Interplay of two small RNAs fine-tunes hierarchical flagella gene expression in Campylobacter jejuni.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 Jun 2024
Historique:
received: 06 07 2023
accepted: 13 05 2024
medline: 20 6 2024
pubmed: 20 6 2024
entrez: 19 6 2024
Statut: epublish

Résumé

Like for many bacteria, flagella are crucial for Campylobacter jejuni motility and virulence. Biogenesis of the flagellar machinery requires hierarchical transcription of early, middle (RpoN-dependent), and late (FliA-dependent) genes. However, little is known about post-transcriptional regulation of flagellar biogenesis by small RNAs (sRNAs). Here, we characterized two sRNAs with opposing effects on C. jejuni filament assembly and motility. We demonstrate that CJnc230 sRNA (FlmE), encoded downstream of the flagellar hook protein, is processed from the RpoN-dependent flgE mRNA by RNase III, RNase Y, and PNPase. We identify mRNAs encoding a flagella-interaction regulator and the anti-sigma factor FlgM as direct targets of CJnc230 repression. CJnc230 overexpression upregulates late genes, including the flagellin flaA, culminating in longer flagella and increased motility. In contrast, overexpression of the FliA-dependent sRNA CJnc170 (FlmR) reduces flagellar length and motility. Overall, our study demonstrates how the interplay of two sRNAs post-transcriptionally fine-tunes flagellar biogenesis through balancing of the hierarchically-expressed components.

Identifiants

pubmed: 38897989
doi: 10.1038/s41467-024-48986-8
pii: 10.1038/s41467-024-48986-8
doi:

Substances chimiques

Bacterial Proteins 0
RNA, Bacterial 0
RNA, Small Untranslated 0
Flagellin 12777-81-0
RNA, Messenger 0
FlgM protein, Bacteria 142462-45-1
Ribonuclease III EC 3.1.26.3
flaA protein, bacteria 133606-66-3

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5240

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GRK2157

Informations de copyright

© 2024. The Author(s).

Références

Akahoshi, D. T. & Bevins, C. L. Flagella at the host-microbe interface: key functions intersect with redundant responses. Front. Immunol. 13, 828758 (2022).
doi: 10.3389/fimmu.2022.828758
Colin, R., Ni, B., Laganenka, L. & Sourjik, V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol. Rev. 45, fuab038 (2021).
doi: 10.1093/femsre/fuab038
Haiko, J. & Westerlund-Wikström, B. The role of the bacterial flagellum in adhesion and virulence. Biol. (Basel) 2, 1242–1267 (2013).
Scanlan, E., Yu, L., Maskell, D., Choudhary, J. & Grant, A. A quantitative proteomic screen of the Campylobacter jejuni flagellar-dependent secretome. J. Proteom. 152, 181–187 (2017).
doi: 10.1016/j.jprot.2016.11.009
Chevance, F. F. V. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008).
doi: 10.1038/nrmicro1887
Gillen, K. L. & Hughes, K. T. Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella Typhimurium. J. Bacteriol. 173, 2301–2310 (1991).
doi: 10.1128/jb.173.7.2301-2310.1991
Havelaar, A. H. et al. World health organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med 12, e1001923 (2015).
doi: 10.1371/journal.pmed.1001923
Parkhill, J. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668 (2000).
doi: 10.1038/35001088
Burnham, P. M. & Hendrixson, D. R. Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat. Rev. Microbiol. 16, 551–565 (2018).
doi: 10.1038/s41579-018-0037-9
Guerry, P. Campylobacter flagella: not just for motility. Trends Microbiol 15, 456–461 (2007).
doi: 10.1016/j.tim.2007.09.006
Liu, X., Gao, B., Novik, V. & Galán, J. E. Quantitative proteomics of intracellular Campylobacter jejuni reveals metabolic reprogramming. PLoS Pathog. 8, e1002562 (2012).
doi: 10.1371/journal.ppat.1002562
Gao, B. et al. Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni. PLoS Biol. 15, e2001390 (2017).
doi: 10.1371/journal.pbio.2001390
McSweegan, E. & Walker, R. I. Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates. Infect. Immun. 53, 141–148 (1986).
doi: 10.1128/iai.53.1.141-148.1986
Lertsethtakarn, P., Ottemann, K. M. & Hendrixson, D. R. Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65, 389–410 (2011).
doi: 10.1146/annurev-micro-090110-102908
Gilbreath, J. J., Cody, W. L., Merrell, D. S. & Hendrixson, D. R. Change is good: variations in common biological mechanisms in the Epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol. Mol. Biol. Rev. 75, 84–132 (2011).
doi: 10.1128/MMBR.00035-10
Balaban, M., Joslin, S. N. & Hendrixson, D. R. FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni. J. Bacteriol. 191, 6602–6611 (2009).
doi: 10.1128/JB.00884-09
Joslin, S. N. & Hendrixson, D. R. Analysis of the Campylobacter jejuni FlgR response regulator suggests integration of diverse mechanisms to activate an NtrC-like protein. J. Bacteriol. 190, 2422–2433 (2008).
doi: 10.1128/JB.01827-07
Joslin, S. N. & Hendrixson, D. R. Activation of the Campylobacter jejuni FlgSR two-component system is linked to the flagellar export apparatus. J. Bacteriol. 191, 2656–2667 (2009).
doi: 10.1128/JB.01689-08
Josenhans, C. et al. Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome. Mol. Microbiol. 43, 307–322 (2002).
doi: 10.1046/j.1365-2958.2002.02765.x
Wösten, M. M. S. M. et al. Temperature-dependent FlgM/FliA complex formation regulates Campylobacter jejuni flagella length. Mol. Microbiol. 75, 1577–1591 (2010).
doi: 10.1111/j.1365-2958.2010.07079.x
Barrero-Tobon, A. M. & Hendrixson, D. R. Identification and analysis of flagellar coexpressed determinants (Feds) of Campylobacter jejuni involved in colonization. Mol. Microbiol. 84, 352–369 (2012).
doi: 10.1111/j.1365-2958.2012.08027.x
Westermann, A. J. Regulatory RNAs in virulence and host-microbe interactions. Microbiol. Spectr. 6, RWR-0002-2017: 1–30 (2018).
Hör, J., Matera, G., Vogel, J., Gottesman, S. & Storz, G. Trans-acting small RNAs and their effects on gene expression in Escherichia coli and Salmonella enterica. Ecosal Plus 9, https://doi.org/10.1128/ecosalplus.ESP-0030-2019 (2020).
Wagner, E. G. H. & Romby, P. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv. Genet. 90, 133–208 (2015).
doi: 10.1016/bs.adgen.2015.05.001
De Lay, N. & Gottesman, S. A complex network of small non-coding RNAs regulate motility in Escherichia coli. Mol. Microbiol. 86, 524–538 (2012).
doi: 10.1111/j.1365-2958.2012.08209.x
Mika, F. & Hengge, R. Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella. Int. J. Mol. Sci. 14, 4560–4579 (2013).
doi: 10.3390/ijms14034560
Thomason, M. K., Fontaine, F., De Lay, N. & Storz, G. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol. Microbiol. 84, 17–35 (2012).
doi: 10.1111/j.1365-2958.2012.07965.x
Dugar, G. et al. High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet 9, e1003495 (2013).
doi: 10.1371/journal.pgen.1003495
Porcelli, I., Reuter, M., Pearson, B. M., Wilhelm, T. & van Vliet, A. H. M. Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria. BMC Genomics 14, 616 (2013).
doi: 10.1186/1471-2164-14-616
Le, M. T. et al. Conservation of σ
doi: 10.1371/journal.pone.0141627
Reuter, M., Periago, P. M., Mulholland, F., Brown, H. L. & van Vliet, A. H. M. A PAS domain-containing regulator controls flagella-flagella interactions in Campylobacter jejuni. Front. Microbiol. 6, 770 (2015).
doi: 10.3389/fmicb.2015.00770
Taveirne, M. E., Theriot, C. M., Livny, J. & DiRita, V. J. The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq. PLoS ONE 8, e73586 (2013).
doi: 10.1371/journal.pone.0073586
Froschauer, K. et al. Complementary Ribo-seq approaches map the translatome and provide a small protein census in the foodborne pathogen Campylobacter jejuni. Preprint at BioRxiv https://doi.org/10.1101/2022.11.09.515450 (2022).
Chaudhuri, R. R. et al. Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome. Microbiol. (Read., Engl.) 157, 2922–2932 (2011).
doi: 10.1099/mic.0.050278-0
Carrillo, C. D. et al. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279, 20327–20338 (2004).
doi: 10.1074/jbc.M401134200
Kamal, N. et al. Deletion of a previously uncharacterized flagellar-hook-length control gene fliK modulates the σ
doi: 10.1099/mic.0.2007/007401-0
Lott, S. C. et al. GLASSgo - automated and reliable detection of sRNA homologs from a single input sequence. Front. Genet. 9, 124 (2018).
doi: 10.3389/fgene.2018.00124
Janssen, R. et al. Host-pathogen interactions in Campylobacter infections: the host perspective. Clin. Microbiol. Rev. 21, 505–518 (2008).
doi: 10.1128/CMR.00055-07
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res 36, W70–W74 (2008).
doi: 10.1093/nar/gkn188
Ponath, F., Hör, J. & Vogel, J. An overview of gene regulation in bacteria by small RNAs derived from mRNA 3’ ends. FEMS Microbiol. Rev. 46, fuac017 (2022).
doi: 10.1093/femsre/fuac017
Miyakoshi, M., Chao, Y. & Vogel, J. Regulatory small RNAs from the 3’ regions of bacterial mRNAs. Curr. Opin. Microbiol. 24, 132–139 (2015).
doi: 10.1016/j.mib.2015.01.013
Altuvia, Y. et al. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli. Nucleic Acids Res. 46, 10380–10394 (2018).
doi: 10.1093/nar/gky816
Lioliou, E. et al. Global regulatory functions of the Staphylococcus aureus endoribonuclease III in gene expression. PLoS Genet 8, e1002782 (2012).
doi: 10.1371/journal.pgen.1002782
Mediati, D. G. et al. RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3’UTR required for intermediate vancomycin resistance. Nat. Commun. 13, 3558 (2022).
doi: 10.1038/s41467-022-31177-8
McKellar, S. W. et al. RNase III CLASH in MRSA uncovers sRNA regulatory networks coupling metabolism to toxin expression. Nat. Commun. 13, 3560 (2022).
doi: 10.1038/s41467-022-31173-y
Haddad, N., Saramago, M., Matos, R. G., Prévost, H. & Arraiano, C. M. Characterization of the biochemical properties of Campylobacter jejuni RNase III. Biosci. Rep. 33, e00082 (2013).
doi: 10.1042/BSR20130090
Dugar, G. et al. CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9. Mol. Cell 69, 893–905.e7 (2018).
doi: 10.1016/j.molcel.2018.01.032
Dar, D. et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016).
doi: 10.1126/science.aad9822
Haddad, N. et al. The RNase R from Campylobacter jejuni has unique features and is involved in the first steps of infection. J. Biol. Chem. 289, 27814–27824 (2014).
doi: 10.1074/jbc.M114.561795
Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).
doi: 10.1038/nbt1172
Ribardo, D. A., Bingham-Ramos, L. K. & Hendrixson, D. R. Functional analysis of the RdxA and RdxB nitroreductases of Campylobacter jejuni reveals that mutations in rdxA confer metronidazole resistance. J. Bacteriol. 192, 1890–1901 (2010).
doi: 10.1128/JB.01638-09
Radomska, K. A., Wösten, M. M. S. M., Ordoñez, S. R., Wagenaar, J. A. & van Putten, J. P. M. Importance of Campylobacter jejuni FliS and FliW in Flagella Biogenesis and Flagellin Secretion. Front. Microbiol. 8, 1060 (2017).
doi: 10.3389/fmicb.2017.01060
Mann, M., Wright, P. R. & Backofen, R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 45, W435–W439 (2017).
doi: 10.1093/nar/gkx279
Regulski, E. E. & Breaker, R. R. In-line probing analysis of riboswitches. Methods Mol. Biol. 419, 53–67 (2008).
doi: 10.1007/978-1-59745-033-1_4
Kutsukake, K. & Iino, T. Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella Typhimurium. J. Bacteriol. 176, 3598–3605 (1994).
doi: 10.1128/jb.176.12.3598-3605.1994
Correa, N. E., Barker, J. R. & Klose, K. E. The Vibrio cholerae FlgM homologue is an anti-σ
doi: 10.1128/JB.186.14.4613-4619.2004
Dugar, G. et al. The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nat. Commun. 7, 11667 (2016).
doi: 10.1038/ncomms11667
Brosse, A. & Guillier, M. Bacterial small RNAs in mixed regulatory networks. Microbiol. Spectr. 6, RWR-0014-2017 (2018).
Nitzan, M., Rehani, R. & Margalit, H. Integration of bacterial small RNAs in regulatory networks. Annu. Rev. Biophys. 46, 131–148 (2017).
doi: 10.1146/annurev-biophys-070816-034058
Melamed, S. et al. σ
doi: 10.7554/eLife.87151
Guillier, M. & Gottesman, S. Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol. Microbiol. 59, 231–247 (2006).
doi: 10.1111/j.1365-2958.2005.04929.x
Prüß, B. M. Involvement of two-component signaling on bacterial motility and biofilm development. J. Bacteriol. 199, e00259–17 (2017).
doi: 10.1128/JB.00259-17
Lejars, M. et al. Regulatory interplay between RNase III and antisense RNAs in E. coli: the case of AsflhD and FlhD, component of the master regulator of motility. MBio 13, e0098122 (2022).
doi: 10.1128/mbio.00981-22
Romilly, C., Hoekzema, M., Holmqvist, E. & Wagner, E. G. H. Small RNAs OmrA and OmrB promote class III flagellar gene expression by inhibiting the synthesis of anti-σ factor FlgM. RNA Biol. 17, 872–880 (2020).
doi: 10.1080/15476286.2020.1733801
Sudo, N. et al. A novel small regulatory RNA enhances cell motility in enterohemorrhagic Escherichia coli. J. Gen. Appl. Microbiol. 60, 44–50 (2014).
doi: 10.2323/jgam.60.44
Sudo, N. et al. Small RNA Esr41 inversely regulates expression of LEE and flagellar genes in enterohaemorrhagic Escherichia coli. Microbiol. (Read., Engl.) 164, 821–834 (2018).
doi: 10.1099/mic.0.000652
Waters, S. A. et al. Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J. 36, 374–387 (2017).
doi: 10.15252/embj.201694639
Butcher, J. & Stintzi, A. The transcriptional landscape of Campylobacter jejuni under iron replete and iron limited growth conditions. PLoS ONE 8, e79475 (2013).
doi: 10.1371/journal.pone.0079475
Kreuder, A. J. et al. Small noncoding RNA CjNC110 influences motility, autoagglutination, AI-2 localization, hydrogen peroxide sensitivity, and chicken colonization in Campylobacter jejuni. Infect. Immun. 88, e00245–20 (2020).
doi: 10.1128/IAI.00245-20
Ruddell, B. et al. Direct interaction of small non-coding RNAs CjNC140 and CjNC110 optimizes expression of key pathogenic phenotypes of Campylobacter jejuni. MBio 14, e0083323 (2023).
Lalaouna, D. et al. RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Res. 47, 9871–9887 (2019).
doi: 10.1093/nar/gkz728
Melamed, S., Adams, P. P., Zhang, A., Zhang, H. & Storz, G. RNA-RNA interactomes of ProQ and Hfq reveal overlapping and competing roles. Mol. Cell 77, 411–425.e7 (2020).
doi: 10.1016/j.molcel.2019.10.022
Svensson, S. L. & Sharma, C. M. RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist. eLife 10, e69064 (2021).
doi: 10.7554/eLife.69064
Faubladier, M., Cam, K. & Bouché, J. P. Escherichia coli cell division inhibitor DicF-RNA of the dicB operon. Evidence for its generation in vivo by transcription termination and by RNase III and RNase E-dependent processing. J. Mol. Biol. 212, 461–471 (1990).
doi: 10.1016/0022-2836(90)90325-G
de Vries, S. P. et al. Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models. Sci. Rep. 7, 1251 (2017).
doi: 10.1038/s41598-017-01133-4
Desgranges, E. et al. The 3’UTR-derived sRNA RsaG coordinates redox homeostasis and metabolism adaptation in response to glucose-6-phosphate uptake in Staphylococcus aureus. Mol. Microbiol. 117, 193–214 (2022).
doi: 10.1111/mmi.14845
Yao, S., Blaustein, J. B. & Bechhofer, D. H. Processing of Bacillus subtilis small cytoplasmic RNA: evidence for an additional endonuclease cleavage site. Nucleic Acids Res. 35, 4464–4473 (2007).
doi: 10.1093/nar/gkm460
Chao, Y. & Vogel, J. A 3’ UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol. Cell 61, 352–363 (2016).
doi: 10.1016/j.molcel.2015.12.023
Papenfort, K. & Melamed, S. Small RNAs, large networks: posttranscriptional regulons in Gram-negative bacteria. Annu. Rev. Microbiol. 77, 23–43 (2023).
Thomason, M. K. et al. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. J. Bacteriol. 197, 18–28 (2015).
doi: 10.1128/JB.02096-14
Broglia, L. et al. An RNA-seq based comparative approach reveals the transcriptome-wide interplay between 3’-to-5’ exoRNases and RNase Y. Nat. Commun. 11, 1587 (2020).
doi: 10.1038/s41467-020-15387-6
Taggart, J. C. et al. A high-resolution view of RNA endonuclease cleavage in Bacillus subtilis. Preprint at BioRxiv https://doi.org/10.1101/2023.03.12.532304 (2023).
Durand, S. & Condon, C. RNases and Helicases in Gram-Positive Bacteria. Microbiol. Spectr. 6, RWR-0003-2017 (2018).
Bechhofer, D. H. & Deutscher, M. P. Bacterial ribonucleases and their roles in RNA metabolism. Crit. Rev. Biochem. Mol. Biol. 54, 242–300 (2019).
doi: 10.1080/10409238.2019.1651816
Durand, S., Gilet, L., Bessières, P., Nicolas, P. & Condon, C. Three essential ribonucleases-RNase Y, J1, and III-control the abundance of a majority of Bacillus subtilis mRNAs. PLoS Genet 8, e1002520 (2012).
doi: 10.1371/journal.pgen.1002520
Laalami, S. et al. Bacillus subtilis RNase Y activity in vivo analysed by tiling microarrays. PLoS ONE 8, e54062 (2013).
doi: 10.1371/journal.pone.0054062
Lehnik-Habrink, M. et al. RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y. Mol. Microbiol. 81, 1459–1473 (2011).
doi: 10.1111/j.1365-2958.2011.07777.x
Khemici, V., Prados, J., Linder, P. & Redder, P. Decay-initiating endoribonucleolytic cleavage by RNase Y is kept under tight control via sequence preference and sub-cellular localisation. PLoS Genet 11, e1005577 (2015).
doi: 10.1371/journal.pgen.1005577
Johnson, J. G., Gaddy, J. A. & DiRita, V. J. The PAS domain-containing protein HeuR regulates heme uptake in Campylobacter jejuni. MBio 7, e01691–16 (2016).
doi: 10.1128/mBio.01691-16
Kelley, B. R., Callahan, S. M. & Johnson, J. G. Transcription of cystathionine β-lyase (metC) is repressed by HeuR in Campylobacter jejuni, and methionine biosynthesis facilitates colonocyte invasion. J. Bacteriol. 203, e0016421 (2021).
doi: 10.1128/JB.00164-21
Ruddell, B. et al. Role of metAB in methionine metabolism and optimal chicken colonization in Campylobacter jejuni. Infect. Immun. 89, e00542–20 (2020).
doi: 10.1128/IAI.00542-20
Liu, M. M. et al. Investigating the Campylobacter jejuni transcriptional response to host intestinal extracts reveals the involvement of a widely conserved iron uptake system. MBio 9, e01347–18 (2018).
doi: 10.1128/mBio.01347-18
Crofts, A. A. et al. Campylobacter jejuni transcriptional and genetic adaptation during human infection. Nat. Microbiol. 3, 494–502 (2018).
doi: 10.1038/s41564-018-0133-7
Barrero-Tobon, A. M. & Hendrixson, D. R. Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants. Mol. Microbiol. 93, 957–974 (2014).
doi: 10.1111/mmi.12711
Endesfelder, U. From single bacterial cell imaging towards in vivo single-molecule biochemistry studies. Essays Biochem. 63, 187–196 (2019).
doi: 10.1042/EBC20190002
Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, abi4882 (2021).
doi: 10.1126/science.abi4882
Homberger, C., Barquist, L. & Vogel, J. Ushering in a new era of single-cell transcriptomics in bacteria. microLife 3, uqac020 (2022).
doi: 10.1093/femsml/uqac020
Balaban, M. & Hendrixson, D. R. Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni. PLoS Pathog. 7, e1002420 (2011).
doi: 10.1371/journal.ppat.1002420
Wösten, M. M. S. M., Wagenaar, J. A. & van Putten, J. P. M. The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J. Biol. Chem. 279, 16214–16222 (2004).
doi: 10.1074/jbc.M400357200
Stintzi, A. Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J. Bacteriol. 185, 2009–2016 (2003).
doi: 10.1128/JB.185.6.2009-2016.2003
Wei, B. L. et al. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol. 40, 245–256 (2001).
doi: 10.1046/j.1365-2958.2001.02380.x
Butcher, J., Handley, R. A., van Vliet, A. H. M. & Stintzi, A. Refined analysis of the Campylobacter jejuni iron-dependent/independent Fur- and PerR-transcriptomes. BMC Genomics 16, 498 (2015).
doi: 10.1186/s12864-015-1661-7
Skouloubris, S., Thiberge, J. M., Labigne, A. & De Reuse, H. The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect. Immun. 66, 4517–4521 (1998).
doi: 10.1128/IAI.66.9.4517-4521.1998
Wang, Y. & Taylor, D. E. Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94, 23–28 (1990).
doi: 10.1016/0378-1119(90)90463-2
Bury-Moné, S. et al. Presence of active aliphatic amidases in Helicobacter species able to colonize the stomach. Infect. Immun. 71, 5613–5622 (2003).
doi: 10.1128/IAI.71.10.5613-5622.2003
Cameron, A. & Gaynor, E. C. Hygromycin B and apramycin antibiotic resistance cassettes for use in Campylobacter jejuni. PLoS ONE 9, e95084 (2014).
doi: 10.1371/journal.pone.0095084
Pernitzsch, S. R., Tirier, S. M., Beier, D. & Sharma, C. M. A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc. Natl Acad. Sci. USA 111, E501–E510 (2014).
doi: 10.1073/pnas.1315152111
Kim, J.-S. et al. Role of the Campylobacter jejuni Cj1461 DNA methyltransferase in regulating virulence characteristics. J. Bacteriol. 190, 6524–6529 (2008).
doi: 10.1128/JB.00765-08
Corcoran, C. P. et al. Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. Mol. Microbiol. 84, 428–445 (2012).
doi: 10.1111/j.1365-2958.2012.08031.x
Cohen, E. J. et al. Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella. PLoS Pathog. 16, e1008620 (2020).
doi: 10.1371/journal.ppat.1008620
Ewing, C. P., Andreishcheva, E. & Guerry, P. Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. J. Bacteriol. 191, 7086–7093 (2009).
doi: 10.1128/JB.00378-09
Alzheimer, M. et al. A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLoS Pathog. 16, e1008304 (2020).
doi: 10.1371/journal.ppat.1008304
Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255 (2010).
doi: 10.1038/nature08756
Papenfort, K. et al. σ
doi: 10.1111/j.1365-2958.2006.05524.x
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Förstner, K. U., Vogel, J. & Sharma, C. M. READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data. Bioinformatics 30, 3421–3423 (2014).
doi: 10.1093/bioinformatics/btu533
Hoffmann, S. et al. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol. 5, e1000502 (2009).
doi: 10.1371/journal.pcbi.1000502
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
doi: 10.1186/s13059-014-0550-8
Berezikov, E. et al. Diversity of microRNAs in human and chimpanzee brain. Nat. Genet. 38, 1375–1377 (2006).
doi: 10.1038/ng1914
Freese, N. H., Norris, D. C. & Loraine, A. E. Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32, 2089–2095 (2016).
doi: 10.1093/bioinformatics/btw069
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
doi: 10.1016/S0022-2836(05)80360-2
Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16, 10881–10890 (1988).
doi: 10.1093/nar/16.22.10881
Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30, 207–210 (2002).
doi: 10.1093/nar/30.1.207

Auteurs

Fabian König (F)

University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany.

Sarah L Svensson (SL)

University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany.
The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.

Cynthia M Sharma (CM)

University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany. cynthia.sharma@uni-wuerzburg.de.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents

Classifications MeSH