Therapeutic efficacy and safety of artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria treatment in Metehara, Central-east Ethiopia.


Journal

Malaria journal
ISSN: 1475-2875
Titre abrégé: Malar J
Pays: England
ID NLM: 101139802

Informations de publication

Date de publication:
12 Jun 2024
Historique:
received: 07 02 2024
accepted: 20 05 2024
medline: 13 6 2024
pubmed: 13 6 2024
entrez: 12 6 2024
Statut: epublish

Résumé

Malaria remains a major global health problem although there was a remarkable achievement between 2000 and 2015. Malaria drug resistance, along with several other factors, presents a significant challenge to malaria control and elimination efforts. Numerous countries in sub-Saharan Africa have documented the presence of confirmed or potential markers of partial resistance against artemisinin, the drug of choice for the treatment of uncomplicated Plasmodium falciparum malaria. The World Health Organization (WHO) recommends regular surveillance of artemisinin therapeutic efficacy to inform policy decisions. This study aimed to evaluate the therapeutic efficacy of artemether-lumefantrine (AL), which is the first-line treatment for uncomplicated P. falciparum malaria in Ethiopia since 2004. Using a single-arm prospective evaluation design, the study assessed the clinical and parasitological responses of patients with uncomplicated P. falciparum malaria in Metehara Health Centre, central-east Ethiopia. Out of 2332 malaria suspects (1187 males, 1145 females) screened, 80 (50 males, 30 females) were enrolled, followed up for 28 days, and 73 (44 males, 29 females) completed the follow up. The study was conducted and data was analysed by employing the per-protocol and Kaplan-Meier analyses following the WHO Malaria Therapeutic Efficacy Evaluation Guidelines 2009. The results indicated rapid parasite clearance and resolution of clinical symptoms, with all patients achieving complete recovery from asexual parasitaemia and fever by day (D) 3. The prevalence of gametocytes decreased from 6.3% on D0 to 2.5% on D2, D3, D7, and ultimately achieving complete clearance afterward. The overall cure rate for AL treatment was 100%, demonstrating its high efficacy in effectively eliminating malaria parasites in patients. No serious adverse events related to AL treatment were reported during the study, suggesting its safety and tolerability among the participants. These findings confirm that AL remains a highly efficacious treatment for uncomplicated P. falciparum malaria in the study site after 20 years of its introduction in Ethiopia.

Sections du résumé

BACKGROUND BACKGROUND
Malaria remains a major global health problem although there was a remarkable achievement between 2000 and 2015. Malaria drug resistance, along with several other factors, presents a significant challenge to malaria control and elimination efforts. Numerous countries in sub-Saharan Africa have documented the presence of confirmed or potential markers of partial resistance against artemisinin, the drug of choice for the treatment of uncomplicated Plasmodium falciparum malaria. The World Health Organization (WHO) recommends regular surveillance of artemisinin therapeutic efficacy to inform policy decisions.
METHODS METHODS
This study aimed to evaluate the therapeutic efficacy of artemether-lumefantrine (AL), which is the first-line treatment for uncomplicated P. falciparum malaria in Ethiopia since 2004. Using a single-arm prospective evaluation design, the study assessed the clinical and parasitological responses of patients with uncomplicated P. falciparum malaria in Metehara Health Centre, central-east Ethiopia. Out of 2332 malaria suspects (1187 males, 1145 females) screened, 80 (50 males, 30 females) were enrolled, followed up for 28 days, and 73 (44 males, 29 females) completed the follow up. The study was conducted and data was analysed by employing the per-protocol and Kaplan-Meier analyses following the WHO Malaria Therapeutic Efficacy Evaluation Guidelines 2009.
RESULTS RESULTS
The results indicated rapid parasite clearance and resolution of clinical symptoms, with all patients achieving complete recovery from asexual parasitaemia and fever by day (D) 3. The prevalence of gametocytes decreased from 6.3% on D0 to 2.5% on D2, D3, D7, and ultimately achieving complete clearance afterward.
CONCLUSION CONCLUSIONS
The overall cure rate for AL treatment was 100%, demonstrating its high efficacy in effectively eliminating malaria parasites in patients. No serious adverse events related to AL treatment were reported during the study, suggesting its safety and tolerability among the participants. These findings confirm that AL remains a highly efficacious treatment for uncomplicated P. falciparum malaria in the study site after 20 years of its introduction in Ethiopia.

Identifiants

pubmed: 38867217
doi: 10.1186/s12936-024-04991-2
pii: 10.1186/s12936-024-04991-2
doi:

Substances chimiques

Artemether, Lumefantrine Drug Combination 0
Antimalarials 0
Artemisinins 0
Fluorenes 0
Ethanolamines 0
Drug Combinations 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

184

Informations de copyright

© 2024. The Author(s).

Références

WHO. World malaria report 2023. Geneva: World Health Organization; 2023.
WHO. World malaria report 2022. Geneva: World Health Organization; 2022.
Degarege A, Fennie K, Degarege D, Chennupati S, Madhivanan P. Improving socioeconomic status may reduce the burden of malaria in sub-Saharan Africa: a systematic review and meta-analysis. PLoS ONE. 2019;14: e0211205.
pubmed: 30677102 pmcid: 6345497 doi: 10.1371/journal.pone.0211205
Monroe A, Olapeju B, Moore S, Hunter G, Merritt AP, Okumub F, Babalolaa S. Improving malaria control by understanding human behavior. Bull World Health Organ. 2021;99:837–9.
pubmed: 34737477 pmcid: 8542269 doi: 10.2471/BLT.20.285369
Zinszer K, Talisuna AO. Fighting insecticide resistance in malaria control. Lancet. 2023;23:138–9.
doi: 10.1016/S1473-3099(22)00518-7
Stefani A, Dusfour I, Corrêa APSA, Cruz MCB, Dessay N, Galardo AKR, et al. Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data. Malar J. 2013;12:192.
pubmed: 23758827 pmcid: 3684522 doi: 10.1186/1475-2875-12-192
Paul P, Kangalawe RYM, Mboera LEG. Land-use patterns and their implication on malaria transmission in Kilosa District, Tanzania. Trop Dis Travel Med Vacc. 2018;4:6.
doi: 10.1186/s40794-018-0066-4
Yamba EI, Fink AH, Badu K, Asare EO, Tompkins AM, Amekudzi LK. Climate drivers of malaria transmission seasonality and their relative importance in Sub-Saharan Africa. GeoHealth. 2023;7:e2022GH000698.
pubmed: 36743738 pmcid: 9884660 doi: 10.1029/2022GH000698
Kabaria CW, Gilbert M, Noor AM, Snow RW, Linard C. The impact of urbanization and population density on childhood Plasmodium falciparum parasite prevalence rates in Africa. Malar J. 2017;16:49.
pubmed: 28125996 pmcid: 5270336 doi: 10.1186/s12936-017-1694-2
Caminade C, Kovat S, Rocklov J, Tompkins AM, Morse AP, Colón-Agonzález FJ, et al. Impact of climate change on global malaria distribution. Proc Natl Acad Sci USA. 2014;111:3286–91.
pubmed: 24596427 pmcid: 3948226 doi: 10.1073/pnas.1302089111
Kweka EJ, Mazigo HD, Himeidan YE, Morona D, Munga S. Urbanization, climate change and malaria transmission in sub-Saharan Africa. In: Dhang P (eds), Climate Change Impacts on Urban Pests. CAB International. 10th Edn. 2017.
Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009;7:864–74.
pubmed: 19881520 pmcid: 2901398 doi: 10.1038/nrmicro2239
WHO. Guidelines for malaria. Geneva: World Health Organization; 2023.
Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.
pubmed: 25075834 pmcid: 4143591 doi: 10.1056/NEJMoa1314981
Uwimana A, Legrand E, Stokes BH, Ndikumana J-LM, Warsame M, Umulisa N, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26:1602–8.
pubmed: 32747827 pmcid: 7541349 doi: 10.1038/s41591-020-1005-2
Uwimana A, Umulisa N, Venkatesan M, Svigel SS, Zhou Z, Munyaneza T, et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect Dis. 2021;21:1120–8.
pubmed: 33864801 pmcid: 10202849 doi: 10.1016/S1473-3099(21)00142-0
Bergmann C, van Loon W, Habarugira F, Tacoli C, Jäger JC, Savelsberg D, et al. Increase in kelch 13 polymorphisms in Plasmodium falciparum, southern Rwanda. Emerg Infect Dis. 2021;27:294–6.
pubmed: 33350925 pmcid: 7774571 doi: 10.3201/eid2701.203527
Straimer J, Gandhi P, Renner KC, Schmitt EK. High prevalence of Plasmodium falciparum K13 mutations in Rwanda is associated with slow parasite clearance after treatment with artemether lumefantrine. J Infect Dis. 2022;225:1411–4.
pubmed: 34216470 doi: 10.1093/infdis/jiab352
Moser KA, Madebe RA, Aydemir O, Chiduo MG, Mandara CI, Rumisha SF, et al. Describing the current status of Plasmodium falciparum population structure and drug resistance within mainland Tanzania using molecular inversion probes. Mol Ecol. 2021;30:100–13.
pubmed: 33107096 doi: 10.1111/mec.15706
Conrad MD, Asua V, Garg S, Giesbrecht D, Niaré K, Smith S, et al. Evolution of partial resistance to artemisinins in malaria parasites in Uganda. N Engl J Med. 2023;389:722–32.
pubmed: 37611122 pmcid: 10513755 doi: 10.1056/NEJMoa2211803
Asua V, Vinden J, Conrad MD, Legac J, Kigozi SP, Kamya MR, et al. Changing molecular markers of antimalarial drug sensitivity across Uganda. Antimicrob Agents Chemother. 2019;63:e01818-e1918.
pubmed: 30559133 pmcid: 6395896 doi: 10.1128/AAC.01818-18
Asua V, Conrad MD, Aydemir O, Duvalsaint M, Legac J, Duarte E, et al. Changing prevalence of potential mediators of aminoquinoline, antifolate, and artemisinin resistance across Uganda. J Infect Dis. 2021;223:985–94.
pubmed: 33146722 doi: 10.1093/infdis/jiaa687
Tumwebaze PK, Conrad MD, Okitwi M, Orena T, Byaruhanga O, Katairo T, et al. Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda. Nat Commun. 2022;13:6353.
pubmed: 36289202 pmcid: 9605985 doi: 10.1038/s41467-022-33873-x
Mihreteab S, Platon L, Berhane A, Barbara SH, Warsame M, Campagne P, et al. Increasing prevalence of artemisinin-resistant HRP2-egative malaria in Eritrea. N Engl J Med. 2023;389:1191–202.
pubmed: 37754284 pmcid: 10539021 doi: 10.1056/NEJMoa2210956
Fola AA, Feleke SM, Mohammed H, Brhane BG, Hennelly CM, Assefa A, et al. Plasmodium falciparum resistant to artemisinin and diagnostics have emerged in Ethiopia. Nat Microbiol. 2023;8:1911–9.
pubmed: 37640962 pmcid: 10522486 doi: 10.1038/s41564-023-01461-4
Emiru T, Getachew D, Murphy M, Luigi Sedda, Ejigu LA, Bulto MG, et al. Evidence for a role of Anopheles stephensi in the spread of drug- and diagnosis-resistant malaria in Africa. Nat Med. 2023;29:3203–11.
Bayih AG, Getnet G, Alemu A, Getie S, Mohon AN, Pillai DR. A unique Plasmodium falciparum K13 gene mutation in Northwest Ethiopia. Am J Trop Med Hyg. 2016;94:132–5.
pubmed: 26483118 pmcid: 4710417 doi: 10.4269/ajtmh.15-0477
Mohamed AO, Hussien M, Mohamed A, Suliman A, Elkando NS, Abdelbagi H, et al. Assessment of Plasmodium falciparum drug resistance molecular markers from the Blue Nile State, Southeast Sudan. Malar J. 2020;19:78.
pubmed: 32070355 pmcid: 7029593 doi: 10.1186/s12936-020-03165-0
de la Fuente IM, Benito MJS, Ousley J, de Gisbert FB, García L, González V, et al. Screening for K13-propeller mutations associated with artemisinin resistance in Plasmodium falciparum in Yambio County (Western Equatoria State), South Sudan. Am J Trop Med Hyg. 2023;109:1072–6.
doi: 10.4269/ajtmh.23-0382
Jalei AA, Na-Bangchang K, Muhamad P, Chaijaroenkul W. Monitoring antimalarial drug-resistance markers in Somalia. Parasites Hosts Dis. 2023;61:78–83.
pubmed: 37170467 pmcid: 10230660 doi: 10.3347/PHD.22140
Tandoh KZ, Amenga-Etego L, Quashie NB, Awandare G, Wilson M, Duah-Quashie NO. Plasmodium falciparum malaria parasites in Ghana show signatures of balancing selection at artemisinin resistance predisposing background genes. Evol Bioinform Online. 2021;17:1176934321999640.
pubmed: 33746510 pmcid: 7940735 doi: 10.1177/1176934321999640
Matrevi SA, Tandoh KZ, Bruku S, Opoku-Agyeman P, Adams T, Ennuson N, et al. Novel pf13 polymorphisms in Plasmodium falciparum population in Ghana. Sci Rep. 2022;12:7797.
pubmed: 35551239 pmcid: 9098865 doi: 10.1038/s41598-022-11790-9
Ahorhorlu SY, Quashie NB, Jensen RW, Kudzi W, Nartey ET, Duah-Quashie NO, et al. Assessment of artemisinin tolerance in Plasmodium falciparum clinical isolates in children with uncomplicated malaria in Ghana. Malar J. 2023;22:58.
pubmed: 36803541 pmcid: 9938975 doi: 10.1186/s12936-023-04482-w
Kahunu GM, Thomsen SW, Thomsen WL, Mavoko HM, Mulopo MP, Hocke EF, et al. Identification of the PfK13 mutations R561H and P441L in the Democratic Republic of Congo. Int J Infect Dis. 2024;139:41–9.
doi: 10.1016/j.ijid.2023.11.026
Owoloye A, Olufemi M, Idowu ET, Oyebola KM. Prevalence of potential mediators of artemisinin resistance in African isolates of Plasmodium falciparum. Malar J. 2021;20:451.
pubmed: 34856982 pmcid: 8638531 doi: 10.1186/s12936-021-03987-6
Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana S-I, Yamauchi M, et al. Evidence of artemisinin resistant malaria in Africa. N Engl J Med. 2021;385:1163–71.
pubmed: 34551228 doi: 10.1056/NEJMoa2101746
Ndwiga L, Kimenyi KM, Wamae K, Osoti V, Akinyi M, Omedo I, et al. A review of the frequencies of Plasmodium falciparum Kelch 13 artemisinin resistance mutations in Africa. Int J Parasitol Drugs Drug Resist. 2021;16:155–61.
pubmed: 34146993 pmcid: 8219943 doi: 10.1016/j.ijpddr.2021.06.001
Rosenthal PJ, Asua V, Bailey JA, Conrad MD, Ishengoma DS, Kamya MR, et al. The emergence of artemisinin partial resistance in Africa: how do we respond? Lancet Infect Dis. 2024. https://doi.org/10.1016/S1473-3099(24)00141-5 . Online ahead of print.
Rosenthal PJ, Asua V, Conrad MD. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol. 2024. https://doi.org/10.1038/s41579-024-01008-2 . Online ahead of print.
Assefa A, Fola AA, Tasew G. Emergence of Plasmodium falciparum strains with artemisinin partial resistance in East Africa and the Horn of Africa: is there a need to panic? Malar J. 2024;23:34.
pubmed: 38273360 pmcid: 10809756 doi: 10.1186/s12936-024-04848-8
WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009.
WHO. Strategy to respond to antimalarial drug resistance in Africa. Geneva: World Health Organization; 2022.
Williams HA, Durrheim D, Shretta R. The process of changing national malaria treatment policy: lessons from country-level studies. Health Policy Plan. 2004;19:356–70.
pubmed: 15459161 doi: 10.1093/heapol/czh051
Plowe CV. Antimalarial drug resistance in Africa: strategies for monitoring and deterrence. Curr Top Microbiol Immunol. 2005;295:55–79.
pubmed: 16265887
WHO. The use of antimalarial drugs: report of a WHO informal consultation. Geneva: World Health Organization; 2000.
Yohannes AM. Malaria treatment in Ethiopia: antimalarial drug efficacy monitoring system and use of evidence for policy. DLitt et Phil Dissertation, University of South Africa, Pretoria; 2013.
FMoH. Ethiopia malaria elimination strategic plan: 2021–2025. Federal Ministry of Health, Addis Ababa, Ethiopia; 2021.
CSA-FDRE. Population projection of Ethiopia for all Regions at wereda level from 2014–2017. Addis Ababa, Ethiopia; 2013.
Balkew M. Studies on the Anopheline mosquitoes of Metehara and surrounding areas in relation to malaria transmission. MSc Thesis, Addis Ababa University, Ethiopia; 2021.
Kassa M, Mekonnen Y, Micheal TW, Mohamed H, Bulcha S. Therapeutic efficacy of mefloquine and sulfadoxine/pyrimethamine for the treatment of uncomplicated Plasmodium falciparum malaria in children, Metehara town, southeast Ethiopia. Ethiop J Health Dev. 2005;19:167–73.
Nega D, Assefa A, Mohamed H, Solomon H, Woyessa A, Assefa Y, et al. Therapeutic efficacy of Artemether-Lumefantrine (Coartem
pubmed: 27128799 pmcid: 4851404 doi: 10.1371/journal.pone.0154618
Tekeste Z, Petros B. The ABO blood group and Plasmodium falciparum malaria in Awash, Metehara and Ziway areas, Ethiopia. Malar J. 2010;9:280.
pubmed: 20939876 pmcid: 3020677 doi: 10.1186/1475-2875-9-280
Tekeste Z, Workineha M, Petros B. Determining the severity of Plasmodium falciparum malaria in Ethiopia. J Infect Public Health. 2013;6:10–5.
pubmed: 23290088 doi: 10.1016/j.jiph.2012.09.016
Shenkutie TT, Nega D, Hailu A, Kepple D, Witherspoon L, Lo E, et al. Prevalence of G6PD deficiency and distribution of its genetic variants among malaria-suspected patients visiting Metehara health centre, Eastern Ethiopia. Malar J. 2022;21:260.
pubmed: 36076204 pmcid: 9461287 doi: 10.1186/s12936-022-04269-5
Reda AG, Messele A, Mohammed H, Assefa A, Golassa L, Mamo H. Temporal dynamics of Plasmodium falciparum population in Metehara, east-central Ethiopia. Malar J. 2022;21:267.
pubmed: 36109748 pmcid: 9479295 doi: 10.1186/s12936-022-04277-5
Reda AG, Huwe T, Koepfli C, Assefa A, Tessema SK, Messele A, et al. Amplicon deep sequencing of five highly polymorphic markers of Plasmodium falciparum reveals high parasite genetic diversity and moderate population structure in Ethiopia. Malar J. 2023;22:376.
pubmed: 38087335 pmcid: 10714478 doi: 10.1186/s12936-023-04814-w
Mandefro A, Tadele G, Mekonen B, Golassa L. Analysing the six-year malaria trends at Metehara Health Centre in Central Ethiopia: the impact of resurgence on the 2030 elimination goals. Malar J. 2024;23:32.
pubmed: 38263087 pmcid: 10804523 doi: 10.1186/s12936-024-04854-w
Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020. Malar J. 2021;20:263.
pubmed: 34107943 pmcid: 8189708 doi: 10.1186/s12936-021-03801-3
Saron F. Detection of dry-season urban subclinical malaria by rapid diagnostic and molecular tests, and its predictors in Metehara town, east-central Ethiopia. MSc Thesis, Addis Ababa University, Ethiopia; 2023.
Chow S-C, Shao J, Wang H, Lokhnygina Y. Sample size calculations in clinical research. 3rd ed. NY: Chapman and Hall/CRC; 2017.
doi: 10.1201/9781315183084
Stepniewska K, White NJ. Some considerations in the design and interpretation of antimalarial drug trials in uncomplicated falciparum malaria. Malar J. 2006;5:127.
pubmed: 17187673 pmcid: 1769507 doi: 10.1186/1475-2875-5-127
WHO. Basic Malaria Microscopy. Part I. Learner’s guide. 2nd Edn. Geneva, World Health Organization; 2010.
WHO. A practical handbook on the pharmacovigilance of antimalarial medicines. Geneva: World Health Organization; 2007.
WHO. Status report on artemisinin resistance and ACT efficacy. Geneva: World Health Organization; 2019.
Stover KR, King ST, Robinson J. Artemether-lumefantrine: an option for malaria. Ann Pharmacother. 2012;46:567–77.
pubmed: 22496476 doi: 10.1345/aph.1Q539
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, et al. Malaria therapeutics: are we close enough? Parasit Vectors. 2023;16:130.
pubmed: 37060004 pmcid: 10103679 doi: 10.1186/s13071-023-05755-8
Abamecha A, Yilma D, Adissu W, Yewhalaw D, Abdissa A. Efficacy and safety of artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Ethiopia: a systematic review and meta-analysis. Malar J. 2021;20:21.
doi: 10.1186/s12936-021-03745-8
Derbie A, Mekonnen D, Adugna M, Yeshitela B, Woldeamanuel Y, Abebe T. Therapeutic efficacy of artemether-lumefantrine (coartem
pubmed: 33145101 pmcid: 7599419 doi: 10.1155/2020/7371681
Gebreyohannes EA, Bhagavathula AS, Seid MA, Tegegn HG. Anti-malarial treatment outcomes in Ethiopia: a systematic review and meta-analysis. Malar J. 2017;16:269.
pubmed: 28673348 pmcid: 5496337 doi: 10.1186/s12936-017-1922-9
Sutherland CJ, Ord R, Dunyo S, Jawara M, Drakeley CJ. Alexander N, et al. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether. PLoS Med. 2005;2:e92.
Zwang J, D’Alessandro U, Ndiaye J-L, Djimde AA, Dorsey G, Martensson AA, et al. Hemoglobin changes and risks following treatment for uncomplicated malaria in sub-Saharan Africa. BMC Infect Dis. 2017;17:443.
pubmed: 28645255 pmcid: 5481927 doi: 10.1186/s12879-017-2530-6
Sagara I, Piarroux R, Djimde A, Giorgi R, Kayentao K, Doumbo OK, et al. Delayed anemia assessment in patients treated with oral artemisinin derivatives for uncomplicated malaria: a pooled analysis of clinical trials data from Mali. Malar J. 2014;13:358.
pubmed: 25217396 pmcid: 4177171 doi: 10.1186/1475-2875-13-358
De Nardo P, Oliva A, Giancola ML, Ghirga P, Mencarini P, Bibas M, et al. Haemolytic anaemia after oral artemether-lumefantrine treatment in a patient affected by severe imported falciparum malaria. Infection. 2013;41:863–5.
pubmed: 23553281 doi: 10.1007/s15010-013-0451-x
Corpolongo A, De Nardo P, Ghirga P, Gentilotti E, Bellagamba R, Tommasi C, et al. Haemolytic anaemia in an HIV-infected patient with severe falciparum malaria after treatment with oral artemether-lumefantrine. Malar J. 2012;11:91.
pubmed: 22453057 pmcid: 3329403 doi: 10.1186/1475-2875-11-91
Tylor WRJ, Kheng S, Muth S, Tor P, Kim S, Bjorge S, et al. Hemolytic dynamics of weekly primaquine antirelapse therapy among Cambodians with acute Plasmodium vivax malaria with or without glucose-6-phosphate dehydrogenase deficiency. J Infect Dis. 2019;220:1750–60.
doi: 10.1093/infdis/jiz313
White NJ. The assessment of antimalarial drug efficacy. Trends Parasitol. 2002;18:458–64.
pubmed: 12377597 doi: 10.1016/S1471-4922(02)02373-5
Teklemariam M, Assefa A, Kassa M, Mohammed H, Mamo H. Therapeutic efficacy of artemether-lumefantrine against uncomplicated P. falciparum malaria in a high-transmission area in northwest Ethiopia. PLoS ONE. 2017;12:e0176004.
pubmed: 28445503 pmcid: 5405980 doi: 10.1371/journal.pone.0176004
White NJ. Antimalarial drug pharmacokinetics: implications for the treatment of malaria. Clin Pharmacokinet. 2018;57:695–711.
Ridley MJ, Kublin JG. Pharmacokinetics and pharmacodynamics of antimalarial drugs. Curr Opin Infect Dis. 2011;24:13–20.
White NJ, Bickle QD, Baird JK. The role of antimalarial drug pharmacokinetics in the emergence of drug resistance. Drug Resist Updat. 2004;7:101–12.

Auteurs

Mahelet Tesfaye (M)

Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.

Ashenafi Assefa (A)

Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
Institute of Infectious Disease and Global Health, University of North Carolina, Chapel Hill, USA.

Henok Hailgiorgis (H)

Ethiopian Public Health Institute, Addis Ababa, Ethiopia.

Bokretsion Gidey (B)

Ethiopian Public Health Institute, Addis Ababa, Ethiopia.

Hussein Mohammed (H)

Ethiopian Public Health Institute, Addis Ababa, Ethiopia.

Getachew Tollera (G)

Ethiopian Public Health Institute, Addis Ababa, Ethiopia.

Geremew Tasew (G)

Ethiopian Public Health Institute, Addis Ababa, Ethiopia.

Gudissa Assefa (G)

Minstry of Health, Addis Ababa, Ethiopia.

Worku Bekele (W)

World Health Organization, Addis Ababa, Ethiopia.

Hassen Mamo (H)

Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia. binmamo@yahoo.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH