Mesoscopic elasticity controls dynamin-driven fission of lipid tubules.
Canham Helfrich
Fluid lipid bilayer
Membrane fission
Phase field
Topological transition
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 Jun 2024
18 Jun 2024
Historique:
received:
09
03
2024
accepted:
12
06
2024
medline:
19
6
2024
pubmed:
19
6
2024
entrez:
18
6
2024
Statut:
epublish
Résumé
Mesoscale physics bridges the gap between the microscopic degrees of freedom of a system and its large-scale continuous behavior and highlights the role of a few key quantities in complex and multiscale phenomena, like dynamin-driven fission of lipid membranes. The dynamin protein wraps the neck formed during clathrin-mediated endocytosis, for instance, and constricts it until severing occurs. Although ubiquitous and fundamental for life, the cooperation between the GTP-consuming conformational changes within the protein and the full-scale response of the underlying lipid substrate is yet to be unraveled. In this work, we build an effective mesoscopic model from constriction to fission of lipid tubules based on continuum membrane elasticity and implicitly accounting for ratchet-like power strokes of dynamins. Localization of the fission event, the overall geometry, and the energy expenditure we predict comply with the major experimental findings. This bolsters the idea that a continuous picture emerges soon enough to relate dynamin polymerization length and membrane rigidity and tension with the optimal pathway to fission. We therefore suggest that dynamins found in in vivo processes may optimize their structure accordingly. Ultimately, we shed light on real-time conductance measurements available in literature and predict the fission time dependency on elastic parameters.
Identifiants
pubmed: 38890460
doi: 10.1038/s41598-024-64685-2
pii: 10.1038/s41598-024-64685-2
doi:
Substances chimiques
Dynamins
EC 3.6.5.5
Membrane Lipids
0
Lipid Bilayers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14003Subventions
Organisme : European Union - NextGenerationEU
ID : ICSC - Italian Research Center on High Performance Computing, Big Data, and Quantum Computing
Organisme : 2022 Sapienza Funding Scheme
ID : RG1221815884CB65
Organisme : Sapienza Università di Roma
ID : AR12117A8B57625F
Organisme : CINECA
ID : ISCRA-C MODULI
Organisme : PRACE
ID : DECI 17 SOLID
Organisme : European High Performance Computing Joint Undertaking
ID : 2021240074
Informations de copyright
© 2024. The Author(s).
Références
Shpetner, H. S. & Vallee, R. B. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59, 421–432. https://doi.org/10.1016/0092-8674(89)90027-5 (1989).
doi: 10.1016/0092-8674(89)90027-5
pubmed: 2529977
Roux, A. et al. Membrane curvature controls dynamin polymerization. Proc. Natl. Acad. Sci. U.S.A. 107, 4141–4146. https://doi.org/10.1073/pnas.0913734107 (2010).
doi: 10.1073/pnas.0913734107
pubmed: 20160074
pmcid: 2840091
Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029. https://doi.org/10.1016/S0092-8674(00)81207-6 (1998).
doi: 10.1016/S0092-8674(00)81207-6
pubmed: 9635431
Chappie, J. S. et al. A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147, 209–222. https://doi.org/10.1016/j.cell.2011.09.003 (2011).
doi: 10.1016/j.cell.2011.09.003
pubmed: 21962517
pmcid: 3185303
Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531. https://doi.org/10.1038/nature04718 (2006).
doi: 10.1038/nature04718
pubmed: 16648839
Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release. Leading to spontaneous fission. Cell 135, 1276–1286. https://doi.org/10.1016/j.cell.2008.11.028 (2008).
doi: 10.1016/j.cell.2008.11.028
pubmed: 19084269
pmcid: 2768395
Kong, L. et al. Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560, 258–262. https://doi.org/10.1038/s41586-018-0378-6 (2018).
doi: 10.1038/s41586-018-0378-6
pubmed: 30069048
pmcid: 6121775
Iversen, T. G., Skretting, G., Van Deurs, B. & Sandvig, K. Clathrin-coated pits with long, dynamin-wrapped necks upon expression of a clathrin antisense RNA. Proc. Natl. Acad. Sci. U.S.A. 100, 5175–5180. https://doi.org/10.1073/PNAS.0534231100 (2003).
doi: 10.1073/PNAS.0534231100
pubmed: 12682302
pmcid: 154318
Pelkmans, L., Püntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539. https://doi.org/10.1126/science.1069784 (2002).
doi: 10.1126/science.1069784
pubmed: 11964480
Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88. https://doi.org/10.1038/nrm3266 (2012).
doi: 10.1038/nrm3266
pubmed: 22233676
pmcid: 3519936
Ramachandran, R. & Schmid, S. L. The dynamin superfamily. Curr. Biol. 28, R411–R416. https://doi.org/10.1016/j.cub.2017.12.013 (2018).
doi: 10.1016/j.cub.2017.12.013
pubmed: 29689225
Newton, A. J., Kirchhausen, T. & Murthy, V. M. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. U.S.A. 103, 17955–17960. https://doi.org/10.1073/pnas.0606212103 (2006).
doi: 10.1073/pnas.0606212103
pubmed: 17093049
pmcid: 1693854
Ferguson, S. M. et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316, 570–574. https://doi.org/10.1126/science.1140621 (2007).
doi: 10.1126/science.1140621
pubmed: 17463283
Antonny, B. et al. Membrane fission by dynamin: What we know and what we need to know. EMBO J. 35, 2270–2284. https://doi.org/10.15252/embj.201694613 (2016).
doi: 10.15252/embj.201694613
pubmed: 27670760
pmcid: 5090216
Singh, M., Jadhav, H. R. & Bhatt, T. Dynamin functions and ligands: Classical mechanisms behind. Mol. Pharmacol. 91, 123–134. https://doi.org/10.1124/mol.116.105064 (2017).
doi: 10.1124/mol.116.105064
pubmed: 27879341
Faelber, K. et al. Oligomerization of Dynamin Superfamily Proteins in Health and Disease Vol. 117 (Elsevier Inc, 2013).
Kozlovsky, Y. & Kozlov, M. M. Membrane fission: Model for intermediate structures. Biophys. J. 85(1), 85–96. https://doi.org/10.1016/S0006-3495(03)74457-9 (2003).
doi: 10.1016/S0006-3495(03)74457-9
pubmed: 12829467
pmcid: 1303068
Morlot, S. et al. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151, 619–629. https://doi.org/10.1016/j.cell.2012.09.017 (2012).
doi: 10.1016/j.cell.2012.09.017
pubmed: 23101629
pmcid: 4290832
Shnyrova, A. V. et al. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science 339, 1433–1436. https://doi.org/10.1126/science.1233920 (2013).
doi: 10.1126/science.1233920
pubmed: 23520112
pmcid: 3980720
McDargh, Z. A., Vázquez-Montejo, P., Guven, J. & Deserno, M. Constriction by dynamin: Elasticity versus adhesion. Biophys. J. 111, 2470–2480. https://doi.org/10.1016/j.bpj.2016.10.019 (2016).
doi: 10.1016/j.bpj.2016.10.019
pubmed: 27926848
pmcid: 5153553
Kadosh, A., Colom, A., Yellin, B., Roux, A. & Shemesh, T. The tilted helix model of dynamin oligomers. Proc. Natl. Acad. Sci. U.S.A. 116, 12845–12850. https://doi.org/10.1073/pnas.1903769116 (2019).
doi: 10.1073/pnas.1903769116
pubmed: 31189604
pmcid: 6601248
Noel, J. K., Noé, F., Daumke, O. & Mikhailov, A. S. Polymer-like model to study the dynamics of dynamin filaments on deformable membrane tubes. Biophys. J. 117, 1870–1891. https://doi.org/10.1016/j.bpj.2019.09.042 (2019).
doi: 10.1016/j.bpj.2019.09.042
pubmed: 31672269
pmcid: 7018994
Vasan, R., Rudraraju, S., Akamatsu, M., Garikipati, K. & Rangamani, P. A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction. Soft Matter 16, 784–797. https://doi.org/10.1039/c9sm01494b (2020).
doi: 10.1039/c9sm01494b
pubmed: 31830191
Ganichkin, O. M. et al. Quantification and demonstration of the collective constriction-by-ratchet mechanism in the dynamin molecular motor. Proc. Natl. Acad. Sci. U.S.A. 118, 118. https://doi.org/10.1073/pnas.2101144118 (2021).
doi: 10.1073/pnas.2101144118
Liu, J., Alvarez, F. J. D., Clare, D. K., Noel, J. K. & Zhang, P. CryoEM structure of the super-constricted two-start dynamin 1 filament. Nat. Commun. 12, 1–11. https://doi.org/10.1038/s41467-021-25741-x (2021).
doi: 10.1038/s41467-021-25741-x
Shin, W. et al. Molecular mechanics underlying flat-to-round membrane budding in live secretory cells. Nat. Commun. 13, 1–18. https://doi.org/10.1038/s41467-022-31286-4 (2022).
doi: 10.1038/s41467-022-31286-4
Müller, M., Katsov, K. & Schick, M. Biological and synthetic membranes: What can be learned from a coarse-grained description? Phys. Rep. 434, 113–176. https://doi.org/10.1016/j.physrep.2006.08.003 (2006).
doi: 10.1016/j.physrep.2006.08.003
Deserno, M. Mesoscopic membrane physics: Concepts, simulations, and selected applications. Macromol. Rapid Commun. 30, 752–771. https://doi.org/10.1002/marc.200900090 (2009).
doi: 10.1002/marc.200900090
pubmed: 21706661
Faelber, K. et al. Crystal structure of nucleotide-free dynamin. Nature 477, 556–562. https://doi.org/10.1038/nature10369 (2011).
doi: 10.1038/nature10369
pubmed: 21927000
Ford, M. G., Jenni, S. & Nunnari, J. The crystal structure of dynamin. Nature 477, 561–566. https://doi.org/10.1038/nature10441 (2011).
doi: 10.1038/nature10441
pubmed: 21927001
pmcid: 4075756
Reubold, T. F. et al. Crystal structure of the dynamin tetramer. Nature 525, 404–408. https://doi.org/10.1038/nature14880 (2015).
doi: 10.1038/nature14880
pubmed: 26302298
Colom, A., Redondo-Morata, L., Chiaruttini, N., Roux, A. & Scheuring, S. Dynamic remodeling of the dynamin helix during membrane constriction. Proc. Natl. Acad. Sci. U.S.A. 114, 5449–5454. https://doi.org/10.1073/pnas.1619578114 (2017).
doi: 10.1073/pnas.1619578114
pubmed: 28484031
pmcid: 5448220
Sundborger, A. C. et al. A dynamin mutant defines a superconstricted prefission state. Cell Rep. 8, 734–742. https://doi.org/10.1016/j.celrep.2014.06.054 (2014).
doi: 10.1016/j.celrep.2014.06.054
pubmed: 25088425
pmcid: 4142656
Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L. & Dyda, F. G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465, 435–440. https://doi.org/10.1038/nature09032 (2010).
doi: 10.1038/nature09032
pubmed: 20428113
pmcid: 2879890
Takeda, T. et al. Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis. eLife 7, 1–19. https://doi.org/10.7554/eLife.30246 (2018).
doi: 10.7554/eLife.30246
Dar, S., Kamerkar, S. C. & Pucadyil, T. J. A high-throughput platform for real-time analysis of membrane fission reactions reveals dynamin function. Nat. Cell Biol. 17, 1588–1596. https://doi.org/10.1038/ncb3254 (2015).
doi: 10.1038/ncb3254
pubmed: 26479317
Mattila, J.-P. et al. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524, 109–113. https://doi.org/10.1038/nature14509 (2015).
doi: 10.1038/nature14509
pubmed: 26123023
pmcid: 4529379
Dar, S. & Pucadyil, T. J. The pleckstrin-homology domain of dynamin is dispensable for membrane constriction and fission. Mol. Biol. Cell 28, 152–160. https://doi.org/10.1091/mbc.e16-09-0640 (2017).
doi: 10.1091/mbc.e16-09-0640
pubmed: 28035046
pmcid: 5221619
Cheng, X. et al. Dynamin-dependent vesicle twist at the final stage of clathrin-mediated endocytosis. Nat. Cell Biol. 23, 859–869. https://doi.org/10.1038/s41556-021-00713-x (2021).
doi: 10.1038/s41556-021-00713-x
pubmed: 34253896
pmcid: 8355216
Pannuzzo, M., McDargh, Z. A. & Deserno, M. The role of scaffold reshaping and disassembly in dynamin driven membrane fission. eLife 7, 1–23. https://doi.org/10.7554/eLife.39441 (2018).
doi: 10.7554/eLife.39441
Schmid, S. L. & Frolov, V. A. Dynamin: Functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 27, 79–105. https://doi.org/10.1146/annurev-cellbio-100109-104016 (2011).
doi: 10.1146/annurev-cellbio-100109-104016
pubmed: 21599493
Al-Izzi, S. C., Sens, P. & Turner, M. S. Shear-driven instabilities of membrane tubes and dynamin-induced scission. Phys. Rev. Lett. 125, 018101. https://doi.org/10.1103/PhysRevLett.125.018101 (2020).
doi: 10.1103/PhysRevLett.125.018101
pubmed: 32678660
Morlot, S. & Roux, A. Mechanics of dynamin-mediated membrane fission. Annu. Rev. Biophys. 42, 629–649. https://doi.org/10.1146/annurev-biophys-050511-102247 (2013).
doi: 10.1146/annurev-biophys-050511-102247
pubmed: 23541160
pmcid: 4289195
Fuhrmans, M. & Müller, M. Coarse-grained simulation of dynamin-mediated fission. Soft Matter 11, 1464–1480. https://doi.org/10.1039/c4sm02533d (2015).
doi: 10.1039/c4sm02533d
pubmed: 25523542
Zhang, G. & Müller, M. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers. J. Chem. Phys. 147, 7575. https://doi.org/10.1063/1.4997575 (2017).
doi: 10.1063/1.4997575
Du, Q., Liu, C. & Wang, X. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468. https://doi.org/10.1016/j.jcp.2004.01.029 (2004).
doi: 10.1016/j.jcp.2004.01.029
Campelo, F. & Hernández-Machado, A. Dynamic model and stationary shapes of fluid vesicles. Eur. Phys. J. E 20, 37–45. https://doi.org/10.1140/epje/i2005-10079-5 (2006).
doi: 10.1140/epje/i2005-10079-5
pubmed: 16733637
Canham, P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 61–81. https://doi.org/10.1016/S0022-5193(70)80032-7 (1970).
doi: 10.1016/S0022-5193(70)80032-7
pubmed: 5411112
Helfrich, Wolfgang. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Nat. C 28, 693–703 (1973).
Bottacchiari, M., Gallo, M., Bussoletti, M. & Casciola, C. M. Activation energy and force fields during topological transitions of fluid lipid vesicles. Commun. Phys. 5, 1–12. https://doi.org/10.1038/s42005-022-01055-2 (2022).
doi: 10.1038/s42005-022-01055-2
Gallo, M. et al. A nanoscale view of the origin of boiling and its dynamics. Nat. Commun. 14, 6428. https://doi.org/10.1038/s41467-023-41959-3 (2023).
doi: 10.1038/s41467-023-41959-3
pubmed: 37833270
pmcid: 10576093
Magaletti, F., Gallo, M. & Casciola, C. M. Water cavitation from ambient to high temperatures. Sci. Rep. 11, 1–10 (2021).
doi: 10.1038/s41598-021-99863-z
Hu, T., Wang, H. & Gomez, H. Direct van der Waals simulation (DVS) of phase-transforming fluids. Sci. Adv. 9, 7. https://doi.org/10.1126/sciadv.adg3007.2212.01983 (2023).
doi: 10.1126/sciadv.adg3007.2212.01983
Gallo, M., Magaletti, F., Cocco, D. & Casciola, C. M. Nucleation and growth dynamics of vapour bubbles. J. Fluid Mech. 883, A14. https://doi.org/10.1017/jfm.2019.844 (2020).
doi: 10.1017/jfm.2019.844
Gallo, M., Magaletti, F. & Casciola, C. M. Heterogeneous bubble nucleation dynamics. J. Fluid Mech. https://doi.org/10.1017/jfm.2020.761 (2020).
doi: 10.1017/jfm.2020.761
Barker, B., Bell, J. B. & Garcia, A. L. Fluctuating hydrodynamics and the Rayleigh–Plateau instability. Proc. Natl. Acad. Sci. U.S.A. 120, 8120. https://doi.org/10.1073/pnas.2306088120 (2023).
doi: 10.1073/pnas.2306088120
Gránásy, L., Pusztai, T., Börzsönyi, T., Warren, J. A. & Douglas, J. F. A general mechanism of polycrystalline growth. Nat. Mater. 3, 645–650. https://doi.org/10.1038/nmat1190 (2004).
doi: 10.1038/nmat1190
pubmed: 15300243
Shen, Z. H. et al. Phase-field modeling and machine learning of electric–thermal–mechanical breakdown of polymer-based dielectrics. Nat. Commun. 10, 1–10. https://doi.org/10.1038/s41467-019-09874-8 (2019).
doi: 10.1038/s41467-019-09874-8
Simunovic, M. et al. Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170, 172–184. https://doi.org/10.1016/j.cell.2017.05.047 (2017).
doi: 10.1016/j.cell.2017.05.047
pubmed: 28648660
pmcid: 5576516
Cocucci, E., Gaudin, R. & Kirchhausen, T. Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Mol. Biol. Cell 25, 3595–3609. https://doi.org/10.1091/mbc.E14-07-1240 (2014).
doi: 10.1091/mbc.E14-07-1240
pubmed: 25232009
pmcid: 4230619
Chen, Y. J., Zhang, P., Egelman, E. H. & Hinshaw, J. E. The stalk region of dynamin drives the constriction of dynamin tubes. Nat. Struct. Mol. Biol. 11, 574–575. https://doi.org/10.1038/nsmb762 (2004).
doi: 10.1038/nsmb762
pubmed: 15133500
Dimova, R. & Marques, C. M. The Giant Vesicle Book (2019).
Harmandaris, V. A. & Deserno, M. A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers. J. Chem. Phys. 125, 204905. https://doi.org/10.1063/1.2372761 (2006).
doi: 10.1063/1.2372761
pubmed: 17144738
Fiorin, G., Marinelli, F., Faraldo-Gómez, J. D., Faraldo-Gómez, J. D. & Faraldo-Gómez, J. D. Direct derivation of free energies of membrane deformation and other solvent density variations from enhanced sampling molecular dynamics. J. Comput. Chem. 41, 449–459. https://doi.org/10.1002/jcc.26075 (2020).
doi: 10.1002/jcc.26075
pubmed: 31602694
Gompper, G. & Kroll, D. M. Membranes with fluctuating topology: Monte Carlo simulations. Phys. Rev. Lett. 81, 2284–2287. https://doi.org/10.1103/PhysRevLett.81.2284 (1998).
doi: 10.1103/PhysRevLett.81.2284
Bottacchiari, M., Gallo, M., Bussoletti, M. & Casciola, C. M. The local variation of the Gaussian modulus enables different pathways for fluid lipid vesicle fusion. Sci. Rep. 14, 23. https://doi.org/10.1038/s41598-023-50922-7 (2024).
doi: 10.1038/s41598-023-50922-7
pubmed: 38168475
pmcid: 10762093
Lázaro, G. R., Pagonabarraga, I. & Hernández-Machado, A. Phase-field theories for mathematical modeling of biological membranes. Chem. Phys. Lipids 185, 46–60. https://doi.org/10.1016/j.chemphyslip.2014.08.001 (2015).
doi: 10.1016/j.chemphyslip.2014.08.001
pubmed: 25240471
Kusumaatmaja, H. Surveying the free energy landscapes of continuum models: Application to soft matter systems. J. Chem. Phys. 142, 1. https://doi.org/10.1063/1.4916389 (2015).
doi: 10.1063/1.4916389
Dimova, R. Recent developments in the field of bending rigidity measurements on membranes. Adv. Colloid Interface Sci. 208, 225–234. https://doi.org/10.1016/j.cis.2014.03.003 (2014).
doi: 10.1016/j.cis.2014.03.003
pubmed: 24666592
Hu, M., Diggins, P. IV. & Deserno, M. Determining the bending modulus of a lipid membrane by simulating buckling. J. Chem. Phys. 138, 77. https://doi.org/10.1063/1.4808077 (2013).
doi: 10.1063/1.4808077
Hu, M., de Jong, D. H., Marrink, S. J. & Deserno, M. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: A comparative study using the MARTINI model. Faraday Discuss. 161, 365–382. https://doi.org/10.1039/C2FD20087B (2013).
doi: 10.1039/C2FD20087B
pubmed: 23805750
Frolov, V. A., Escalada, A., Akimov, S. A. & Shnyrova, A. V. Geometry of membrane fission. Chem. Phys. Lipids 185, 129–140. https://doi.org/10.1016/j.chemphyslip.2014.07.006 (2015).
doi: 10.1016/j.chemphyslip.2014.07.006
pubmed: 25062896
Grassart, A. et al. Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. J. Cell Biol. 205, 721–735. https://doi.org/10.1083/jcb.201403041 (2014).
doi: 10.1083/jcb.201403041
pubmed: 24891602
pmcid: 4050722
Derényi, I., Jülicher, F. & Prost, J. Formation and interaction of membrane tubes. Phys. Rev. Lett. 88, 238101. https://doi.org/10.1103/PhysRevLett.88.238101 (2002).
doi: 10.1103/PhysRevLett.88.238101
pubmed: 12059401
Jamet, D. & Misbah, C. Thermodynamically consistent picture of the phase-field model of vesicles: Elimination of the surface tension. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 78, 1–12. https://doi.org/10.1103/PhysRevE.78.041903 (2008).
doi: 10.1103/PhysRevE.78.041903
Jamet, D. & Misbah, C. Toward a thermodynamically consistent picture of the phase-field model of vesicles: Curvature energy. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 78, 31902. https://doi.org/10.1103/PhysRevE.78.031902 (2008).
doi: 10.1103/PhysRevE.78.031902
Guckenberger, A. & Gekle, S. Theory and algorithms to compute Helfrich bending forces: A review. J. Phys. Condens. Matter 29, 6313. https://doi.org/10.1088/1361-648X/aa6313 (2017).
doi: 10.1088/1361-648X/aa6313
Serfaty, S. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discret. Contin. Dyn. Syst. 31, 1427–1451. https://doi.org/10.3934/dcds.2011.31.1427 (2011).
doi: 10.3934/dcds.2011.31.1427
Božič, B., Heinrich, V., Svetina, S. & Žekš, B. Shapes of nearly cylindrical, axisymmetric bilayer membranes. Eur. Phys. J. E 6, 91–98. https://doi.org/10.1007/s101890170031 (2001).
doi: 10.1007/s101890170031