Nonconserved epitopes dominate reverse preexisting T cell immunity in COVID-19 convalescents.
Humans
SARS-CoV-2
/ immunology
COVID-19
/ immunology
Epitopes, T-Lymphocyte
/ immunology
CD8-Positive T-Lymphocytes
/ immunology
Cross Reactions
/ immunology
Receptors, Antigen, T-Cell
/ immunology
Severe acute respiratory syndrome-related coronavirus
/ immunology
Female
Male
Adult
Pandemics
Middle Aged
Journal
Signal transduction and targeted therapy
ISSN: 2059-3635
Titre abrégé: Signal Transduct Target Ther
Pays: England
ID NLM: 101676423
Informations de publication
Date de publication:
12 Jun 2024
12 Jun 2024
Historique:
received:
05
10
2023
accepted:
20
05
2024
revised:
30
04
2024
medline:
13
6
2024
pubmed:
13
6
2024
entrez:
12
6
2024
Statut:
epublish
Résumé
The herd immunity against SARS-CoV-2 is continuously consolidated across the world during the ongoing pandemic. However, the potential function of the nonconserved epitopes in the reverse preexisting cross-reactivity induced by SARS-CoV-2 to other human coronaviruses is not well explored. In our research, we assessed T cell responses to both conserved and nonconserved peptides shared by SARS-CoV-2 and SARS-CoV, identifying cross-reactive CD8
Identifiants
pubmed: 38866784
doi: 10.1038/s41392-024-01876-3
pii: 10.1038/s41392-024-01876-3
doi:
Substances chimiques
Epitopes, T-Lymphocyte
0
Receptors, Antigen, T-Cell
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
160Informations de copyright
© 2024. The Author(s).
Références
Wu, J. T. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 26, 506–510 (2020).
pubmed: 32284616
pmcid: 7094929
doi: 10.1038/s41591-020-0822-7
Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).
pubmed: 32031570
pmcid: 7042881
doi: 10.1001/jama.2020.1585
Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371, eabf4063 (2021).
pubmed: 33408181
doi: 10.1126/science.abf4063
Chen, J. et al. Decline in neutralising antibody responses, but sustained T-cell immunity, in COVID-19 patients at 7 months post-infection. Clin. Transl. Immunol. 10, e1319 (2021).
doi: 10.1002/cti2.1319
Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369, eabc8511 (2020).
pubmed: 32669297
pmcid: 7402624
doi: 10.1126/science.abc8511
Peng, Y. et al. Broad and strong memory CD4 and CD8 T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21, 1336–1345 (2020).
pubmed: 32887977
pmcid: 7611020
doi: 10.1038/s41590-020-0782-6
Tan, Y. et al. Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection. Front. Med. 14, 746–751 (2020).
pubmed: 33017040
pmcid: 7533664
doi: 10.1007/s11684-020-0822-5
Zhang, J. et al. One-year sustained cellular and humoral immunities of COVID-19 convalescents. Clin. Infect. Dis. 75, e1072–e1081 (2022).
pubmed: 34609506
doi: 10.1093/cid/ciab884
Gallais, F. et al. Intrafamilial exposure to SARS-CoV-2 associated with cellular immune response without seroconversion, France. Emerg. Infect. Dis. 27, 113–121 (2021).
pubmed: 33261718
pmcid: 7774579
doi: 10.3201/eid2701.203611
Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184, 2372–2383.e2379 (2021).
pubmed: 33743213
pmcid: 7953441
doi: 10.1016/j.cell.2021.03.013
Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847–859.e811 (2022).
pubmed: 35139340
pmcid: 8784649
doi: 10.1016/j.cell.2022.01.015
Geers, D. et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 6, eabj1750 (2021).
pubmed: 34035118
pmcid: 9268159
doi: 10.1126/sciimmunol.abj1750
Ng, O.-W. et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34, 2008–2014 (2016).
pubmed: 26954467
pmcid: 7115611
doi: 10.1016/j.vaccine.2016.02.063
Nickbakhsh, S. et al. Epidemiology of seasonal coronaviruses: establishing the context for the emergence of coronavirus disease 2019. J. Infect. Dis. 222, 17–25 (2020).
pubmed: 32296837
pmcid: 7184404
doi: 10.1093/infdis/jiaa185
Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
pubmed: 30531947
doi: 10.1038/s41579-018-0118-9
Yang, L. et al. Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen. J. Gen. Virol. 88, 2740–2748 (2007).
pubmed: 17872527
doi: 10.1099/vir.0.82839-0
Liu, J., Zhang, S., Tan, S., Zheng, B. & Gao, G. F. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Exp. Biol. Med. 236, 253–267 (2011).
doi: 10.1258/ebm.2010.010278
Kirtipal, N., Bharadwaj, S. & Kang, S. G. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect. Genet Evol. 85, 104502 (2020).
pubmed: 32798769
pmcid: 7425554
doi: 10.1016/j.meegid.2020.104502
Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. K. & Perlman, S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol. 88, 11034–11044 (2014).
pubmed: 25056892
pmcid: 4178831
doi: 10.1128/JVI.01505-14
Jiang, W. et al. Characterization of MW06, a human monoclonal antibody with cross-neutralization activity against both SARS-CoV-2 and SARS-CoV. MAbs 13, 1953683 (2021).
pubmed: 34313527
pmcid: 8317929
doi: 10.1080/19420862.2021.1953683
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).
pubmed: 32422645
doi: 10.1038/s41586-020-2349-y
Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).
pubmed: 32245784
pmcid: 7164391
doi: 10.1126/science.abb7269
Wang, C. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11, 2251 (2020).
pubmed: 32366817
pmcid: 7198537
doi: 10.1038/s41467-020-16256-y
Tai, W., Zhang, X., He, Y., Jiang, S. & Du, L. Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antivir. Res 179, 104820 (2020).
pubmed: 32405117
doi: 10.1016/j.antiviral.2020.104820
Huo, J. et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host Microbe 28, 497 (2020).
pubmed: 32910920
pmcid: 7480219
doi: 10.1016/j.chom.2020.07.002
Tian, X. et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect. 9, 382–385 (2020).
pubmed: 32065055
pmcid: 7048180
doi: 10.1080/22221751.2020.1729069
Wrapp, D. et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 181, 1004–1015.e15 (2020).
Fedry, J. et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Sci. Adv. 7, eabf5632 (2021).
pubmed: 33958322
pmcid: 8172134
doi: 10.1126/sciadv.abf5632
Orvedahl, A. & Levine, B. Autophagy and viral neurovirulence. Cell Microbiol 10, 1747–1756 (2008).
pubmed: 18503639
pmcid: 2737270
doi: 10.1111/j.1462-5822.2008.01175.x
Scheid, J. F. et al. B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell 184, 3205–3221.e3224 (2021).
pubmed: 34015271
pmcid: 8064835
doi: 10.1016/j.cell.2021.04.032
Zhou, P. et al. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease. Immunity 56, 669–686.e7 (2023).
Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).
pubmed: 32668444
doi: 10.1038/s41586-020-2550-z
Zhuang, Z. et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J. Exp. Med. 218, e20202187 (2021).
pubmed: 33464307
pmcid: 7814348
doi: 10.1084/jem.20202187
Wen, J. et al. CD4 T cells cross-reactive with dengue and zika viruses protect against zika virus infection. Cell Rep. 31, 107566 (2020).
pubmed: 32348763
pmcid: 7261136
doi: 10.1016/j.celrep.2020.107566
Lim, M. Q. et al. Cross-reactivity and anti-viral function of dengue capsid and NS3-specific memory T cells toward zika virus. Front. Immunol. 9, 2225 (2018).
pubmed: 30327651
pmcid: 6174860
doi: 10.3389/fimmu.2018.02225
Liu, W. J. et al. Protective T Cell Responses Featured by Concordant Recognition of Middle East Respiratory Syndrome Coronavirus-Derived CD8+ T Cell Epitopes and Host MHC. J. Immunol. 198, 873–882 (2017).
pubmed: 27903740
doi: 10.4049/jimmunol.1601542
Liu, J. et al. Conserved epitopes dominate cross-CD8+ T-cell responses against influenza A H1N1 virus among Asian populations. Eur. J. Immunol. 43, 2055–2069 (2013).
pubmed: 23681926
doi: 10.1002/eji.201343417
Lineburg, K. E. et al. CD8 T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses. Immunity 54, 1055–1065.e1055 (2021).
pubmed: 33945786
pmcid: 8043652
doi: 10.1016/j.immuni.2021.04.006
Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 370, 89–94 (2020).
pubmed: 32753554
pmcid: 7574914
doi: 10.1126/science.abd3871
Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501.e1415 (2020).
pubmed: 32473127
pmcid: 7237901
doi: 10.1016/j.cell.2020.05.015
Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 587, 270–274 (2020).
pubmed: 32726801
doi: 10.1038/s41586-020-2598-9
Reynolds, C. J. et al. Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Sci. Immunol. 5, eabf3698 (2020).
pubmed: 33361161
pmcid: 8101131
doi: 10.1126/sciimmunol.abf3698
Zuo, J. et al. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nat. Immunol. 22, 620–626 (2021).
pubmed: 33674800
pmcid: 7610739
doi: 10.1038/s41590-021-00902-8
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).
pubmed: 32406916
pmcid: 7319546
doi: 10.1093/nar/gkaa379
Alvarez, B. et al. NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions. Mol. Cell Proteom. 18, 2459–2477 (2019).
doi: 10.1074/mcp.TIR119.001658
Wu, Z. et al. A comprehensive survey of bat sarbecoviruses across China in relation to the origins of SARS-CoV and SARS-CoV-2. Natl. Sci. Rev., 10, nwac213 (2022).
Miles, A. J., Janes, R. W. & Wallace, B. A. Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. Chem. Soc. Rev. 50, 8400–8413 (2021).
pubmed: 34132259
pmcid: 8328188
doi: 10.1039/D0CS00558D
Sun, Y. et al. Identification and structural definition of H5-specific CTL epitopes restricted by HLA-A*0201 derived from the H5N1 subtype of influenza A viruses. J. Gen. Virol. 91, 919–930 (2010).
pubmed: 19955560
pmcid: 2888162
doi: 10.1099/vir.0.016766-0
Zhao, M. et al. Prolonged evolution of virus-specific memory T cell immunity after severe avian influenza A (H7N9) virus infection. J. Virol. 92, e01024–01018 (2018).
pubmed: 29925664
pmcid: 6096810
doi: 10.1128/JVI.01024-18