Computational design of soluble and functional membrane protein analogues.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
19 Jun 2024
19 Jun 2024
Historique:
received:
09
05
2023
accepted:
23
05
2024
medline:
20
6
2024
pubmed:
20
6
2024
entrez:
19
6
2024
Statut:
aheadofprint
Résumé
De novo design of complex protein folds using solely computational means remains a substantial challenge
Identifiants
pubmed: 38898281
doi: 10.1038/s41586-024-07601-y
pii: 10.1038/s41586-024-07601-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Listov, D., Goverde, C. A., Correia, B. E. & Fleishman, S. J. Opportunities and challenges in design and optimization of protein function. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-024-00718-y (2024).
Katritch, V., Cherezov, V. & Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. 53, 531–556 (2013).
doi: 10.1146/annurev-pharmtox-032112-135923
Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 17, 665–680 (2020).
doi: 10.1038/s41592-020-0848-2
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
doi: 10.1038/s41586-021-03819-2
Huang, B. et al. A backbone-centred energy function of neural networks for protein design. Nature 602, 523–528 (2022).
doi: 10.1038/s41586-021-04383-5
Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).
doi: 10.1038/s41586-021-04184-w
Goverde, C., Wolf, B., Khakzad, H., Rosset, S. & Correia, B. E. De novo protein design by inversion of the AlphaFold structure prediction network. Protein Sci. 32, e4653 (2023).
doi: 10.1002/pro.4653
Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).
doi: 10.1126/science.add1964
Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature https://doi.org/10.1038/s41586-023-06415-8 (2023).
Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).
doi: 10.1126/science.abn2100
Gainza, P. et al. De novo design of protein interactions with learned surface fingerprints. Nature 617, 176–184 (2023).
doi: 10.1038/s41586-023-05993-x
Anand, N. et al. Protein sequence design with a learned potential. Nat. Commun. 13, 746 (2022).
doi: 10.1038/s41467-022-28313-9
Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).
doi: 10.1126/science.add2187
Yim, J. et al. SE(3) diffusion model with application to protein backbone generation. in Proc. 40th International Conference on Machine Learning 40001–40039 (JMLR.org, 2023); https://dl.acm.org/doi/10.5555/3618408.3620080 .
Trippe, B. L. et al. Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem. Machine Learning for Structural Biology Workshop, NeurIPS 2022 https://www.mlsb.io/index_2022.html (2022).
Norn, C. et al. Protein sequence design by conformational landscape optimization. Proc. Natl Acad. Sci USA 118, e2017228118 (2021).
doi: 10.1073/pnas.2017228118
Andreeva, A., Kulesha, E., Gough, J. & Murzin, A. G. The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res. 48, D376–D382 (2019).
doi: 10.1093/nar/gkz1064
Slovic, A. M., Kono, H., Lear, J. D., Saven, J. G. & DeGrado, W. F. Computational design of water-soluble analogues of the potassium channel KcsA. Proc. Natl Acad. Sci. USA 101, 1828–1833 (2004).
doi: 10.1073/pnas.0306417101
Slovic, A. M., Lear, J. D. & DeGrado, W. F. De novo design of a pentameric coiled‐coil: decoding the motif for tetramer versus pentamer formation in water‐soluble phospholamban. J. Pept. Res. 65, 312–321 (2005).
doi: 10.1111/j.1399-3011.2005.00244.x
Roosild, T. P. & Choe, S. Redesigning an integral membrane K
doi: 10.1093/protein/gzi010
Zhang, S. et al. QTY code enables design of detergent-free chemokine receptors that retain ligand-binding activities. Proc. Natl Acad. Sci. USA 115, E8652–E8659 (2018).
doi: 10.1073/pnas.1811031115
Moffat, L., Greener, J. G. & Jones, D. T. Using AlphaFold for rapid and accurate fixed backbone protein design. Preprint at bioRxiv https://doi.org/10.1101/2021.08.24.457549 (2021).
Jendrusch, M., Korbel, J. O. & Sadiq, S. K. AlphaDesign: a de novo protein design framework based on AlphaFold. Preprint at bioRxiv https://doi.org/10.1101/2021.10.11.463937 (2021).
Smith, C. A. & Kortemme, T. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J. Mol. Biol. 380, 742–756 (2008).
doi: 10.1016/j.jmb.2008.05.023
Woof, J. M. & Burton, D. R. Human antibody–Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 4, 89–99 (2004).
doi: 10.1038/nri1266
Hecht, M. H. De novo design of beta-sheet proteins. Proc. Natl Acad. Sci. USA 91, 8729–8730 (1994).
doi: 10.1073/pnas.91.19.8729
Marcos, E. et al. De novo design of a non-local β-sheet protein with high stability and accuracy. Nat. Struct. Mol. Biol. 25, 1028–1034 (2018).
doi: 10.1038/s41594-018-0141-6
Chidyausiku, T. M. et al. De novo design of immunoglobulin-like domains. Nat. Commun. 13, 5661 (2022).
doi: 10.1038/s41467-022-33004-6
Weber, B. et al. A single residue switch reveals principles of antibody domain integrity. J. Biol. Chem. 293, 17107–17118 (2018).
doi: 10.1074/jbc.RA118.005475
Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).
doi: 10.1038/s41586-018-0509-0
Vorobieva, A. A. et al. De novo design of transmembrane β barrels. Science 371, eabc8182 (2021).
doi: 10.1126/science.abc8182
Tinberg, C. E. et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501, 212–216 (2013).
doi: 10.1038/nature12443
Bick, M. J. et al. Computational design of environmental sensors for the potent opioid fentanyl. eLife 6, e28909 (2017).
doi: 10.7554/eLife.28909
Verkuil, R. et al. Language models generalize beyond natural proteins. Preprint at bioRxiv https://doi.org/10.1101/2022.12.21.521521 (2022).
Sterner, R. & Höcker, B. Catalytic versatility, stability, and evolution of the (βα)
doi: 10.1021/cr030191z
Romero-Romero, S., Kordes, S., Michel, F. & Höcker, B. Evolution, folding, and design of TIM barrels and related proteins. Curr. Opin. Struc. Biol. 68, 94–104 (2021).
doi: 10.1016/j.sbi.2020.12.007
Nagarajan, D., Deka, G. & Rao, M. Design of symmetric TIM barrel proteins from first principles. BMC Biochem. 16, 18 (2015).
doi: 10.1186/s12858-015-0047-4
Huang, P.-S. et al. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. 12, 29–34 (2016).
doi: 10.1038/nchembio.1966
Chu, A. E., Fernandez, D., Liu, J., Eguchi, R. R. & Huang, P.-S. De novo design of a highly stable ovoid TIM barrel: unlocking pocket shape towards functional design. Biodesign Res. 2022, 9842315 (2022).
doi: 10.34133/2022/9842315
Mitra, K., Steitz, T. A. & Engelman, D. M. Rational design of ‘water-soluble’ bacteriorhodopsin variants. Protein Eng. Des. Sel. 15, 485–492 (2002).
doi: 10.1093/protein/15.6.485
Perez-Aguilar, J. M. et al. A computationally designed water-soluble variant of a G-protein-coupled receptor: the human mu opioid receptor. PLoS ONE 8, e66009 (2013).
doi: 10.1371/journal.pone.0066009
Li, H., Cocco, M. J., Steitz, T. A. & Engelman, D. M. Conversion of phospholamban into a soluble pentameric helical bundle. Biochemistry 40, 6636–6645 (2001).
doi: 10.1021/bi0026573
Suzuki, H., Tani, K. & Fujiyoshi, Y. Crystal structures of claudins: insights into their intermolecular interactions. Ann. N. Y. Acad. Sci. 1397, 25–34 (2017).
doi: 10.1111/nyas.13371
Tichá, A., Collis, B. & Strisovsky, K. The rhomboid superfamily: structural mechanisms and chemical biology opportunities. Trends Biochem. Sci. 43, 726–739 (2018).
doi: 10.1016/j.tibs.2018.06.009
Fatima, I. et al. Identification and characterization of a first-generation inhibitor of claudin-1 in colon cancer progression and metastasis. Biomed. Pharmacother. 159, 114255 (2023).
doi: 10.1016/j.biopha.2023.114255
Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–180 (2006).
doi: 10.1038/nature05255
Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev. Drug Discov. 16, 829–842 (2017).
doi: 10.1038/nrd.2017.178
Laguerre, M., Saux, M., Dubost, J. P. & Carpy, A. MLPP: a program for the calculation of molecular lipophilicity potential in proteins. Pharm. Pharmacol. Commun. 3, 217–222 (1997).
Rovati, G. E., Capra, V. & Neubig, R. R. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol. Pharmacol. 71, 959–964 (2007).
doi: 10.1124/mol.106.029470
Konvicka, K., Guarnieri, F., Ballesteros, J. A. & Weinstein, H. A proposed structure for transmembrane segment 7 of G protein-coupled receptors incorporating an Asn-Pro/Asp-Pro motif. Biophys. J. 75, 601–611 (1998).
doi: 10.1016/S0006-3495(98)77551-4
Srinivasan, M. & Dunker, A. K. Proline rich motifs as drug targets in immune mediated disorders. Int. J. Peptides 2012, 634769 (2012).
doi: 10.1155/2012/634769
Vecchio, A. J., Rathnayake, S. S. & Stroud, R. M. Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut. Proc. Natl Acad. Sci. USA 118, e2024651118 (2021).
doi: 10.1073/pnas.2024651118
Saitoh, Y. et al. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science 347, 775–778 (2015).
doi: 10.1126/science.1261833
Shiimura, Y. et al. Structure of an antagonist-bound ghrelin receptor reveals possible ghrelin recognition mode. Nat. Commun. 11, 4160 (2020).
doi: 10.1038/s41467-020-17554-1
Liu, H. et al. Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren. Nat. Commun. 12, 6410 (2021).
doi: 10.1038/s41467-021-26735-5
Carpenter, B., Nehmé, R., Warne, T., Leslie, A. G. W. & Tate, C. G. Structure of the adenosine A
doi: 10.1038/nature18966
Hino, T. et al. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482, 237–240 (2012).
doi: 10.1038/nature10750
Hauser, A. S. et al. GPCR activation mechanisms across classes and macro/microscales. Nat. Struct. Mol. Biol. 28, 879–888 (2021).
doi: 10.1038/s41594-021-00674-7
Carpenter, B. & Tate, C. G. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng. Des. Sel. 29, 583–594 (2016).
Li, J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am. J. Cancer Res. 11, 3406–3424 (2021).
Suzuki, H. et al. Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344, 304–307 (2014).
doi: 10.1126/science.1248571
Christopher, J. A. et al. Structure-based optimization strategies for G protein-coupled receptor (GPCR) allosteric modulators: a case study from analyses of new metabotropic glutamate receptor 5 (mGlu5) X-ray structures. J. Med. Chem. 62, 207–222 (2019).
doi: 10.1021/acs.jmedchem.7b01722
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. in 3rd International Conference on Learning Representations, ICLR 2015 Conference Track Proceedings https://dblp.org/db/conf/iclr/iclr2015.html (2015).
Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65, 712–725 (2006).
doi: 10.1002/prot.21123
Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).
doi: 10.1002/jcc.20290
Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).
doi: 10.1093/bioinformatics/btp163
Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).
doi: 10.1093/nar/gki524
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01773-0 (2023).
Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).
doi: 10.1016/j.jmb.2021.167160
Sillitoe, I. et al. CATH: increased structural coverage of functional space. Nucleic Acids Res. 49, D266–D273 (2020).
doi: 10.1093/nar/gkaa1079
Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).
doi: 10.1107/S0907444911007773
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).
doi: 10.1107/S2059798319011471
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Williams, C. J. et al. MolProbity: more and better reference data for improved all‐atom structure validation. Protein Sci. 27, 293–315 (2018).
doi: 10.1002/pro.3330
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
doi: 10.1002/pro.3943
Orlando, B. J. et al. Development, structure, and mechanism of synthetic antibodies that target claudin and Clostridium perfringens enterotoxin complexes. J. Biol. Chem. 298, 102357 (2022).
doi: 10.1016/j.jbc.2022.102357
Kidmose, R. T. et al. Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).
doi: 10.1107/S2052252519007619