Enhanced hippocampal LTP but normal NMDA receptor and AMPA receptor function in a rat model of CDKL5 deficiency disorder.
Animals
Long-Term Potentiation
Receptors, N-Methyl-D-Aspartate
/ metabolism
Receptors, AMPA
/ metabolism
Spasms, Infantile
/ genetics
Disease Models, Animal
Rats
Protein Serine-Threonine Kinases
/ metabolism
Hippocampus
/ metabolism
Pyramidal Cells
/ metabolism
Male
CA1 Region, Hippocampal
/ metabolism
Epileptic Syndromes
/ genetics
Genetic Diseases, X-Linked
/ genetics
Synapses
/ metabolism
Excitatory Postsynaptic Potentials
AMPA receptor
CDKL5
NMDA receptor
hippocampus
intrinsic properties
rat
synaptic plasticity
Journal
Molecular autism
ISSN: 2040-2392
Titre abrégé: Mol Autism
Pays: England
ID NLM: 101534222
Informations de publication
Date de publication:
14 Jun 2024
14 Jun 2024
Historique:
received:
03
11
2023
accepted:
07
05
2024
medline:
15
6
2024
pubmed:
15
6
2024
entrez:
14
6
2024
Statut:
epublish
Résumé
Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5 To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5 Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.
Sections du résumé
BACKGROUND
BACKGROUND
Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5
METHODS
METHODS
To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology.
RESULTS
RESULTS
Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5
CONCLUSIONS
CONCLUSIONS
Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity.
LIMITATIONS
CONCLUSIONS
This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.
Identifiants
pubmed: 38877552
doi: 10.1186/s13229-024-00601-9
pii: 10.1186/s13229-024-00601-9
doi:
Substances chimiques
Receptors, N-Methyl-D-Aspartate
0
Receptors, AMPA
0
Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
28Subventions
Organisme : NIMH NIH HHS
ID : T32 MH015442
Pays : United States
Organisme : Wellcome Trust
ID : 204954/Z/16/Z
Pays : United Kingdom
Organisme : Simons Foundation Autism Research Initiative
ID : 529085
Informations de copyright
© 2024. The Author(s).
Références
Olson HE, Demarest ST, Pestana-Knight EM, Swanson LC, Iqbal S, Lal D, Leonard H, Cross JH, Devinsky O, Benke TA. Cyclin-dependent kinase-like 5 Deficiency Disorder: clinical review. Pediatr Neurol. 2019;97:18–25.
pubmed: 30928302
pmcid: 7120929
doi: 10.1016/j.pediatrneurol.2019.02.015
Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S, Vecchi M, Ho G, Polli R, Psoni S, et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet. 2013;21(3):266–73.
pubmed: 22872100
doi: 10.1038/ejhg.2012.156
Hector RD, Kalscheuer VM, Hennig F, Leonard H, Downs J, Clarke A, Benke TA, Armstrong J, Pineda M, Bailey MES, et al. CDKL5 variants: improving our understanding of a rare neurologic disorder. Neurol Genet. 2017;3(6):e200.
pubmed: 29264392
pmcid: 5732004
doi: 10.1212/NXG.0000000000000200
Hector RD, Dando O, Landsberger N, Kilstrup-Nielsen C, Kind PC, Bailey ME, Cobb SR. Characterisation of CDKL5 transcript isoforms in Human and Mouse. PLoS ONE. 2016;11(6):e0157758.
pubmed: 27315173
pmcid: 4912119
doi: 10.1371/journal.pone.0157758
Hector RD, Dando O, Ritakari TE, Kind PC, Bailey ME, Cobb SR. Characterisation of Cdkl5 transcript isoforms in rat. Gene. 2017;603:21–6.
pubmed: 27940108
doi: 10.1016/j.gene.2016.12.001
Munoz IM, Morgan ME, Peltier J, Weiland F, Gregorczyk M, Brown FC, Macartney T, Toth R, Trost M, Rouse J. Phosphoproteomic screening identifies physiological substrates of the CDKL5 kinase. EMBO J 2018, 37(24).
Baltussen LL, Negraes PD, Silvestre M, Claxton S, Moeskops M, Christodoulou E, Flynn HR, Snijders AP, Muotri AR, Ultanir SK. Chemical genetic identification of CDKL5 substrates reveals its role in neuronal microtubule dynamics. EMBO J. 2018;37(24).
Della Sala G, Putignano E, Chelini G, Melani R, Calcagno E, Michele Ratto G, Amendola E, Gross CT, Giustetto M, Pizzorusso T. Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor 1. Biol Psychiatry. 2016;80(4):302–11.
pubmed: 26452614
doi: 10.1016/j.biopsych.2015.08.028
Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E, Gross C, Calza L, Bartesaghi R, Ciani E. Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3beta signaling. Neurobiol Dis. 2014;70(100):53–68.
pubmed: 24952363
pmcid: 4146476
doi: 10.1016/j.nbd.2014.06.006
Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E, Fuchs C, Lonetti G, Silingardi D, Vyssotski AL, Farley D, et al. Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS ONE. 2014;9(5):e91613.
pubmed: 24838000
pmcid: 4023934
doi: 10.1371/journal.pone.0091613
Tang S, Wang IJ, Yue C, Takano H, Terzic B, Pance K, Lee JY, Cui Y, Coulter DA, Zhou Z. Loss of CDKL5 in glutamatergic neurons disrupts hippocampal microcircuitry and leads to memory impairment in mice. J Neurosci. 2017;37(31):7420–37.
pubmed: 28674172
pmcid: 5546111
doi: 10.1523/JNEUROSCI.0539-17.2017
Okuda K, Kobayashi S, Fukaya M, Watanabe A, Murakami T, Hagiwara M, Sato T, Ueno H, Ogonuki N, Komano-Inoue S, et al. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiol Dis. 2017;106:158–70.
pubmed: 28688852
doi: 10.1016/j.nbd.2017.07.002
Yennawar M, White RS, Jensen FE. AMPA receptor dysregulation and therapeutic interventions in a mouse model of CDKL5 Deficiency Disorder. J Neurosci. 2019;39(24):4814–28.
pubmed: 30952813
pmcid: 6561688
doi: 10.1523/JNEUROSCI.2041-18.2019
Tang S, Terzic B, Wang IJ, Sarmiento N, Sizov K, Cui Y, Takano H, Marsh ED, Zhou Z, Coulter DA. Altered NMDAR signaling underlies autistic-like features in mouse models of CDKL5 deficiency disorder. Nat Commun. 2019;10(1):2655.
pubmed: 31201320
pmcid: 6572855
doi: 10.1038/s41467-019-10689-w
Okuda K, Takao K, Watanabe A, Miyakawa T, Mizuguchi M, Tanaka T. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory. PLoS ONE. 2018;13(4):e0196587.
pubmed: 29702698
pmcid: 5922552
doi: 10.1371/journal.pone.0196587
Luthi A, Schwyzer L, Mateos JM, Gahwiler BH, McKinney RA. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nat Neurosci. 2001;4(11):1102–7.
pubmed: 11687815
doi: 10.1038/nn744
Hall BJ, Ripley B, Ghosh A. NR2B signaling regulates the development of synaptic AMPA receptor current. J Neurosci. 2007;27(49):13446–56.
pubmed: 18057203
pmcid: 6673095
doi: 10.1523/JNEUROSCI.3793-07.2007
Oliveira LS, Sumera A, Booker SA. Repeated whole-cell patch-clamp recording from CA1 pyramidal cells in rodent hippocampal slices followed by axon initial segment labeling. STAR Protoc. 2021;2(1):100336.
pubmed: 33644771
pmcid: 7887436
doi: 10.1016/j.xpro.2021.100336
Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJ, O’Carroll CM, Martin SJ, Morris RG, et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci. 2002;22(22):9721–32.
pubmed: 12427827
pmcid: 6757832
doi: 10.1523/JNEUROSCI.22-22-09721.2002
Anderson WW, Collingridge GL. Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. J Neurosci Methods. 2007;162(1–2):346–56.
pubmed: 17306885
doi: 10.1016/j.jneumeth.2006.12.018
Adesnik H, Nicoll RA. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J Neurosci. 2007;27(17):4598–602.
pubmed: 17460072
pmcid: 6672988
doi: 10.1523/JNEUROSCI.0325-07.2007
Harlow EG, Till SM, Russell TA, Wijetunge LS, Kind P, Contractor A. Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron. 2010;65(3):385–98.
pubmed: 20159451
pmcid: 2825250
doi: 10.1016/j.neuron.2010.01.024
Isaac JT, Crair MC, Nicoll RA, Malenka RC. Silent synapses during development of thalamocortical inputs. Neuron. 1997;18(2):269–80.
pubmed: 9052797
doi: 10.1016/S0896-6273(00)80267-6
Clements JD, Bekkers JM. Detection of spontaneous synaptic events with an optimally scaled template. Biophys J. 1997;73(1):220–9.
pubmed: 9199786
pmcid: 1180923
doi: 10.1016/S0006-3495(97)78062-7
Guzman SJ, Schlogl A, Schmidt-Hieber C. Stimfit: quantifying electrophysiological data with Python. Front Neuroinform. 2014;8:16.
pubmed: 24600389
pmcid: 3931263
doi: 10.3389/fninf.2014.00016
Dunkley PR, Jarvie PE, Robinson PJ. A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc. 2008;3(11):1718–28.
pubmed: 18927557
doi: 10.1038/nprot.2008.171
Longair MH, Baker DA, Armstrong JD. Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics. 2011;27(17):2453–4.
pubmed: 21727141
doi: 10.1093/bioinformatics/btr390
Bates D, Machler M, Bolker BM, Walker SC. Fitting Linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.
doi: 10.18637/jss.v067.i01
Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ, Almonte AG, Miller BH, Wiltgen BJ, Miller CA, et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell. 2012;151(4):709–23.
pubmed: 23141534
pmcid: 3500766
doi: 10.1016/j.cell.2012.08.045
Contractor A, Klyachko VA, Portera-Cailliau C. Altered neuronal and Circuit Excitability in Fragile X Syndrome. Neuron. 2015;87(4):699–715.
pubmed: 26291156
pmcid: 4545495
doi: 10.1016/j.neuron.2015.06.017
Spruston N, Johnston D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol. 1992;67(3):508–29.
pubmed: 1578242
doi: 10.1152/jn.1992.67.3.508
Staff NP, Jung HY, Thiagarajan T, Yao M, Spruston N. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. J Neurophysiol. 2000;84(5):2398–408.
pubmed: 11067982
doi: 10.1152/jn.2000.84.5.2398
Pickard L, Noel J, Henley JM, Collingridge GL, Molnar E. Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci. 2000;20(21):7922–31.
pubmed: 11050112
pmcid: 6772733
doi: 10.1523/JNEUROSCI.20-21-07922.2000
Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H. NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci. 1997;17(7):2469–76.
pubmed: 9065507
pmcid: 6573498
doi: 10.1523/JNEUROSCI.17-07-02469.1997
Kamboj SK, Swanson GT, Cull-Candy SG. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J Physiol. 1995;486(Pt 2):297–303.
pubmed: 7473197
pmcid: 1156521
doi: 10.1113/jphysiol.1995.sp020812
He Y, Janssen WG, Morrison JH. Synaptic coexistence of AMPA and NMDA receptors in the rat hippocampus: a postembedding immunogold study. J Neurosci Res. 1998;54(4):444–9.
pubmed: 9822155
doi: 10.1002/(SICI)1097-4547(19981115)54:4<444::AID-JNR2>3.0.CO;2-3
Sekiguchi M, Katayama S, Hatano N, Shigeri Y, Sueyoshi N, Kameshita I. Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys. 2013;535(2):257–67.
pubmed: 23651931
doi: 10.1016/j.abb.2013.04.012
Nawaz MS, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, Alberio T, Landsberger N, Rusconi L, Kilstrup-Nielsen C. CDKL5 and Shootin1 interact and concur in regulating neuronal polarization. PLoS ONE. 2016;11(2):e0148634.
pubmed: 26849555
pmcid: 4746202
doi: 10.1371/journal.pone.0148634
Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G, Brambilla D, Sessa A, Magagnotti C, Bachi A, Giarda E, et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol. 2012;14(9):911–23.
pubmed: 22922712
pmcid: 6485419
doi: 10.1038/ncb2566
Fuchs C, Fustini N, Trazzi S, Gennaccaro L, Rimondini R, Ciani E. Treatment with the GSK3-beta inhibitor Tideglusib improves hippocampal development and memory performance in juvenile, but not adult, Cdkl5 knockout mice. Eur J Neurosci. 2018;47(9):1054–66.
pubmed: 29603837
doi: 10.1111/ejn.13923
Debanne D, Guerineau NC, Gahwiler BH, Thompson SM. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol. 1996;491(Pt 1):163–76.
pubmed: 9011608
pmcid: 1158767
doi: 10.1113/jphysiol.1996.sp021204
Holmqvist MH, Cao J, Hernandez-Pineda R, Jacobson MD, Carroll KI, Sung MA, Betty M, Ge P, Gilbride KJ, Brown ME, et al. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc Natl Acad Sci U S A. 2002;99(2):1035–40.
pubmed: 11805342
pmcid: 117799
doi: 10.1073/pnas.022509299
Morohashi Y, Hatano N, Ohya S, Takikawa R, Watabiki T, Takasugi N, Imaizumi Y, Tomita T, Iwatsubo T. Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4. J Biol Chem. 2002;277(17):14965–75.
pubmed: 11847232
doi: 10.1074/jbc.M200897200
Vetter P, Roth A, Hausser M. Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol. 2001;85(2):926–37.
pubmed: 11160523
doi: 10.1152/jn.2001.85.2.926
Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 1996;382(6589):363–6.
pubmed: 8684467
doi: 10.1038/382363a0
Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience. 1989;31(3):571–91.
pubmed: 2687721
doi: 10.1016/0306-4522(89)90424-7
Bannister NJ, Larkman AU. Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. branching patterns. J Comp Neurol. 1995;360(1):150–60.
pubmed: 7499560
doi: 10.1002/cne.903600111
Racca C, Stephenson FA, Streit P, Roberts JD, Somogyi P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci. 2000;20(7):2512–22.
pubmed: 10729331
pmcid: 6772245
doi: 10.1523/JNEUROSCI.20-07-02512.2000
Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H. Differences in Ca
pubmed: 8011338
doi: 10.1016/0896-6273(94)90444-8
Jonas P, Sakmann B. Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. J Physiol. 1992;455:143–71.
pubmed: 1282929
pmcid: 1175637
doi: 10.1113/jphysiol.1992.sp019294
Sanderson JL, Gorski JA, Dell’Acqua ML. NMDA receptor-dependent LTD requires transient synaptic incorporation of ca(2)(+)-Permeable AMPARs mediated by AKAP150-Anchored PKA and Calcineurin. Neuron. 2016;89(5):1000–15.
pubmed: 26938443
pmcid: 4914360
doi: 10.1016/j.neuron.2016.01.043
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, et al. Structure, function, and pharmacology of glutamate receptor Ion channels. Pharmacol Rev. 2021;73(4):298–487.
pubmed: 34753794
pmcid: 8626789
doi: 10.1124/pharmrev.120.000131
Soto D, Coombs ID, Kelly L, Farrant M, Cull-Candy SG. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat Neurosci. 2007;10(10):1260–7.
pubmed: 17873873
pmcid: 2430330
doi: 10.1038/nn1966
Rouach N, Byrd K, Petralia RS, Elias GM, Adesnik H, Tomita S, Karimzadegan S, Kealey C, Bredt DS, Nicoll RA. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci. 2005;8(11):1525–33.
pubmed: 16222232
doi: 10.1038/nn1551
Wang IT, Allen M, Goffin D, Zhu X, Fairless AH, Brodkin ES, Siegel SJ, Marsh ED, Blendy JA, Zhou Z. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A. 2012;109(52):21516–21.
pubmed: 23236174
pmcid: 3535652
doi: 10.1073/pnas.1216988110
Zhu YC, Xiong ZQ. Molecular and synaptic bases of CDKL5 disorder. Dev Neurobiol. 2019;79(1):8–19.
pubmed: 30246934
doi: 10.1002/dneu.22639
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM et al. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. Elife 2023, 12.
Schroeder E, Yuan L, Seong E, Ligon C, DeKorver N, Gurumurthy CB, Arikkath J. Neuron-type specific loss of CDKL5 leads to alterations in mTOR Signaling and synaptic markers. Mol Neurobiol. 2019;56(6):4151–62.
pubmed: 30288694
doi: 10.1007/s12035-018-1346-8
Winden KD, Ebrahimi-Fakhari D, Sahin M. Abnormal mTOR activation in Autism. Annu Rev Neurosci. 2018;41:1–23.
pubmed: 29490194
doi: 10.1146/annurev-neuro-080317-061747
Dobrunz LE, Stevens CF. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron. 1997;18(6):995–1008.
pubmed: 9208866
doi: 10.1016/S0896-6273(00)80338-4
Manita S, Suzuki T, Inoue M, Kudo Y, Miyakawa H. Paired-pulse ratio of synaptically induced transporter currents at hippocampal CA1 synapses is not related to release probability. Brain Res. 2007;1154:71–9.
pubmed: 17482582
doi: 10.1016/j.brainres.2007.03.089
Burke KJ Jr., Keeshen CM, Bender KJ. Two forms of synaptic Depression produced by Differential Neuromodulation of presynaptic calcium channels. Neuron. 2018;99(5):969–84. e967.
pubmed: 30122380
pmcid: 7874512
doi: 10.1016/j.neuron.2018.07.030
Kontaxi C, Ivanova D, Davenport EC, Kind PC, Cousin MA. Epilepsy-Related CDKL5 Deficiency slows synaptic vesicle endocytosis in central nerve terminals. J Neurosci. 2023;43(11):2002–20.
pubmed: 36759195
pmcid: 10027047
doi: 10.1523/JNEUROSCI.1537-22.2023
Demarest ST, Olson HE, Moss A, Pestana-Knight E, Zhang X, Parikh S, Swanson LC, Riley KD, Bazin GA, Angione K, et al. CDKL5 deficiency disorder: relationship between genotype, epilepsy, cortical visual impairment, and development. Epilepsia. 2019;60(8):1733–42.
pubmed: 31313283
pmcid: 7098045
doi: 10.1111/epi.16285
MacKay CI, Wong K, Demarest ST, Benke TA, Downs J, Leonard H. Exploring genotype-phenotype relationships in the CDKL5 deficiency disorder using an international dataset. Clin Genet. 2021;99(1):157–65.
pubmed: 33047306
doi: 10.1111/cge.13862
Siri B, Varesio C, Freri E, Darra F, Gana S, Mei D, Porta F, Fontana E, Galati G, Solazzi R, et al. CDKL5 deficiency disorder in males: five new variants and review of the literature. Eur J Paediatr Neurol. 2021;33:9–20.
pubmed: 33989939
doi: 10.1016/j.ejpn.2021.04.007
Bahi-Buisson N, Bienvenu T. CDKL5-Related disorders: from clinical description to Molecular Genetics. Mol Syndromol. 2012;2(3–5):137–52.
pubmed: 22670135
Mulcahey PJ, Tang S, Takano H, White A, Davila Portillo DR, Kane OM, Marsh ED, Zhou Z, Coulter DA. Aged heterozygous Cdkl5 mutant mice exhibit spontaneous epileptic spasms. Exp Neurol. 2020;332:113388.
pubmed: 32585155
pmcid: 8855336
doi: 10.1016/j.expneurol.2020.113388