Computational design of soluble and functional membrane protein analogues.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
19 Jun 2024
Historique:
received: 09 05 2023
accepted: 23 05 2024
medline: 20 6 2024
pubmed: 20 6 2024
entrez: 19 6 2024
Statut: aheadofprint

Résumé

De novo design of complex protein folds using solely computational means remains a substantial challenge

Identifiants

pubmed: 38898281
doi: 10.1038/s41586-024-07601-y
pii: 10.1038/s41586-024-07601-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Listov, D., Goverde, C. A., Correia, B. E. & Fleishman, S. J. Opportunities and challenges in design and optimization of protein function. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-024-00718-y (2024).
Katritch, V., Cherezov, V. & Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. 53, 531–556 (2013).
doi: 10.1146/annurev-pharmtox-032112-135923
Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 17, 665–680 (2020).
doi: 10.1038/s41592-020-0848-2
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
doi: 10.1038/s41586-021-03819-2
Huang, B. et al. A backbone-centred energy function of neural networks for protein design. Nature 602, 523–528 (2022).
doi: 10.1038/s41586-021-04383-5
Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).
doi: 10.1038/s41586-021-04184-w
Goverde, C., Wolf, B., Khakzad, H., Rosset, S. & Correia, B. E. De novo protein design by inversion of the AlphaFold structure prediction network. Protein Sci. 32, e4653 (2023).
doi: 10.1002/pro.4653
Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).
doi: 10.1126/science.add1964
Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature https://doi.org/10.1038/s41586-023-06415-8 (2023).
Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).
doi: 10.1126/science.abn2100
Gainza, P. et al. De novo design of protein interactions with learned surface fingerprints. Nature 617, 176–184 (2023).
doi: 10.1038/s41586-023-05993-x
Anand, N. et al. Protein sequence design with a learned potential. Nat. Commun. 13, 746 (2022).
doi: 10.1038/s41467-022-28313-9
Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).
doi: 10.1126/science.add2187
Yim, J. et al. SE(3) diffusion model with application to protein backbone generation. in Proc. 40th International Conference on Machine Learning 40001–40039 (JMLR.org, 2023); https://dl.acm.org/doi/10.5555/3618408.3620080 .
Trippe, B. L. et al. Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem. Machine Learning for Structural Biology Workshop, NeurIPS 2022 https://www.mlsb.io/index_2022.html (2022).
Norn, C. et al. Protein sequence design by conformational landscape optimization. Proc. Natl Acad. Sci USA 118, e2017228118 (2021).
doi: 10.1073/pnas.2017228118
Andreeva, A., Kulesha, E., Gough, J. & Murzin, A. G. The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res. 48, D376–D382 (2019).
doi: 10.1093/nar/gkz1064
Slovic, A. M., Kono, H., Lear, J. D., Saven, J. G. & DeGrado, W. F. Computational design of water-soluble analogues of the potassium channel KcsA. Proc. Natl Acad. Sci. USA 101, 1828–1833 (2004).
doi: 10.1073/pnas.0306417101
Slovic, A. M., Lear, J. D. & DeGrado, W. F. De novo design of a pentameric coiled‐coil: decoding the motif for tetramer versus pentamer formation in water‐soluble phospholamban. J. Pept. Res. 65, 312–321 (2005).
doi: 10.1111/j.1399-3011.2005.00244.x
Roosild, T. P. & Choe, S. Redesigning an integral membrane K
doi: 10.1093/protein/gzi010
Zhang, S. et al. QTY code enables design of detergent-free chemokine receptors that retain ligand-binding activities. Proc. Natl Acad. Sci. USA 115, E8652–E8659 (2018).
doi: 10.1073/pnas.1811031115
Moffat, L., Greener, J. G. & Jones, D. T. Using AlphaFold for rapid and accurate fixed backbone protein design. Preprint at bioRxiv https://doi.org/10.1101/2021.08.24.457549 (2021).
Jendrusch, M., Korbel, J. O. & Sadiq, S. K. AlphaDesign: a de novo protein design framework based on AlphaFold. Preprint at bioRxiv https://doi.org/10.1101/2021.10.11.463937 (2021).
Smith, C. A. & Kortemme, T. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J. Mol. Biol. 380, 742–756 (2008).
doi: 10.1016/j.jmb.2008.05.023
Woof, J. M. & Burton, D. R. Human antibody–Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 4, 89–99 (2004).
doi: 10.1038/nri1266
Hecht, M. H. De novo design of beta-sheet proteins. Proc. Natl Acad. Sci. USA 91, 8729–8730 (1994).
doi: 10.1073/pnas.91.19.8729
Marcos, E. et al. De novo design of a non-local β-sheet protein with high stability and accuracy. Nat. Struct. Mol. Biol. 25, 1028–1034 (2018).
doi: 10.1038/s41594-018-0141-6
Chidyausiku, T. M. et al. De novo design of immunoglobulin-like domains. Nat. Commun. 13, 5661 (2022).
doi: 10.1038/s41467-022-33004-6
Weber, B. et al. A single residue switch reveals principles of antibody domain integrity. J. Biol. Chem. 293, 17107–17118 (2018).
doi: 10.1074/jbc.RA118.005475
Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).
doi: 10.1038/s41586-018-0509-0
Vorobieva, A. A. et al. De novo design of transmembrane β barrels. Science 371, eabc8182 (2021).
doi: 10.1126/science.abc8182
Tinberg, C. E. et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501, 212–216 (2013).
doi: 10.1038/nature12443
Bick, M. J. et al. Computational design of environmental sensors for the potent opioid fentanyl. eLife 6, e28909 (2017).
doi: 10.7554/eLife.28909
Verkuil, R. et al. Language models generalize beyond natural proteins. Preprint at bioRxiv https://doi.org/10.1101/2022.12.21.521521 (2022).
Sterner, R. & Höcker, B. Catalytic versatility, stability, and evolution of the (βα)
doi: 10.1021/cr030191z
Romero-Romero, S., Kordes, S., Michel, F. & Höcker, B. Evolution, folding, and design of TIM barrels and related proteins. Curr. Opin. Struc. Biol. 68, 94–104 (2021).
doi: 10.1016/j.sbi.2020.12.007
Nagarajan, D., Deka, G. & Rao, M. Design of symmetric TIM barrel proteins from first principles. BMC Biochem. 16, 18 (2015).
doi: 10.1186/s12858-015-0047-4
Huang, P.-S. et al. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. 12, 29–34 (2016).
doi: 10.1038/nchembio.1966
Chu, A. E., Fernandez, D., Liu, J., Eguchi, R. R. & Huang, P.-S. De novo design of a highly stable ovoid TIM barrel: unlocking pocket shape towards functional design. Biodesign Res. 2022, 9842315 (2022).
doi: 10.34133/2022/9842315
Mitra, K., Steitz, T. A. & Engelman, D. M. Rational design of ‘water-soluble’ bacteriorhodopsin variants. Protein Eng. Des. Sel. 15, 485–492 (2002).
doi: 10.1093/protein/15.6.485
Perez-Aguilar, J. M. et al. A computationally designed water-soluble variant of a G-protein-coupled receptor: the human mu opioid receptor. PLoS ONE 8, e66009 (2013).
doi: 10.1371/journal.pone.0066009
Li, H., Cocco, M. J., Steitz, T. A. & Engelman, D. M. Conversion of phospholamban into a soluble pentameric helical bundle. Biochemistry 40, 6636–6645 (2001).
doi: 10.1021/bi0026573
Suzuki, H., Tani, K. & Fujiyoshi, Y. Crystal structures of claudins: insights into their intermolecular interactions. Ann. N. Y. Acad. Sci. 1397, 25–34 (2017).
doi: 10.1111/nyas.13371
Tichá, A., Collis, B. & Strisovsky, K. The rhomboid superfamily: structural mechanisms and chemical biology opportunities. Trends Biochem. Sci. 43, 726–739 (2018).
doi: 10.1016/j.tibs.2018.06.009
Fatima, I. et al. Identification and characterization of a first-generation inhibitor of claudin-1 in colon cancer progression and metastasis. Biomed. Pharmacother. 159, 114255 (2023).
doi: 10.1016/j.biopha.2023.114255
Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–180 (2006).
doi: 10.1038/nature05255
Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev. Drug Discov. 16, 829–842 (2017).
doi: 10.1038/nrd.2017.178
Laguerre, M., Saux, M., Dubost, J. P. & Carpy, A. MLPP: a program for the calculation of molecular lipophilicity potential in proteins. Pharm. Pharmacol. Commun. 3, 217–222 (1997).
Rovati, G. E., Capra, V. & Neubig, R. R. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol. Pharmacol. 71, 959–964 (2007).
doi: 10.1124/mol.106.029470
Konvicka, K., Guarnieri, F., Ballesteros, J. A. & Weinstein, H. A proposed structure for transmembrane segment 7 of G protein-coupled receptors incorporating an Asn-Pro/Asp-Pro motif. Biophys. J. 75, 601–611 (1998).
doi: 10.1016/S0006-3495(98)77551-4
Srinivasan, M. & Dunker, A. K. Proline rich motifs as drug targets in immune mediated disorders. Int. J. Peptides 2012, 634769 (2012).
doi: 10.1155/2012/634769
Vecchio, A. J., Rathnayake, S. S. & Stroud, R. M. Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut. Proc. Natl Acad. Sci. USA 118, e2024651118 (2021).
doi: 10.1073/pnas.2024651118
Saitoh, Y. et al. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science 347, 775–778 (2015).
doi: 10.1126/science.1261833
Shiimura, Y. et al. Structure of an antagonist-bound ghrelin receptor reveals possible ghrelin recognition mode. Nat. Commun. 11, 4160 (2020).
doi: 10.1038/s41467-020-17554-1
Liu, H. et al. Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren. Nat. Commun. 12, 6410 (2021).
doi: 10.1038/s41467-021-26735-5
Carpenter, B., Nehmé, R., Warne, T., Leslie, A. G. W. & Tate, C. G. Structure of the adenosine A
doi: 10.1038/nature18966
Hino, T. et al. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482, 237–240 (2012).
doi: 10.1038/nature10750
Hauser, A. S. et al. GPCR activation mechanisms across classes and macro/microscales. Nat. Struct. Mol. Biol. 28, 879–888 (2021).
doi: 10.1038/s41594-021-00674-7
Carpenter, B. & Tate, C. G. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng. Des. Sel. 29, 583–594 (2016).
Li, J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am. J. Cancer Res. 11, 3406–3424 (2021).
Suzuki, H. et al. Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344, 304–307 (2014).
doi: 10.1126/science.1248571
Christopher, J. A. et al. Structure-based optimization strategies for G protein-coupled receptor (GPCR) allosteric modulators: a case study from analyses of new metabotropic glutamate receptor 5 (mGlu5) X-ray structures. J. Med. Chem. 62, 207–222 (2019).
doi: 10.1021/acs.jmedchem.7b01722
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. in 3rd International Conference on Learning Representations, ICLR 2015 Conference Track Proceedings https://dblp.org/db/conf/iclr/iclr2015.html (2015).
Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65, 712–725 (2006).
doi: 10.1002/prot.21123
Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).
doi: 10.1002/jcc.20290
Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).
doi: 10.1093/bioinformatics/btp163
Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).
doi: 10.1093/nar/gki524
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01773-0 (2023).
Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).
doi: 10.1016/j.jmb.2021.167160
Sillitoe, I. et al. CATH: increased structural coverage of functional space. Nucleic Acids Res. 49, D266–D273 (2020).
doi: 10.1093/nar/gkaa1079
Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).
doi: 10.1107/S0907444911007773
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).
doi: 10.1107/S2059798319011471
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Williams, C. J. et al. MolProbity: more and better reference data for improved all‐atom structure validation. Protein Sci. 27, 293–315 (2018).
doi: 10.1002/pro.3330
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
doi: 10.1002/pro.3943
Orlando, B. J. et al. Development, structure, and mechanism of synthetic antibodies that target claudin and Clostridium perfringens enterotoxin complexes. J. Biol. Chem. 298, 102357 (2022).
doi: 10.1016/j.jbc.2022.102357
Kidmose, R. T. et al. Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).
doi: 10.1107/S2052252519007619

Auteurs

Casper A Goverde (CA)

Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Martin Pacesa (M)

Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Nicolas Goldbach (N)

Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Lars J Dornfeld (LJ)

Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Petra E M Balbi (PEM)

Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Sandrine Georgeon (S)

Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Stéphane Rosset (S)

Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Srajan Kapoor (S)

Department of Structural Biology, University at Buffalo, Buffalo, NY, USA.

Jagrity Choudhury (J)

Department of Structural Biology, University at Buffalo, Buffalo, NY, USA.

Justas Dauparas (J)

Department of Biochemistry, University of Washington, Seattle, WA, USA.
Institute for Protein Design, University of Washington, Seattle, WA, USA.

Christian Schellhaas (C)

Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Simon Kozlov (S)

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.

David Baker (D)

Department of Biochemistry, University of Washington, Seattle, WA, USA.
Institute for Protein Design, University of Washington, Seattle, WA, USA.
Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.

Sergey Ovchinnikov (S)

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.

Alex J Vecchio (AJ)

Department of Structural Biology, University at Buffalo, Buffalo, NY, USA.

Bruno E Correia (BE)

Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland. bruno.correia@epfl.ch.

Classifications MeSH