Nonconserved epitopes dominate reverse preexisting T cell immunity in COVID-19 convalescents.


Journal

Signal transduction and targeted therapy
ISSN: 2059-3635
Titre abrégé: Signal Transduct Target Ther
Pays: England
ID NLM: 101676423

Informations de publication

Date de publication:
12 Jun 2024
Historique:
received: 05 10 2023
accepted: 20 05 2024
revised: 30 04 2024
medline: 13 6 2024
pubmed: 13 6 2024
entrez: 12 6 2024
Statut: epublish

Résumé

The herd immunity against SARS-CoV-2 is continuously consolidated across the world during the ongoing pandemic. However, the potential function of the nonconserved epitopes in the reverse preexisting cross-reactivity induced by SARS-CoV-2 to other human coronaviruses is not well explored. In our research, we assessed T cell responses to both conserved and nonconserved peptides shared by SARS-CoV-2 and SARS-CoV, identifying cross-reactive CD8

Identifiants

pubmed: 38866784
doi: 10.1038/s41392-024-01876-3
pii: 10.1038/s41392-024-01876-3
doi:

Substances chimiques

Epitopes, T-Lymphocyte 0
Receptors, Antigen, T-Cell 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

160

Informations de copyright

© 2024. The Author(s).

Références

Wu, J. T. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 26, 506–510 (2020).
pubmed: 32284616 pmcid: 7094929 doi: 10.1038/s41591-020-0822-7
Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).
pubmed: 32031570 pmcid: 7042881 doi: 10.1001/jama.2020.1585
Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371, eabf4063 (2021).
pubmed: 33408181 doi: 10.1126/science.abf4063
Chen, J. et al. Decline in neutralising antibody responses, but sustained T-cell immunity, in COVID-19 patients at 7 months post-infection. Clin. Transl. Immunol. 10, e1319 (2021).
doi: 10.1002/cti2.1319
Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369, eabc8511 (2020).
pubmed: 32669297 pmcid: 7402624 doi: 10.1126/science.abc8511
Peng, Y. et al. Broad and strong memory CD4 and CD8 T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21, 1336–1345 (2020).
pubmed: 32887977 pmcid: 7611020 doi: 10.1038/s41590-020-0782-6
Tan, Y. et al. Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection. Front. Med. 14, 746–751 (2020).
pubmed: 33017040 pmcid: 7533664 doi: 10.1007/s11684-020-0822-5
Zhang, J. et al. One-year sustained cellular and humoral immunities of COVID-19 convalescents. Clin. Infect. Dis. 75, e1072–e1081 (2022).
pubmed: 34609506 doi: 10.1093/cid/ciab884
Gallais, F. et al. Intrafamilial exposure to SARS-CoV-2 associated with cellular immune response without seroconversion, France. Emerg. Infect. Dis. 27, 113–121 (2021).
pubmed: 33261718 pmcid: 7774579 doi: 10.3201/eid2701.203611
Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184, 2372–2383.e2379 (2021).
pubmed: 33743213 pmcid: 7953441 doi: 10.1016/j.cell.2021.03.013
Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847–859.e811 (2022).
pubmed: 35139340 pmcid: 8784649 doi: 10.1016/j.cell.2022.01.015
Geers, D. et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 6, eabj1750 (2021).
pubmed: 34035118 pmcid: 9268159 doi: 10.1126/sciimmunol.abj1750
Ng, O.-W. et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34, 2008–2014 (2016).
pubmed: 26954467 pmcid: 7115611 doi: 10.1016/j.vaccine.2016.02.063
Nickbakhsh, S. et al. Epidemiology of seasonal coronaviruses: establishing the context for the emergence of coronavirus disease 2019. J. Infect. Dis. 222, 17–25 (2020).
pubmed: 32296837 pmcid: 7184404 doi: 10.1093/infdis/jiaa185
Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
pubmed: 30531947 doi: 10.1038/s41579-018-0118-9
Yang, L. et al. Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen. J. Gen. Virol. 88, 2740–2748 (2007).
pubmed: 17872527 doi: 10.1099/vir.0.82839-0
Liu, J., Zhang, S., Tan, S., Zheng, B. & Gao, G. F. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Exp. Biol. Med. 236, 253–267 (2011).
doi: 10.1258/ebm.2010.010278
Kirtipal, N., Bharadwaj, S. & Kang, S. G. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect. Genet Evol. 85, 104502 (2020).
pubmed: 32798769 pmcid: 7425554 doi: 10.1016/j.meegid.2020.104502
Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. K. & Perlman, S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol. 88, 11034–11044 (2014).
pubmed: 25056892 pmcid: 4178831 doi: 10.1128/JVI.01505-14
Jiang, W. et al. Characterization of MW06, a human monoclonal antibody with cross-neutralization activity against both SARS-CoV-2 and SARS-CoV. MAbs 13, 1953683 (2021).
pubmed: 34313527 pmcid: 8317929 doi: 10.1080/19420862.2021.1953683
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).
pubmed: 32422645 doi: 10.1038/s41586-020-2349-y
Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).
pubmed: 32245784 pmcid: 7164391 doi: 10.1126/science.abb7269
Wang, C. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11, 2251 (2020).
pubmed: 32366817 pmcid: 7198537 doi: 10.1038/s41467-020-16256-y
Tai, W., Zhang, X., He, Y., Jiang, S. & Du, L. Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antivir. Res 179, 104820 (2020).
pubmed: 32405117 doi: 10.1016/j.antiviral.2020.104820
Huo, J. et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host Microbe 28, 497 (2020).
pubmed: 32910920 pmcid: 7480219 doi: 10.1016/j.chom.2020.07.002
Tian, X. et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect. 9, 382–385 (2020).
pubmed: 32065055 pmcid: 7048180 doi: 10.1080/22221751.2020.1729069
Wrapp, D. et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 181, 1004–1015.e15 (2020).
Fedry, J. et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Sci. Adv. 7, eabf5632 (2021).
pubmed: 33958322 pmcid: 8172134 doi: 10.1126/sciadv.abf5632
Orvedahl, A. & Levine, B. Autophagy and viral neurovirulence. Cell Microbiol 10, 1747–1756 (2008).
pubmed: 18503639 pmcid: 2737270 doi: 10.1111/j.1462-5822.2008.01175.x
Scheid, J. F. et al. B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell 184, 3205–3221.e3224 (2021).
pubmed: 34015271 pmcid: 8064835 doi: 10.1016/j.cell.2021.04.032
Zhou, P. et al. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease. Immunity 56, 669–686.e7 (2023).
Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).
pubmed: 32668444 doi: 10.1038/s41586-020-2550-z
Zhuang, Z. et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J. Exp. Med. 218, e20202187 (2021).
pubmed: 33464307 pmcid: 7814348 doi: 10.1084/jem.20202187
Wen, J. et al. CD4 T cells cross-reactive with dengue and zika viruses protect against zika virus infection. Cell Rep. 31, 107566 (2020).
pubmed: 32348763 pmcid: 7261136 doi: 10.1016/j.celrep.2020.107566
Lim, M. Q. et al. Cross-reactivity and anti-viral function of dengue capsid and NS3-specific memory T cells toward zika virus. Front. Immunol. 9, 2225 (2018).
pubmed: 30327651 pmcid: 6174860 doi: 10.3389/fimmu.2018.02225
Liu, W. J. et al. Protective T Cell Responses Featured by Concordant Recognition of Middle East Respiratory Syndrome Coronavirus-Derived CD8+ T Cell Epitopes and Host MHC. J. Immunol. 198, 873–882 (2017).
pubmed: 27903740 doi: 10.4049/jimmunol.1601542
Liu, J. et al. Conserved epitopes dominate cross-CD8+ T-cell responses against influenza A H1N1 virus among Asian populations. Eur. J. Immunol. 43, 2055–2069 (2013).
pubmed: 23681926 doi: 10.1002/eji.201343417
Lineburg, K. E. et al. CD8 T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses. Immunity 54, 1055–1065.e1055 (2021).
pubmed: 33945786 pmcid: 8043652 doi: 10.1016/j.immuni.2021.04.006
Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 370, 89–94 (2020).
pubmed: 32753554 pmcid: 7574914 doi: 10.1126/science.abd3871
Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501.e1415 (2020).
pubmed: 32473127 pmcid: 7237901 doi: 10.1016/j.cell.2020.05.015
Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 587, 270–274 (2020).
pubmed: 32726801 doi: 10.1038/s41586-020-2598-9
Reynolds, C. J. et al. Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Sci. Immunol. 5, eabf3698 (2020).
pubmed: 33361161 pmcid: 8101131 doi: 10.1126/sciimmunol.abf3698
Zuo, J. et al. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nat. Immunol. 22, 620–626 (2021).
pubmed: 33674800 pmcid: 7610739 doi: 10.1038/s41590-021-00902-8
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).
pubmed: 32406916 pmcid: 7319546 doi: 10.1093/nar/gkaa379
Alvarez, B. et al. NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions. Mol. Cell Proteom. 18, 2459–2477 (2019).
doi: 10.1074/mcp.TIR119.001658
Wu, Z. et al. A comprehensive survey of bat sarbecoviruses across China in relation to the origins of SARS-CoV and SARS-CoV-2. Natl. Sci. Rev., 10, nwac213 (2022).
Miles, A. J., Janes, R. W. & Wallace, B. A. Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. Chem. Soc. Rev. 50, 8400–8413 (2021).
pubmed: 34132259 pmcid: 8328188 doi: 10.1039/D0CS00558D
Sun, Y. et al. Identification and structural definition of H5-specific CTL epitopes restricted by HLA-A*0201 derived from the H5N1 subtype of influenza A viruses. J. Gen. Virol. 91, 919–930 (2010).
pubmed: 19955560 pmcid: 2888162 doi: 10.1099/vir.0.016766-0
Zhao, M. et al. Prolonged evolution of virus-specific memory T cell immunity after severe avian influenza A (H7N9) virus infection. J. Virol. 92, e01024–01018 (2018).
pubmed: 29925664 pmcid: 6096810 doi: 10.1128/JVI.01024-18

Auteurs

Xin Wang (X)

Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.

Jie Zhang (J)

Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
Beijing Institute of Infectious Diseases, Beijing, 100015, China.
National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, P.R. China.

Maoshun Liu (M)

NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.

Yuanyuan Guo (Y)

Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.

Peipei Guo (P)

Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.

Xiaonan Yang (X)

Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.

Bingli Shang (B)

NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.

Min Li (M)

NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.

Jinmin Tian (J)

NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China.

Ting Zhang (T)

NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China.

Xi Wang (X)

Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
Beijing Institute of Infectious Diseases, Beijing, 100015, China.
National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, P.R. China.

Ronghua Jin (R)

Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
Beijing Institute of Infectious Diseases, Beijing, 100015, China.
National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, P.R. China.

Jikun Zhou (J)

Shijiazhuang Fifth Hospital, Shijiazhuang, 050011, China. 13933880581@163.com.

George F Gao (GF)

NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China. gaof@im.ac.cn.
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China. gaof@im.ac.cn.
Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China. gaof@im.ac.cn.

Jun Liu (J)

NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China. liujun@ivdc.chinacdc.cn.
School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China. liujun@ivdc.chinacdc.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH