Characterization of genetic variants of GIPR reveals a contribution of β-arrestin to metabolic phenotypes.


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
13 Jun 2024
Historique:
received: 18 04 2023
accepted: 02 05 2024
medline: 14 6 2024
pubmed: 14 6 2024
entrez: 13 6 2024
Statut: aheadofprint

Résumé

Incretin-based therapies are highly successful in combatting obesity and type 2 diabetes

Identifiants

pubmed: 38871982
doi: 10.1038/s42255-024-01061-4
pii: 10.1038/s42255-024-01061-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF17SA0031406
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R278-2018-180
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R278-2018-180
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Svenska Läkaresällskapet (Swedish Society of Medicine)
ID : PD20-0153

Informations de copyright

© 2024. The Author(s).

Références

Rosenkilde, M. M. Advances in incretin-based therapeutics for obesity. Nat. Rev. Endocrinol. 20, 67–68 (2024).
pubmed: 38062121 doi: 10.1038/s41574-023-00938-w
Gasbjerg, L. S., Rosenkilde, M. M., Meier, J. J., Holst, J. J. & Knop, F. K. The importance of glucose-dependent insulinotropic polypeptide receptor activation for the effects of tirzepatide. Diabetes Obes. Metab. 25, 3079–3092 (2023).
pubmed: 37551549 doi: 10.1111/dom.15216
Véniant, M. M. et al. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat. Metab. https://doi.org/10.1038/s42255-023-00966-w (2024).
Hauser, A. S. et al. Pharmacogenomics of GPCR drug targets. Cell 172, 41–54.e19 (2018).
pubmed: 29249361 pmcid: 5766829 doi: 10.1016/j.cell.2017.11.033
Schöneberg, T. & Liebscher, I. Mutations in G protein-coupled receptors: mechanisms, pathophysiology and potential therapeutic approaches. Pharmacol. Rev. 73, 89–119 (2021).
pubmed: 33219147 doi: 10.1124/pharmrev.120.000011
Almind, K. et al. Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic beta cell responses and functional expression studies in Chinese hamster fibroblast cells. Diabetologia 41, 1194–1198 (1998).
pubmed: 9794107 doi: 10.1007/s001250051051
Sauber, J. et al. Association of variants in gastric inhibitory polypeptide receptor gene with impaired glucose homeostasis in obese children and adolescents from Berlin. Eur. J. Endocrinol. 163, 259–264 (2010).
pubmed: 20516203 doi: 10.1530/EJE-10-0444
Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).
pubmed: 20081857 pmcid: 2922003 doi: 10.1038/ng.521
Turcot, V. et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat. Genet. 50, 26–41 (2018).
pubmed: 29273807 doi: 10.1038/s41588-017-0011-x
Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eabf8683 (2021).
pubmed: 34210852 pmcid: 10275396 doi: 10.1126/science.abf8683
Kizilkaya, H. S. et al. Loss of function glucose-dependent insulinotropic polypeptide receptor variants are associated with alterations in BMI, bone strength and cardiovascular outcomes. Front. Cell Dev. Biol. 9, 749607 (2021).
pubmed: 34760890 pmcid: 8573201 doi: 10.3389/fcell.2021.749607
Bagger, J. I. et al. Impaired regulation of the incretin effect in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 96, 737–745 (2011).
pubmed: 21252240 doi: 10.1210/jc.2010-2435
Nauck, M. A. et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63, 492–498 (1986).
pubmed: 3522621 doi: 10.1210/jcem-63-2-492
Gao, W. et al. Human GLP1R variants affecting GLP1R cell surface expression are associated with impaired glucose control and increased adiposity. Nat. Metab. 5, 1673–1684 (2023).
pubmed: 37709961 doi: 10.1038/s42255-023-00889-6
Flannick, J. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570, 71–76 (2019).
pubmed: 31118516 pmcid: 6699738 doi: 10.1038/s41586-019-1231-2
Gabe, M. B. N. et al. Human GIP(3-30)NH2 inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors. Biochem. Pharmacol. 150, 97–107 (2018).
pubmed: 29378179 doi: 10.1016/j.bcp.2018.01.040
Harris, M. et al. RAMPs regulate signalling bias and internalisation of the GIPR. Preprint at bioRxiv https://doi.org/10.1101/2021.04.08.436756 (2021).
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).
pubmed: 34662886 pmcid: 8596853 doi: 10.1038/s41586-021-04103-z
Wan, Q. et al. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J. Biol. Chem. 293, 7466–7473 (2018).
pubmed: 29523687 pmcid: 5949987 doi: 10.1074/jbc.RA118.001975
Wright, S. C. et al. BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated Gq activation at early endosomes. Proc. Natl Acad. Sci. USA 118, e2025846118 (2021).
pubmed: 33990469 pmcid: 8157916 doi: 10.1073/pnas.2025846118
Wright, S. C. et al. GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics. Nat. Commun. 14, 6243 (2023).
pubmed: 37813859 pmcid: 10562414 doi: 10.1038/s41467-023-41893-4
Kreymann, B., Ghatei, M. A., Williams, G. & Bloom, S. R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 330, 1300–1304 (1987).
doi: 10.1016/S0140-6736(87)91194-9
Dupre, J., Ross, S. A., Watson, D. & Brown, J. C. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Clin. Endocrinol. Metab. 37, 826–828 (1973).
pubmed: 4749457 doi: 10.1210/jcem-37-5-826
Hinke, S. A. et al. Dipeptidyl peptidase IV-resistant [D-Ala(2)]glucose-dependent insulinotropic polypeptide (GIP) improves glucose tolerance in normal and obese diabetic rats. Diabetes 51, 652–661 (2002).
pubmed: 11872663 doi: 10.2337/diabetes.51.3.652
Thomas, N. J. et al. Identifying type 1 and 2 diabetes in research datasets where classification biomarkers are unavailable: assessing the accuracy of published approaches. J. Clin. Epidemiol. 153, 34–44 (2023).
pubmed: 36368478 doi: 10.1016/j.jclinepi.2022.10.022
Eastwood, S. V. et al. Algorithms for the capture and adjudication of prevalent and incident diabetes in UK Biobank. PLoS ONE 11, e0162388 (2016).
pubmed: 27631769 pmcid: 5025160 doi: 10.1371/journal.pone.0162388
Jones, B. et al. Genetic and biased agonist-mediated reductions in β-arrestin recruitment prolong cAMP signaling at glucagon family receptors. J. Biol. Chem. 296, 100133 (2021).
pubmed: 33268378 doi: 10.1074/jbc.RA120.016334
Møller, T. C., Moo, E. V., Inoue, A., Pedersen, M. F. & Bräuner-Osborne, H. Characterization of the real-time internalization of nine GPCRs reveals distinct dependence on arrestins and G proteins. Biochim. Biophys. Acta Mol. Cell Res. https://doi.org/10.1016/j.bbamcr.2023.119584 (2024).
Roed, S. N. et al. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Mol. Cell. Endocrinol. 382, 938–949 (2014).
pubmed: 24275181 doi: 10.1016/j.mce.2013.11.010
Abdullah, N., Beg, M., Soares, D., Dittman, J. S. & McGraw, T. E. Downregulation of a GPCR by β-arrestin2-mediated switch from an endosomal to a TGN recycling pathway. Cell Rep. 17, 2966–2978 (2016).
pubmed: 27974210 pmcid: 5161243 doi: 10.1016/j.celrep.2016.11.050
Ismail, S. et al. Internalized receptor for glucose-dependent insulinotropic peptide stimulates adenylyl cyclase on early endosomes. Biochem. Pharmacol. 120, 33–45 (2016).
pubmed: 27641811 doi: 10.1016/j.bcp.2016.09.009
Bitsi, S. et al. Divergent acute versus prolonged pharmacological GLP-1R responses in adult β cell-specific β-arrestin 2 knockout mice. Sci. Adv. 9, eadf7737 (2023).
pubmed: 37134170 pmcid: 10156113 doi: 10.1126/sciadv.adf7737
Zaïmia, N. et al. GLP-1 and GIP receptors signal through distinct β-arrestin 2-dependent pathways to regulate pancreatic β cell function. Cell Rep. 42, 113326 (2023).
pubmed: 37897727 doi: 10.1016/j.celrep.2023.113326
Melchiorsen, J. U. et al. Rare heterozygous loss-of-function variants in the human GLP-1 receptor do not associate with cardiometabolic phenotypes. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgad290 (2023).
Lagou, V. et al. GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification. Nat. Genet. 55, 1448–1461 (2023).
pubmed: 37679419 pmcid: 10484788 doi: 10.1038/s41588-023-01462-3
Willard, F. S. et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5, e140532 (2020).
pubmed: 32730231 pmcid: 7526454 doi: 10.1172/jci.insight.140532
Jones, B. et al. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat. Commun. 9, 1–17 (2018).
doi: 10.1038/s41467-018-03941-2
Glümer, C., Jørgensen, T. & Borch-Johnsen, K. Prevalences of diabetes and impaired glucose regulation in a danish population. The Inter99 study. Diabetes Care 26, 2335–2340 (2003).
pubmed: 12882858 doi: 10.2337/diacare.26.8.2335
Jørgensen, T. et al. A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99 (1). Eur. J. Cardiovasc. Prev. Rehab. 10, 377–386 (2003).
doi: 10.1097/01.hjr.0000096541.30533.82
Nielsen, J. S., Thomsen, R. W., Steffensen, C. & Christiansen, J. S. The Danish Centre for Strategic Research in Type 2 Diabetes (DD2) study: implementation of a nationwide patient enrollment system. Clin. Epidemiol. 4, 27–36 (2012).
pubmed: 23071409 pmcid: 3469284 doi: 10.2147/CLEP.S30838
Holm, J. C. et al. Chronic care treatment of obese children and adolescents. Int. J. Pediatr. Obes. 6, 188–196 (2011).
pubmed: 21529264 doi: 10.3109/17477166.2011.575157
Lauenborg, J. et al. Increasing incidence of diabetes after gestational diabetesa long-term follow-up in a Danish population. Diabetes Care 27, 1194–1199 (2004).
pubmed: 15111544 doi: 10.2337/diacare.27.5.1194
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
Gao, R. et al. Evaluation of a target region capture sequencing platform using monogenic diabetes as a study-model. BMC Genet. 15, 1–9 (2014).
doi: 10.1186/1471-2156-15-13
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Liu, X., Jian, X. & Boerwinkle, E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. 32, 894–899 (2011).
pubmed: 21520341 pmcid: 3145015 doi: 10.1002/humu.21517
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 1–14 (2016).
doi: 10.1186/s13059-016-0974-4
O’Hayre, M. et al. Genetic evidence that β-arrestins are dispensable for the initiation of β
pubmed: 28634209 pmcid: 5751434 doi: 10.1126/scisignal.aal3395
Velden, W. J. C. V. D. et al. GLP-1 Val8: a biased GLP-1R agonist with altered binding kinetics and impaired release of pancreatic hormones in rats. ACS Pharmacol. Transl. Sci. 4, 296–313 (2021).
pubmed: 33615180 pmcid: 7887852 doi: 10.1021/acsptsci.0c00193
Velden et al. Molecular and in vivo phenotyping of missense variants of the human glucagon receptor. J. Biol. Chem. 298, 101413 (2022).
pubmed: 34801547 doi: 10.1016/j.jbc.2021.101413
DeBlasi, A., O’Reilly, K. & Motulsky, H. J. Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol. Sci. 10, 227–229 (1989).
pubmed: 2773043 doi: 10.1016/0165-6147(89)90266-6
Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).
doi: 10.21105/joss.03021
Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566 (2019).
pubmed: 31217592 doi: 10.1038/s41592-019-0470-3
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Foundation for Statistical Computing, 2023).
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
pubmed: 24487276 pmcid: 3992975 doi: 10.1038/ng.2892
Lotta, L. A. et al. Human gain-of-function MC4R variants show signaling bias and protect against obesity. Cell 177, 597–607.e9 (2019).
pubmed: 31002796 pmcid: 6476272 doi: 10.1016/j.cell.2019.03.044
Hansen, T. et al. The BIGTT test. Diabetes Care 30, 257–262 (2007).
pubmed: 17259491 doi: 10.2337/dc06-1240
Matsuda, M. & DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22, 1462–1470 (1999).
pubmed: 10480510 doi: 10.2337/diacare.22.9.1462
Seunggeun, L., Zhangchen, Z., Miropolsky, L. & Wu, M. SKAT: SNP—set (sequence) kernel association test. https://CRAN.R-project.org/package=SKAT (2023).
Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).
pubmed: 22863193 pmcid: 3415556 doi: 10.1016/j.ajhg.2012.06.007
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.: Ser. B 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Pedersen, B. S. et al. Effective variant filtering and expected candidate variant yield in studies of rare human disease. NPJ Genom. Med. 6, 1–8 (2021).
doi: 10.1038/s41525-021-00227-3
Millard, L. A. C., Davies, N. M., Gaunt, T. R., Smith, G. D. & Tilling, K. Software application profile: PHESANT: a tool for performing automated phenome scans in UK Biobank. Int. J. Epidemiol. 47, 29–35 (2018).
pubmed: 29040602 doi: 10.1093/ije/dyx204
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424 pmcid: 3025716 doi: 10.1093/bioinformatics/btq559
Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).
pubmed: 34017140 doi: 10.1038/s41588-021-00870-7
Privé, F. et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 109, 12–23 (2022).
pubmed: 34995502 pmcid: 8764121 doi: 10.1016/j.ajhg.2021.11.008
Liu, Y. et al. ACAT: a fast and powerful P value combination method for rare-variant analysis in sequencing studies. Am. J. Hum. Genet. 104, 410 (2019).
pubmed: 30849328 pmcid: 6407498 doi: 10.1016/j.ajhg.2019.01.002
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
doi: 10.18637/jss.v036.i03
Bürkner, P.-C. brms: an R package for bayesian multilevel models using stan. J. Stat. Softw. 80, 1–28 (2017).
doi: 10.18637/jss.v080.i01
Wisler, J. W. et al. The role of β-arrestin2-dependent signaling in thoracic aortic aneurysm formation in a murine model of Marfan syndrome. Am. J. Physiol. Heart Circ. Physiol. 309, H1516–H1527 (2015).
pubmed: 26371162 pmcid: 4666970 doi: 10.1152/ajpheart.00291.2015
Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).
pubmed: 29348476 doi: 10.1038/nrendo.2017.161

Auteurs

Hüsün S Kizilkaya (HS)

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Kimmie V Sørensen (KV)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Jakob S Madsen (JS)

Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.

Peter Lindquist (P)

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Jonathan D Douros (JD)

Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
Indiana Biosciences Research Institute Indianapolis, Indianapolis, IN, USA.

Jette Bork-Jensen (J)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Alessandro Berghella (A)

Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.

Peter A Gerlach (PA)

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Lærke S Gasbjerg (LS)

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Jacek Mokrosiński (J)

Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.

Stephanie A Mowery (SA)

Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
Indiana Biosciences Research Institute Indianapolis, Indianapolis, IN, USA.

Patrick J Knerr (PJ)

Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
Indiana Biosciences Research Institute Indianapolis, Indianapolis, IN, USA.

Brian Finan (B)

Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
Eli Lilly and Company, Indianapolis, IN, USA.

Jonathan E Campbell (JE)

Duke Molecular Physiology Institute, Duke University Durham, Durham, NC, USA.

David A D'Alessio (DA)

Duke Molecular Physiology Institute, Duke University Durham, Durham, NC, USA.

Diego Perez-Tilve (D)

Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Felix Faas (F)

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Signe Mathiasen (S)

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Jørgen Rungby (J)

Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Steno Diabetes Center Copenhagen, Herlev, Denmark.

Henrik T Sørensen (HT)

Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark.
Department of Epidemiology, Boston University, Boston, MA, USA.

Allan Vaag (A)

Steno Diabetes Center Copenhagen, Herlev, Denmark.
Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden.

Jens S Nielsen (JS)

Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.
Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Jens-Christian Holm (JC)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark.
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Jeannet Lauenborg (J)

Department of Obstetrics and Gynecology, Copenhagen University Hospital Herlev, Herlev, Denmark.

Peter Damm (P)

Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.
Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark.

Oluf Pedersen (O)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Center for Clinical Metabolic Research, Department of Medicine, Gentofte Hospital, Copenhagen, Denmark.

Allan Linneberg (A)

Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.

Bolette Hartmann (B)

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Jens J Holst (JJ)

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Torben Hansen (T)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Shane C Wright (SC)

Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Volker M Lauschke (VM)

Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
University of Tübingen, Tübingen, Germany.

Niels Grarup (N)

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. niels.grarup@sund.ku.dk.

Alexander S Hauser (AS)

Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark. alexander.hauser@sund.ku.dk.

Mette M Rosenkilde (MM)

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. rosenkilde@sund.ku.dk.

Classifications MeSH