Characterization of genetic variants of GIPR reveals a contribution of β-arrestin to metabolic phenotypes.
Journal
Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592
Informations de publication
Date de publication:
13 Jun 2024
13 Jun 2024
Historique:
received:
18
04
2023
accepted:
02
05
2024
medline:
14
6
2024
pubmed:
14
6
2024
entrez:
13
6
2024
Statut:
aheadofprint
Résumé
Incretin-based therapies are highly successful in combatting obesity and type 2 diabetes
Identifiants
pubmed: 38871982
doi: 10.1038/s42255-024-01061-4
pii: 10.1038/s42255-024-01061-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF17SA0031406
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R278-2018-180
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R278-2018-180
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF18CC0034900
Organisme : Svenska Läkaresällskapet (Swedish Society of Medicine)
ID : PD20-0153
Informations de copyright
© 2024. The Author(s).
Références
Rosenkilde, M. M. Advances in incretin-based therapeutics for obesity. Nat. Rev. Endocrinol. 20, 67–68 (2024).
pubmed: 38062121
doi: 10.1038/s41574-023-00938-w
Gasbjerg, L. S., Rosenkilde, M. M., Meier, J. J., Holst, J. J. & Knop, F. K. The importance of glucose-dependent insulinotropic polypeptide receptor activation for the effects of tirzepatide. Diabetes Obes. Metab. 25, 3079–3092 (2023).
pubmed: 37551549
doi: 10.1111/dom.15216
Véniant, M. M. et al. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat. Metab. https://doi.org/10.1038/s42255-023-00966-w (2024).
Hauser, A. S. et al. Pharmacogenomics of GPCR drug targets. Cell 172, 41–54.e19 (2018).
pubmed: 29249361
pmcid: 5766829
doi: 10.1016/j.cell.2017.11.033
Schöneberg, T. & Liebscher, I. Mutations in G protein-coupled receptors: mechanisms, pathophysiology and potential therapeutic approaches. Pharmacol. Rev. 73, 89–119 (2021).
pubmed: 33219147
doi: 10.1124/pharmrev.120.000011
Almind, K. et al. Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic beta cell responses and functional expression studies in Chinese hamster fibroblast cells. Diabetologia 41, 1194–1198 (1998).
pubmed: 9794107
doi: 10.1007/s001250051051
Sauber, J. et al. Association of variants in gastric inhibitory polypeptide receptor gene with impaired glucose homeostasis in obese children and adolescents from Berlin. Eur. J. Endocrinol. 163, 259–264 (2010).
pubmed: 20516203
doi: 10.1530/EJE-10-0444
Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).
pubmed: 20081857
pmcid: 2922003
doi: 10.1038/ng.521
Turcot, V. et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat. Genet. 50, 26–41 (2018).
pubmed: 29273807
doi: 10.1038/s41588-017-0011-x
Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eabf8683 (2021).
pubmed: 34210852
pmcid: 10275396
doi: 10.1126/science.abf8683
Kizilkaya, H. S. et al. Loss of function glucose-dependent insulinotropic polypeptide receptor variants are associated with alterations in BMI, bone strength and cardiovascular outcomes. Front. Cell Dev. Biol. 9, 749607 (2021).
pubmed: 34760890
pmcid: 8573201
doi: 10.3389/fcell.2021.749607
Bagger, J. I. et al. Impaired regulation of the incretin effect in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 96, 737–745 (2011).
pubmed: 21252240
doi: 10.1210/jc.2010-2435
Nauck, M. A. et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63, 492–498 (1986).
pubmed: 3522621
doi: 10.1210/jcem-63-2-492
Gao, W. et al. Human GLP1R variants affecting GLP1R cell surface expression are associated with impaired glucose control and increased adiposity. Nat. Metab. 5, 1673–1684 (2023).
pubmed: 37709961
doi: 10.1038/s42255-023-00889-6
Flannick, J. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570, 71–76 (2019).
pubmed: 31118516
pmcid: 6699738
doi: 10.1038/s41586-019-1231-2
Gabe, M. B. N. et al. Human GIP(3-30)NH2 inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors. Biochem. Pharmacol. 150, 97–107 (2018).
pubmed: 29378179
doi: 10.1016/j.bcp.2018.01.040
Harris, M. et al. RAMPs regulate signalling bias and internalisation of the GIPR. Preprint at bioRxiv https://doi.org/10.1101/2021.04.08.436756 (2021).
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).
pubmed: 34662886
pmcid: 8596853
doi: 10.1038/s41586-021-04103-z
Wan, Q. et al. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J. Biol. Chem. 293, 7466–7473 (2018).
pubmed: 29523687
pmcid: 5949987
doi: 10.1074/jbc.RA118.001975
Wright, S. C. et al. BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated Gq activation at early endosomes. Proc. Natl Acad. Sci. USA 118, e2025846118 (2021).
pubmed: 33990469
pmcid: 8157916
doi: 10.1073/pnas.2025846118
Wright, S. C. et al. GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics. Nat. Commun. 14, 6243 (2023).
pubmed: 37813859
pmcid: 10562414
doi: 10.1038/s41467-023-41893-4
Kreymann, B., Ghatei, M. A., Williams, G. & Bloom, S. R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 330, 1300–1304 (1987).
doi: 10.1016/S0140-6736(87)91194-9
Dupre, J., Ross, S. A., Watson, D. & Brown, J. C. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Clin. Endocrinol. Metab. 37, 826–828 (1973).
pubmed: 4749457
doi: 10.1210/jcem-37-5-826
Hinke, S. A. et al. Dipeptidyl peptidase IV-resistant [D-Ala(2)]glucose-dependent insulinotropic polypeptide (GIP) improves glucose tolerance in normal and obese diabetic rats. Diabetes 51, 652–661 (2002).
pubmed: 11872663
doi: 10.2337/diabetes.51.3.652
Thomas, N. J. et al. Identifying type 1 and 2 diabetes in research datasets where classification biomarkers are unavailable: assessing the accuracy of published approaches. J. Clin. Epidemiol. 153, 34–44 (2023).
pubmed: 36368478
doi: 10.1016/j.jclinepi.2022.10.022
Eastwood, S. V. et al. Algorithms for the capture and adjudication of prevalent and incident diabetes in UK Biobank. PLoS ONE 11, e0162388 (2016).
pubmed: 27631769
pmcid: 5025160
doi: 10.1371/journal.pone.0162388
Jones, B. et al. Genetic and biased agonist-mediated reductions in β-arrestin recruitment prolong cAMP signaling at glucagon family receptors. J. Biol. Chem. 296, 100133 (2021).
pubmed: 33268378
doi: 10.1074/jbc.RA120.016334
Møller, T. C., Moo, E. V., Inoue, A., Pedersen, M. F. & Bräuner-Osborne, H. Characterization of the real-time internalization of nine GPCRs reveals distinct dependence on arrestins and G proteins. Biochim. Biophys. Acta Mol. Cell Res. https://doi.org/10.1016/j.bbamcr.2023.119584 (2024).
Roed, S. N. et al. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Mol. Cell. Endocrinol. 382, 938–949 (2014).
pubmed: 24275181
doi: 10.1016/j.mce.2013.11.010
Abdullah, N., Beg, M., Soares, D., Dittman, J. S. & McGraw, T. E. Downregulation of a GPCR by β-arrestin2-mediated switch from an endosomal to a TGN recycling pathway. Cell Rep. 17, 2966–2978 (2016).
pubmed: 27974210
pmcid: 5161243
doi: 10.1016/j.celrep.2016.11.050
Ismail, S. et al. Internalized receptor for glucose-dependent insulinotropic peptide stimulates adenylyl cyclase on early endosomes. Biochem. Pharmacol. 120, 33–45 (2016).
pubmed: 27641811
doi: 10.1016/j.bcp.2016.09.009
Bitsi, S. et al. Divergent acute versus prolonged pharmacological GLP-1R responses in adult β cell-specific β-arrestin 2 knockout mice. Sci. Adv. 9, eadf7737 (2023).
pubmed: 37134170
pmcid: 10156113
doi: 10.1126/sciadv.adf7737
Zaïmia, N. et al. GLP-1 and GIP receptors signal through distinct β-arrestin 2-dependent pathways to regulate pancreatic β cell function. Cell Rep. 42, 113326 (2023).
pubmed: 37897727
doi: 10.1016/j.celrep.2023.113326
Melchiorsen, J. U. et al. Rare heterozygous loss-of-function variants in the human GLP-1 receptor do not associate with cardiometabolic phenotypes. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgad290 (2023).
Lagou, V. et al. GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification. Nat. Genet. 55, 1448–1461 (2023).
pubmed: 37679419
pmcid: 10484788
doi: 10.1038/s41588-023-01462-3
Willard, F. S. et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5, e140532 (2020).
pubmed: 32730231
pmcid: 7526454
doi: 10.1172/jci.insight.140532
Jones, B. et al. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat. Commun. 9, 1–17 (2018).
doi: 10.1038/s41467-018-03941-2
Glümer, C., Jørgensen, T. & Borch-Johnsen, K. Prevalences of diabetes and impaired glucose regulation in a danish population. The Inter99 study. Diabetes Care 26, 2335–2340 (2003).
pubmed: 12882858
doi: 10.2337/diacare.26.8.2335
Jørgensen, T. et al. A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99 (1). Eur. J. Cardiovasc. Prev. Rehab. 10, 377–386 (2003).
doi: 10.1097/01.hjr.0000096541.30533.82
Nielsen, J. S., Thomsen, R. W., Steffensen, C. & Christiansen, J. S. The Danish Centre for Strategic Research in Type 2 Diabetes (DD2) study: implementation of a nationwide patient enrollment system. Clin. Epidemiol. 4, 27–36 (2012).
pubmed: 23071409
pmcid: 3469284
doi: 10.2147/CLEP.S30838
Holm, J. C. et al. Chronic care treatment of obese children and adolescents. Int. J. Pediatr. Obes. 6, 188–196 (2011).
pubmed: 21529264
doi: 10.3109/17477166.2011.575157
Lauenborg, J. et al. Increasing incidence of diabetes after gestational diabetesa long-term follow-up in a Danish population. Diabetes Care 27, 1194–1199 (2004).
pubmed: 15111544
doi: 10.2337/diacare.27.5.1194
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Gao, R. et al. Evaluation of a target region capture sequencing platform using monogenic diabetes as a study-model. BMC Genet. 15, 1–9 (2014).
doi: 10.1186/1471-2156-15-13
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Liu, X., Jian, X. & Boerwinkle, E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. 32, 894–899 (2011).
pubmed: 21520341
pmcid: 3145015
doi: 10.1002/humu.21517
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 1–14 (2016).
doi: 10.1186/s13059-016-0974-4
O’Hayre, M. et al. Genetic evidence that β-arrestins are dispensable for the initiation of β
pubmed: 28634209
pmcid: 5751434
doi: 10.1126/scisignal.aal3395
Velden, W. J. C. V. D. et al. GLP-1 Val8: a biased GLP-1R agonist with altered binding kinetics and impaired release of pancreatic hormones in rats. ACS Pharmacol. Transl. Sci. 4, 296–313 (2021).
pubmed: 33615180
pmcid: 7887852
doi: 10.1021/acsptsci.0c00193
Velden et al. Molecular and in vivo phenotyping of missense variants of the human glucagon receptor. J. Biol. Chem. 298, 101413 (2022).
pubmed: 34801547
doi: 10.1016/j.jbc.2021.101413
DeBlasi, A., O’Reilly, K. & Motulsky, H. J. Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol. Sci. 10, 227–229 (1989).
pubmed: 2773043
doi: 10.1016/0165-6147(89)90266-6
Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).
doi: 10.21105/joss.03021
Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566 (2019).
pubmed: 31217592
doi: 10.1038/s41592-019-0470-3
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Foundation for Statistical Computing, 2023).
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
pubmed: 24487276
pmcid: 3992975
doi: 10.1038/ng.2892
Lotta, L. A. et al. Human gain-of-function MC4R variants show signaling bias and protect against obesity. Cell 177, 597–607.e9 (2019).
pubmed: 31002796
pmcid: 6476272
doi: 10.1016/j.cell.2019.03.044
Hansen, T. et al. The BIGTT test. Diabetes Care 30, 257–262 (2007).
pubmed: 17259491
doi: 10.2337/dc06-1240
Matsuda, M. & DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22, 1462–1470 (1999).
pubmed: 10480510
doi: 10.2337/diacare.22.9.1462
Seunggeun, L., Zhangchen, Z., Miropolsky, L. & Wu, M. SKAT: SNP—set (sequence) kernel association test. https://CRAN.R-project.org/package=SKAT (2023).
Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).
pubmed: 22863193
pmcid: 3415556
doi: 10.1016/j.ajhg.2012.06.007
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.: Ser. B 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Pedersen, B. S. et al. Effective variant filtering and expected candidate variant yield in studies of rare human disease. NPJ Genom. Med. 6, 1–8 (2021).
doi: 10.1038/s41525-021-00227-3
Millard, L. A. C., Davies, N. M., Gaunt, T. R., Smith, G. D. & Tilling, K. Software application profile: PHESANT: a tool for performing automated phenome scans in UK Biobank. Int. J. Epidemiol. 47, 29–35 (2018).
pubmed: 29040602
doi: 10.1093/ije/dyx204
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424
pmcid: 3025716
doi: 10.1093/bioinformatics/btq559
Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).
pubmed: 34017140
doi: 10.1038/s41588-021-00870-7
Privé, F. et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 109, 12–23 (2022).
pubmed: 34995502
pmcid: 8764121
doi: 10.1016/j.ajhg.2021.11.008
Liu, Y. et al. ACAT: a fast and powerful P value combination method for rare-variant analysis in sequencing studies. Am. J. Hum. Genet. 104, 410 (2019).
pubmed: 30849328
pmcid: 6407498
doi: 10.1016/j.ajhg.2019.01.002
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
doi: 10.18637/jss.v036.i03
Bürkner, P.-C. brms: an R package for bayesian multilevel models using stan. J. Stat. Softw. 80, 1–28 (2017).
doi: 10.18637/jss.v080.i01
Wisler, J. W. et al. The role of β-arrestin2-dependent signaling in thoracic aortic aneurysm formation in a murine model of Marfan syndrome. Am. J. Physiol. Heart Circ. Physiol. 309, H1516–H1527 (2015).
pubmed: 26371162
pmcid: 4666970
doi: 10.1152/ajpheart.00291.2015
Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).
pubmed: 29348476
doi: 10.1038/nrendo.2017.161