Enhanced hippocampal LTP but normal NMDA receptor and AMPA receptor function in a rat model of CDKL5 deficiency disorder.


Journal

Molecular autism
ISSN: 2040-2392
Titre abrégé: Mol Autism
Pays: England
ID NLM: 101534222

Informations de publication

Date de publication:
14 Jun 2024
Historique:
received: 03 11 2023
accepted: 07 05 2024
medline: 15 6 2024
pubmed: 15 6 2024
entrez: 14 6 2024
Statut: epublish

Résumé

Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5 To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5 Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.

Sections du résumé

BACKGROUND BACKGROUND
Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5
METHODS METHODS
To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology.
RESULTS RESULTS
Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5
CONCLUSIONS CONCLUSIONS
Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity.
LIMITATIONS CONCLUSIONS
This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.

Identifiants

pubmed: 38877552
doi: 10.1186/s13229-024-00601-9
pii: 10.1186/s13229-024-00601-9
doi:

Substances chimiques

Receptors, N-Methyl-D-Aspartate 0
Receptors, AMPA 0
Protein Serine-Threonine Kinases EC 2.7.11.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

28

Subventions

Organisme : NIMH NIH HHS
ID : T32 MH015442
Pays : United States
Organisme : Wellcome Trust
ID : 204954/Z/16/Z
Pays : United Kingdom
Organisme : Simons Foundation Autism Research Initiative
ID : 529085

Informations de copyright

© 2024. The Author(s).

Références

Olson HE, Demarest ST, Pestana-Knight EM, Swanson LC, Iqbal S, Lal D, Leonard H, Cross JH, Devinsky O, Benke TA. Cyclin-dependent kinase-like 5 Deficiency Disorder: clinical review. Pediatr Neurol. 2019;97:18–25.
pubmed: 30928302 pmcid: 7120929 doi: 10.1016/j.pediatrneurol.2019.02.015
Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S, Vecchi M, Ho G, Polli R, Psoni S, et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet. 2013;21(3):266–73.
pubmed: 22872100 doi: 10.1038/ejhg.2012.156
Hector RD, Kalscheuer VM, Hennig F, Leonard H, Downs J, Clarke A, Benke TA, Armstrong J, Pineda M, Bailey MES, et al. CDKL5 variants: improving our understanding of a rare neurologic disorder. Neurol Genet. 2017;3(6):e200.
pubmed: 29264392 pmcid: 5732004 doi: 10.1212/NXG.0000000000000200
Hector RD, Dando O, Landsberger N, Kilstrup-Nielsen C, Kind PC, Bailey ME, Cobb SR. Characterisation of CDKL5 transcript isoforms in Human and Mouse. PLoS ONE. 2016;11(6):e0157758.
pubmed: 27315173 pmcid: 4912119 doi: 10.1371/journal.pone.0157758
Hector RD, Dando O, Ritakari TE, Kind PC, Bailey ME, Cobb SR. Characterisation of Cdkl5 transcript isoforms in rat. Gene. 2017;603:21–6.
pubmed: 27940108 doi: 10.1016/j.gene.2016.12.001
Munoz IM, Morgan ME, Peltier J, Weiland F, Gregorczyk M, Brown FC, Macartney T, Toth R, Trost M, Rouse J. Phosphoproteomic screening identifies physiological substrates of the CDKL5 kinase. EMBO J 2018, 37(24).
Baltussen LL, Negraes PD, Silvestre M, Claxton S, Moeskops M, Christodoulou E, Flynn HR, Snijders AP, Muotri AR, Ultanir SK. Chemical genetic identification of CDKL5 substrates reveals its role in neuronal microtubule dynamics. EMBO J. 2018;37(24).
Della Sala G, Putignano E, Chelini G, Melani R, Calcagno E, Michele Ratto G, Amendola E, Gross CT, Giustetto M, Pizzorusso T. Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor 1. Biol Psychiatry. 2016;80(4):302–11.
pubmed: 26452614 doi: 10.1016/j.biopsych.2015.08.028
Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E, Gross C, Calza L, Bartesaghi R, Ciani E. Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3beta signaling. Neurobiol Dis. 2014;70(100):53–68.
pubmed: 24952363 pmcid: 4146476 doi: 10.1016/j.nbd.2014.06.006
Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E, Fuchs C, Lonetti G, Silingardi D, Vyssotski AL, Farley D, et al. Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS ONE. 2014;9(5):e91613.
pubmed: 24838000 pmcid: 4023934 doi: 10.1371/journal.pone.0091613
Tang S, Wang IJ, Yue C, Takano H, Terzic B, Pance K, Lee JY, Cui Y, Coulter DA, Zhou Z. Loss of CDKL5 in glutamatergic neurons disrupts hippocampal microcircuitry and leads to memory impairment in mice. J Neurosci. 2017;37(31):7420–37.
pubmed: 28674172 pmcid: 5546111 doi: 10.1523/JNEUROSCI.0539-17.2017
Okuda K, Kobayashi S, Fukaya M, Watanabe A, Murakami T, Hagiwara M, Sato T, Ueno H, Ogonuki N, Komano-Inoue S, et al. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiol Dis. 2017;106:158–70.
pubmed: 28688852 doi: 10.1016/j.nbd.2017.07.002
Yennawar M, White RS, Jensen FE. AMPA receptor dysregulation and therapeutic interventions in a mouse model of CDKL5 Deficiency Disorder. J Neurosci. 2019;39(24):4814–28.
pubmed: 30952813 pmcid: 6561688 doi: 10.1523/JNEUROSCI.2041-18.2019
Tang S, Terzic B, Wang IJ, Sarmiento N, Sizov K, Cui Y, Takano H, Marsh ED, Zhou Z, Coulter DA. Altered NMDAR signaling underlies autistic-like features in mouse models of CDKL5 deficiency disorder. Nat Commun. 2019;10(1):2655.
pubmed: 31201320 pmcid: 6572855 doi: 10.1038/s41467-019-10689-w
Okuda K, Takao K, Watanabe A, Miyakawa T, Mizuguchi M, Tanaka T. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory. PLoS ONE. 2018;13(4):e0196587.
pubmed: 29702698 pmcid: 5922552 doi: 10.1371/journal.pone.0196587
Luthi A, Schwyzer L, Mateos JM, Gahwiler BH, McKinney RA. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nat Neurosci. 2001;4(11):1102–7.
pubmed: 11687815 doi: 10.1038/nn744
Hall BJ, Ripley B, Ghosh A. NR2B signaling regulates the development of synaptic AMPA receptor current. J Neurosci. 2007;27(49):13446–56.
pubmed: 18057203 pmcid: 6673095 doi: 10.1523/JNEUROSCI.3793-07.2007
Oliveira LS, Sumera A, Booker SA. Repeated whole-cell patch-clamp recording from CA1 pyramidal cells in rodent hippocampal slices followed by axon initial segment labeling. STAR Protoc. 2021;2(1):100336.
pubmed: 33644771 pmcid: 7887436 doi: 10.1016/j.xpro.2021.100336
Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJ, O’Carroll CM, Martin SJ, Morris RG, et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci. 2002;22(22):9721–32.
pubmed: 12427827 pmcid: 6757832 doi: 10.1523/JNEUROSCI.22-22-09721.2002
Anderson WW, Collingridge GL. Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. J Neurosci Methods. 2007;162(1–2):346–56.
pubmed: 17306885 doi: 10.1016/j.jneumeth.2006.12.018
Adesnik H, Nicoll RA. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J Neurosci. 2007;27(17):4598–602.
pubmed: 17460072 pmcid: 6672988 doi: 10.1523/JNEUROSCI.0325-07.2007
Harlow EG, Till SM, Russell TA, Wijetunge LS, Kind P, Contractor A. Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron. 2010;65(3):385–98.
pubmed: 20159451 pmcid: 2825250 doi: 10.1016/j.neuron.2010.01.024
Isaac JT, Crair MC, Nicoll RA, Malenka RC. Silent synapses during development of thalamocortical inputs. Neuron. 1997;18(2):269–80.
pubmed: 9052797 doi: 10.1016/S0896-6273(00)80267-6
Clements JD, Bekkers JM. Detection of spontaneous synaptic events with an optimally scaled template. Biophys J. 1997;73(1):220–9.
pubmed: 9199786 pmcid: 1180923 doi: 10.1016/S0006-3495(97)78062-7
Guzman SJ, Schlogl A, Schmidt-Hieber C. Stimfit: quantifying electrophysiological data with Python. Front Neuroinform. 2014;8:16.
pubmed: 24600389 pmcid: 3931263 doi: 10.3389/fninf.2014.00016
Dunkley PR, Jarvie PE, Robinson PJ. A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc. 2008;3(11):1718–28.
pubmed: 18927557 doi: 10.1038/nprot.2008.171
Longair MH, Baker DA, Armstrong JD. Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics. 2011;27(17):2453–4.
pubmed: 21727141 doi: 10.1093/bioinformatics/btr390
Bates D, Machler M, Bolker BM, Walker SC. Fitting Linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.
doi: 10.18637/jss.v067.i01
Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ, Almonte AG, Miller BH, Wiltgen BJ, Miller CA, et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell. 2012;151(4):709–23.
pubmed: 23141534 pmcid: 3500766 doi: 10.1016/j.cell.2012.08.045
Contractor A, Klyachko VA, Portera-Cailliau C. Altered neuronal and Circuit Excitability in Fragile X Syndrome. Neuron. 2015;87(4):699–715.
pubmed: 26291156 pmcid: 4545495 doi: 10.1016/j.neuron.2015.06.017
Spruston N, Johnston D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol. 1992;67(3):508–29.
pubmed: 1578242 doi: 10.1152/jn.1992.67.3.508
Staff NP, Jung HY, Thiagarajan T, Yao M, Spruston N. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. J Neurophysiol. 2000;84(5):2398–408.
pubmed: 11067982 doi: 10.1152/jn.2000.84.5.2398
Pickard L, Noel J, Henley JM, Collingridge GL, Molnar E. Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci. 2000;20(21):7922–31.
pubmed: 11050112 pmcid: 6772733 doi: 10.1523/JNEUROSCI.20-21-07922.2000
Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H. NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci. 1997;17(7):2469–76.
pubmed: 9065507 pmcid: 6573498 doi: 10.1523/JNEUROSCI.17-07-02469.1997
Kamboj SK, Swanson GT, Cull-Candy SG. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J Physiol. 1995;486(Pt 2):297–303.
pubmed: 7473197 pmcid: 1156521 doi: 10.1113/jphysiol.1995.sp020812
He Y, Janssen WG, Morrison JH. Synaptic coexistence of AMPA and NMDA receptors in the rat hippocampus: a postembedding immunogold study. J Neurosci Res. 1998;54(4):444–9.
pubmed: 9822155 doi: 10.1002/(SICI)1097-4547(19981115)54:4<444::AID-JNR2>3.0.CO;2-3
Sekiguchi M, Katayama S, Hatano N, Shigeri Y, Sueyoshi N, Kameshita I. Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys. 2013;535(2):257–67.
pubmed: 23651931 doi: 10.1016/j.abb.2013.04.012
Nawaz MS, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, Alberio T, Landsberger N, Rusconi L, Kilstrup-Nielsen C. CDKL5 and Shootin1 interact and concur in regulating neuronal polarization. PLoS ONE. 2016;11(2):e0148634.
pubmed: 26849555 pmcid: 4746202 doi: 10.1371/journal.pone.0148634
Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G, Brambilla D, Sessa A, Magagnotti C, Bachi A, Giarda E, et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol. 2012;14(9):911–23.
pubmed: 22922712 pmcid: 6485419 doi: 10.1038/ncb2566
Fuchs C, Fustini N, Trazzi S, Gennaccaro L, Rimondini R, Ciani E. Treatment with the GSK3-beta inhibitor Tideglusib improves hippocampal development and memory performance in juvenile, but not adult, Cdkl5 knockout mice. Eur J Neurosci. 2018;47(9):1054–66.
pubmed: 29603837 doi: 10.1111/ejn.13923
Debanne D, Guerineau NC, Gahwiler BH, Thompson SM. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol. 1996;491(Pt 1):163–76.
pubmed: 9011608 pmcid: 1158767 doi: 10.1113/jphysiol.1996.sp021204
Holmqvist MH, Cao J, Hernandez-Pineda R, Jacobson MD, Carroll KI, Sung MA, Betty M, Ge P, Gilbride KJ, Brown ME, et al. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc Natl Acad Sci U S A. 2002;99(2):1035–40.
pubmed: 11805342 pmcid: 117799 doi: 10.1073/pnas.022509299
Morohashi Y, Hatano N, Ohya S, Takikawa R, Watabiki T, Takasugi N, Imaizumi Y, Tomita T, Iwatsubo T. Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4. J Biol Chem. 2002;277(17):14965–75.
pubmed: 11847232 doi: 10.1074/jbc.M200897200
Vetter P, Roth A, Hausser M. Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol. 2001;85(2):926–37.
pubmed: 11160523 doi: 10.1152/jn.2001.85.2.926
Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 1996;382(6589):363–6.
pubmed: 8684467 doi: 10.1038/382363a0
Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience. 1989;31(3):571–91.
pubmed: 2687721 doi: 10.1016/0306-4522(89)90424-7
Bannister NJ, Larkman AU. Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. branching patterns. J Comp Neurol. 1995;360(1):150–60.
pubmed: 7499560 doi: 10.1002/cne.903600111
Racca C, Stephenson FA, Streit P, Roberts JD, Somogyi P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci. 2000;20(7):2512–22.
pubmed: 10729331 pmcid: 6772245 doi: 10.1523/JNEUROSCI.20-07-02512.2000
Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H. Differences in Ca
pubmed: 8011338 doi: 10.1016/0896-6273(94)90444-8
Jonas P, Sakmann B. Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. J Physiol. 1992;455:143–71.
pubmed: 1282929 pmcid: 1175637 doi: 10.1113/jphysiol.1992.sp019294
Sanderson JL, Gorski JA, Dell’Acqua ML. NMDA receptor-dependent LTD requires transient synaptic incorporation of ca(2)(+)-Permeable AMPARs mediated by AKAP150-Anchored PKA and Calcineurin. Neuron. 2016;89(5):1000–15.
pubmed: 26938443 pmcid: 4914360 doi: 10.1016/j.neuron.2016.01.043
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, et al. Structure, function, and pharmacology of glutamate receptor Ion channels. Pharmacol Rev. 2021;73(4):298–487.
pubmed: 34753794 pmcid: 8626789 doi: 10.1124/pharmrev.120.000131
Soto D, Coombs ID, Kelly L, Farrant M, Cull-Candy SG. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat Neurosci. 2007;10(10):1260–7.
pubmed: 17873873 pmcid: 2430330 doi: 10.1038/nn1966
Rouach N, Byrd K, Petralia RS, Elias GM, Adesnik H, Tomita S, Karimzadegan S, Kealey C, Bredt DS, Nicoll RA. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci. 2005;8(11):1525–33.
pubmed: 16222232 doi: 10.1038/nn1551
Wang IT, Allen M, Goffin D, Zhu X, Fairless AH, Brodkin ES, Siegel SJ, Marsh ED, Blendy JA, Zhou Z. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A. 2012;109(52):21516–21.
pubmed: 23236174 pmcid: 3535652 doi: 10.1073/pnas.1216988110
Zhu YC, Xiong ZQ. Molecular and synaptic bases of CDKL5 disorder. Dev Neurobiol. 2019;79(1):8–19.
pubmed: 30246934 doi: 10.1002/dneu.22639
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM et al. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. Elife 2023, 12.
Schroeder E, Yuan L, Seong E, Ligon C, DeKorver N, Gurumurthy CB, Arikkath J. Neuron-type specific loss of CDKL5 leads to alterations in mTOR Signaling and synaptic markers. Mol Neurobiol. 2019;56(6):4151–62.
pubmed: 30288694 doi: 10.1007/s12035-018-1346-8
Winden KD, Ebrahimi-Fakhari D, Sahin M. Abnormal mTOR activation in Autism. Annu Rev Neurosci. 2018;41:1–23.
pubmed: 29490194 doi: 10.1146/annurev-neuro-080317-061747
Dobrunz LE, Stevens CF. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron. 1997;18(6):995–1008.
pubmed: 9208866 doi: 10.1016/S0896-6273(00)80338-4
Manita S, Suzuki T, Inoue M, Kudo Y, Miyakawa H. Paired-pulse ratio of synaptically induced transporter currents at hippocampal CA1 synapses is not related to release probability. Brain Res. 2007;1154:71–9.
pubmed: 17482582 doi: 10.1016/j.brainres.2007.03.089
Burke KJ Jr., Keeshen CM, Bender KJ. Two forms of synaptic Depression produced by Differential Neuromodulation of presynaptic calcium channels. Neuron. 2018;99(5):969–84. e967.
pubmed: 30122380 pmcid: 7874512 doi: 10.1016/j.neuron.2018.07.030
Kontaxi C, Ivanova D, Davenport EC, Kind PC, Cousin MA. Epilepsy-Related CDKL5 Deficiency slows synaptic vesicle endocytosis in central nerve terminals. J Neurosci. 2023;43(11):2002–20.
pubmed: 36759195 pmcid: 10027047 doi: 10.1523/JNEUROSCI.1537-22.2023
Demarest ST, Olson HE, Moss A, Pestana-Knight E, Zhang X, Parikh S, Swanson LC, Riley KD, Bazin GA, Angione K, et al. CDKL5 deficiency disorder: relationship between genotype, epilepsy, cortical visual impairment, and development. Epilepsia. 2019;60(8):1733–42.
pubmed: 31313283 pmcid: 7098045 doi: 10.1111/epi.16285
MacKay CI, Wong K, Demarest ST, Benke TA, Downs J, Leonard H. Exploring genotype-phenotype relationships in the CDKL5 deficiency disorder using an international dataset. Clin Genet. 2021;99(1):157–65.
pubmed: 33047306 doi: 10.1111/cge.13862
Siri B, Varesio C, Freri E, Darra F, Gana S, Mei D, Porta F, Fontana E, Galati G, Solazzi R, et al. CDKL5 deficiency disorder in males: five new variants and review of the literature. Eur J Paediatr Neurol. 2021;33:9–20.
pubmed: 33989939 doi: 10.1016/j.ejpn.2021.04.007
Bahi-Buisson N, Bienvenu T. CDKL5-Related disorders: from clinical description to Molecular Genetics. Mol Syndromol. 2012;2(3–5):137–52.
pubmed: 22670135
Mulcahey PJ, Tang S, Takano H, White A, Davila Portillo DR, Kane OM, Marsh ED, Zhou Z, Coulter DA. Aged heterozygous Cdkl5 mutant mice exhibit spontaneous epileptic spasms. Exp Neurol. 2020;332:113388.
pubmed: 32585155 pmcid: 8855336 doi: 10.1016/j.expneurol.2020.113388

Auteurs

Laura Simões de Oliveira (L)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.

Heather E O'Leary (HE)

School of Medicine, University of Colorado, Denver, CO, USA.
Department of Pharmacology, University of Colorado Denver, 12800 East 19th Ave, Aurora, CO, 80045, USA.

Sarfaraz Nawaz (S)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, 560065, India.
Centre for Brain Development and Repair, Instem, Bangalore, India.

Rita Loureiro (R)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.

Elizabeth C Davenport (EC)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.

Paul Baxter (P)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.

Susana R Louros (SR)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.

Owen Dando (O)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.

Emma Perkins (E)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.

Julien Peltier (J)

Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK.

Matthias Trost (M)

Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK.

Emily K Osterweil (EK)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.

Giles E Hardingham (GE)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.

Michael A Cousin (MA)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
Centre for Brain Development and Repair, Instem, Bangalore, India.

Sumantra Chattarji (S)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, 560065, India.
Centre for Brain Development and Repair, Instem, Bangalore, India.

Sam A Booker (SA)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.

Tim A Benke (TA)

School of Medicine, University of Colorado, Denver, CO, USA. tim.benke@cuanschutz.edu.
Department of Pharmacology, University of Colorado Denver, 12800 East 19th Ave, Aurora, CO, 80045, USA. tim.benke@cuanschutz.edu.

David J A Wyllie (DJA)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK. david.j.a.wyllie@ed.ac.uk.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK. david.j.a.wyllie@ed.ac.uk.
Centre for Brain Development and Repair, Instem, Bangalore, India. david.j.a.wyllie@ed.ac.uk.
Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK. david.j.a.wyllie@ed.ac.uk.

Peter C Kind (PC)

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK. p.kind@ed.ac.uk.
Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK. p.kind@ed.ac.uk.
Centre for Brain Development and Repair, Instem, Bangalore, India. p.kind@ed.ac.uk.
Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK. p.kind@ed.ac.uk.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH