635150601077683 pubmed: 17345670
Schmid-Burgk JL, et al. Highly Parallel Profiling of Cas9 Variant Specificity. Mol Cell. 2020;78:794–800.e8.
doi: 10.1016/j.molcel.2020.02.023 pubmed: 32187529 pmcid: 7370240
Walguarnery JW, Goodman RM, Echternacht AC. Thermal biology and temperature selection in juvenile lizards of co-occurring native and introduced Anolis species. J Herpetol. 2012;46(4):620–4.
doi: 10.1670/12-188
Arkhipova IR, Yushenova IA, Rodriguez F. Giant reverse transcriptase-encoding transposable elements at telomeres. Mol Biol Evol. 2017;34(9):2245–57.
doi: 10.1093/molbev/msx159 pubmed: 28575409 pmcid: 5850863
Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90.
doi: 10.1101/gr.849004 pubmed: 15173120 pmcid: 419797
Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algorithms for Molecular Biology. 2011;6(1):26.
doi: 10.1186/1748-7188-6-26 pubmed: 22115189 pmcid: 3319429
Kabelik D, Julien AR, Ramirez D, O’Connell LA. Social boldness correlates with brain gene expression in male green anoles. Horm Behav. 2021;133: 105007.
doi: 10.1016/j.yhbeh.2021.105007 pubmed: 34102460 pmcid: 8277760
Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat Commun. 2021;12:941.
doi: 10.1038/s41467-021-21194-4 pubmed: 33574226 pmcid: 7878809

Auteurs

Chris J Frangieh (CJ)

Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Max E Wilkinson (ME)

Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Daniel Strebinger (D)

Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Jonathan Strecker (J)

Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Michelle L Walsh (ML)

Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Guilhem Faure (G)

Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Irina A Yushenova (IA)

Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.

Rhiannon K Macrae (RK)

Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Irina R Arkhipova (IR)

Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA. iarkhipova@mbl.edu.

Feng Zhang (F)

Howard Hughes Medical Institute, Cambridge, MA, 02139, USA. zhang@broadinstitute.org.
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. zhang@broadinstitute.org.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. zhang@broadinstitute.org.
Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. zhang@broadinstitute.org.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. zhang@broadinstitute.org.

Classifications MeSH