Dimensional Dependence of Binding Kinetics.
Dimensions
Dissociation constants
Membranes
Protein binding
Journal
Bulletin of mathematical biology
ISSN: 1522-9602
Titre abrégé: Bull Math Biol
Pays: United States
ID NLM: 0401404
Informations de publication
Date de publication:
14 Jun 2024
14 Jun 2024
Historique:
received:
27
03
2024
accepted:
13
05
2024
medline:
14
6
2024
pubmed:
14
6
2024
entrez:
14
6
2024
Statut:
epublish
Résumé
In the context of protein-protein binding, the dissociation constant is used to describe the affinity between two proteins. For protein-protein interactions, most experimentally-measured dissociation constants are measured in solution and reported in units of volume concentration. However, many protein interactions take place on membranes. These interactions have dissociation constants with units of areal concentration, rather than volume concentration. Here, we present a novel, stochastic approach to understanding the dimensional dependence of binding kinetics. Using stochastic exit time calculations, in discrete and continuous space, we derive general reaction rates for protein-protein binding in one, two, and three dimensions and demonstrate that dimensionality greatly affects binding kinetics. Further, we present a formula to transform three-dimensional experimentally-measured dissociation constants to two-dimensional dissociation constants. This conversion can be used to mathematically model binding events that occur on membranes.
Identifiants
pubmed: 38874691
doi: 10.1007/s11538-024-01311-2
pii: 10.1007/s11538-024-01311-2
doi:
Substances chimiques
Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
87Subventions
Organisme : National Science Foundation
ID : NSF-DMS-1122297
Informations de copyright
© 2024. The Author(s), under exclusive licence to the Society for Mathematical Biology.
Références
Bell GI (1978) Models for the specific adhesion of cells to cells: a theoretical framework for adhesion mediated by reversible bonds between cell surface molecules. Science 200(4342):618–627
doi: 10.1126/science.347575
Bell GI, Dembo MICAH, Bongrand PIERRE (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45(6):1051–1064
doi: 10.1016/S0006-3495(84)84252-6
Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14(1):131–158
doi: 10.1146/annurev.bb.14.060185.001023
Dustin ML, Ferguson LM, Chan PY, Springer TA, Golan DE (1996) Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol 132(3):465–474
doi: 10.1083/jcb.132.3.465
Dustin ML, Bromley SK, Davis MM, Zhu C (2001) Identification of self through two-dimensional chemistry and synapses. Annu Rev Cell Dev Biol 17(1):133–157
doi: 10.1146/annurev.cellbio.17.1.133
Gardiner C (2009) Stochastic methods: a handbook for the natural and social sciences. Springer, Berlin
Gerecsei T, Chrenkó P, Kanyo N, Péter B, Bonyár A, Székács I, Szabo B, Horvath R (2021) Dissociation constant of integrin-RGD binding in live cells from automated micropipette and label-free optical data. Biosensors 11(2):32
doi: 10.3390/bios11020032
Huang J, Zarnitsyna VI, Liu B, Edwards LJ, Jiang N, Evavold BD, Zhu C (2010) The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464(7290):932–936
doi: 10.1038/nature08944
Hurley JH (2010) The ESCRT complexes. Crit Rev Biochem Mol Biol 45(6):463–487
doi: 10.3109/10409238.2010.502516
Kostelansky MS, Sun J, Lee S, Kim J, Ghirlando R, Hierro A, Emr SD, Hurley JH (2006) Structural and functional organization of the ESCRT-I trafficking complex. Cell 125(1):113–126
doi: 10.1016/j.cell.2006.01.049
Leckband D, Schwartz DK, Wu Y (2024) Computational and experimental approaches to quantify protein binding interactions under confinement. Biophys J 123(4):424–434
doi: 10.1016/j.bpj.2024.01.018
Ren X, Hurley JH (2010) VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J 29(6):1045–1054
doi: 10.1038/emboj.2010.6
Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci 72(8):3111–3113
doi: 10.1073/pnas.72.8.3111
Torney DC, McConnell Harden M (1983) Diffusion-limited reaction rate theory for two-dimensional systems. Proc R Soc Lond A Math Phys Sci 387(1792):147–170
Winkler FK, Stanley KK (1983) Clathrin heavy chain, light chain interactions. EMBO J 2(8):1393–1400
doi: 10.1002/j.1460-2075.1983.tb01597.x
Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475(7357):510–513
doi: 10.1038/nature10183
Zheng S, Zou M, Shao Y, Huaping W, Helong W, Wang X (2023) Two-dimensional measurements of receptor-ligand interactions. Front Mol Biosci 10:1154074
doi: 10.3389/fmolb.2023.1154074