Internal initiation of reverse transcription in a Penelope-like retrotransposon.
GIY-YIG endonuclease
Hammerhead ribozyme
Reverse transcriptase
Journal
Mobile DNA
ISSN: 1759-8753
Titre abrégé: Mob DNA
Pays: England
ID NLM: 101519891
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
20
11
2023
accepted:
03
06
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
Eukaryotic retroelements are generally divided into two classes: long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. A third class of eukaryotic retroelement, the Penelope-like elements (PLEs), has been well-characterized bioinformatically, but relatively little is known about the transposition mechanism of these elements. PLEs share some features with the R2 retrotransposon from Bombyx mori, which uses a target-primed reverse transcription (TPRT) mechanism, but their distinct phylogeny suggests PLEs may utilize a novel mechanism of mobilization. Using protein purified from E. coli, we report unique in vitro properties of a PLE from the green anole (Anolis carolinensis), revealing mechanistic aspects not shared by other retrotransposons. We found that reverse transcription is initiated at two adjacent sites within the transposon RNA that is not homologous to the cleaved DNA, a feature that is reflected in the genomic "tail" signature shared between and unique to PLEs. Our results for the first active PLE in vitro provide a starting point for understanding PLE mobilization and biology.
Identifiants
pubmed: 38863000
doi: 10.1186/s13100-024-00322-z
pii: 10.1186/s13100-024-00322-z
doi:
Types de publication
Journal Article
Langues
eng
Pagination
12Subventions
Organisme : National Science Foundation
ID : NSF MCB-2139001
Informations de copyright
© 2024. The Author(s).
Références
Evgen’ev MB, et al. Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci USA. 1997;94:196–201.
doi: 10.1073/pnas.94.1.196
pubmed: 8990185
pmcid: 19282
Arkhipova IR, Pyatkov KI, Meselson M, Evgen’ev MB. Retroelements containing introns in diverse invertebrate taxa. Nat Genet. 2003;33:123–4.
doi: 10.1038/ng1074
pubmed: 12524543
Craig RJ, Yushenova IA, Rodriguez F, Arkhipova I.R. An ancient clade of Penelope-like retroelements with permuted domains is present in the green lineage and protists, and dominates many invertebrate genomes. Mol Biol Evol. 2021;38(11):5005–20.
Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993;72:595–605.
doi: 10.1016/0092-8674(93)90078-5
pubmed: 7679954
Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990;9:3353–62.
doi: 10.1002/j.1460-2075.1990.tb07536.x
pubmed: 1698615
pmcid: 552073
Schostak N, et al. Molecular dissection of Penelope transposable element regulatory machinery. Nucleic Acids Res. 2008;36:2522–9.
doi: 10.1093/nar/gkm1166
pubmed: 18319284
pmcid: 2377424
Eickbush TH, Eickbush DG. Integration, regulation, and long-term stability of R2 retrotransposons. Microbiol Spectr. 2015;3(2):MDNA3–0011–2014.
Wilkinson ME, Frangieh CJ, Macrae RK, Zhang F. Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Science. 2023;380:301–8.
doi: 10.1126/science.adg7883
pubmed: 37023171
pmcid: 10499050
Thawani A, Ariza AJF, Nogales E, Collins K. Template and target-site recognition by human LINE-1 in retrotransposition. Nature. 2024;626:186–93.
doi: 10.1038/s41586-023-06933-5
pubmed: 38096901
Pyatkov KI, Arkhipova IR, Malkova NV, Finnegan DJ, Evgen’ev MB. Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc Natl Acad Sci USA. 2004;101:14719–24.
doi: 10.1073/pnas.0406281101
pubmed: 15465912
pmcid: 522041
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.
doi: 10.1038/s41586-021-03819-2
pubmed: 34265844
pmcid: 8371605
Mirdita M, et al. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–82.
doi: 10.1038/s41592-022-01488-1
pubmed: 35637307
pmcid: 9184281
Scott WG, Horan LH, Martick M. The hammerhead ribozyme: structure, catalysis, and gene regulation. Prog Mol Biol Transl Sci. 2013;120:1–23.
doi: 10.1016/B978-0-12-381286-5.00001-9
pubmed: 24156940
pmcid: 4008931
Cervera A, De la Peña M. Eukaryotic penelope-like retroelements encode hammerhead ribozyme motifs. Mol Biol Evol. 2014;31:2941–7.
doi: 10.1093/molbev/msu232
pubmed: 25135949
pmcid: 4209133
Martick M, Scott WG. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell. 2006;126:309–20.
doi: 10.1016/j.cell.2006.06.036
pubmed: 16859740
pmcid: 4447102
Kowalski JC, et al. Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Res. 1999;27:2115–25.
doi: 10.1093/nar/27.10.2115
pubmed: 10219084
pmcid: 148431
Sayers EW, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021;49:D10–7.
doi: 10.1093/nar/gkaa892
pubmed: 33095870
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
doi: 10.1038/nmeth.1923
pubmed: 22388286
pmcid: 3322381
Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. 2019;35:421–32.
doi: 10.1093/bioinformatics/bty648
pubmed: 30020410
Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol. 2014;1079:131–46.
doi: 10.1007/978-1-62703-646-7_8
pubmed: 24170399
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.
doi: 10.1093/bioinformatics/btp033
pubmed: 19151095
pmcid: 2672624
Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6:11.
doi: 10.1186/s13100-015-0041-9
pubmed: 26045719
pmcid: 4455052
Arkhipova IR. Distribution and phylogeny of Penelope-like elements in eukaryotes. Syst Biol. 2006;55:875–85.
doi: 10.1080/10635150601077683
pubmed: 17345670
Schmid-Burgk JL, et al. Highly Parallel Profiling of Cas9 Variant Specificity. Mol Cell. 2020;78:794–800.e8.
doi: 10.1016/j.molcel.2020.02.023
pubmed: 32187529
pmcid: 7370240
Walguarnery JW, Goodman RM, Echternacht AC. Thermal biology and temperature selection in juvenile lizards of co-occurring native and introduced Anolis species. J Herpetol. 2012;46(4):620–4.
doi: 10.1670/12-188
Arkhipova IR, Yushenova IA, Rodriguez F. Giant reverse transcriptase-encoding transposable elements at telomeres. Mol Biol Evol. 2017;34(9):2245–57.
doi: 10.1093/molbev/msx159
pubmed: 28575409
pmcid: 5850863
Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90.
doi: 10.1101/gr.849004
pubmed: 15173120
pmcid: 419797
Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algorithms for Molecular Biology. 2011;6(1):26.
doi: 10.1186/1748-7188-6-26
pubmed: 22115189
pmcid: 3319429
Kabelik D, Julien AR, Ramirez D, O’Connell LA. Social boldness correlates with brain gene expression in male green anoles. Horm Behav. 2021;133: 105007.
doi: 10.1016/j.yhbeh.2021.105007
pubmed: 34102460
pmcid: 8277760
Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat Commun. 2021;12:941.
doi: 10.1038/s41467-021-21194-4
pubmed: 33574226
pmcid: 7878809