Electroactive Brevundimonas diminuta consortium mediated selenite bioreduction, biogenesis of selenium nanoparticles and bio-electricity generation.
Brevundimonas diminuta
Bioremediation
Electrochemical activity
Microbial fuel cell
Selenite-reducing bacteria
Selenium nanoparticles
Journal
Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208
Informations de publication
Date de publication:
20 Jun 2024
20 Jun 2024
Historique:
received:
11
02
2024
accepted:
23
05
2024
medline:
21
6
2024
pubmed:
21
6
2024
entrez:
20
6
2024
Statut:
epublish
Résumé
In this study, highly selenite-resistant strains belonging to Brevundimonas diminuta (OK287021, OK287022) genus were isolated from previously operated single chamber microbial fuel cell (SCMFC). The central composite design showed that the B. diminuta consortium could reduce selenite. Under optimum conditions, 15.38 Log CFU mL
Identifiants
pubmed: 38902695
doi: 10.1186/s12951-024-02577-3
pii: 10.1186/s12951-024-02577-3
doi:
Substances chimiques
Selenium
H6241UJ22B
Selenious Acid
F6A27P4Q4R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
352Informations de copyright
© 2024. The Author(s).
Références
Charya LS. Selenium pollution in the marine environment and marine bacteria in selenium bioremediation. Mar Pollut Microb Remediat. 2017;223–37.
Won S, Ha M-G, Nguyen DD, Kang HY. Biological selenite removal and recovery of selenium nanoparticles by haloalkaliphilic bacteria isolated from the Nakdong River. Environ Pollut. 2021;280:117001.
pubmed: 33799130
doi: 10.1016/j.envpol.2021.117001
Jiang D, Yu F, Huang X, Qin H, Zhu Z. Effects of microorganisms on soil selenium and its uptake by pak choi in selenium-enriched lateritic red soil. Ecotoxicol Environ Saf. 2023;257:114927.
pubmed: 37080129
doi: 10.1016/j.ecoenv.2023.114927
Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr. 2023;10:1136458.
pubmed: 37006921
pmcid: 10060562
doi: 10.3389/fnut.2023.1136458
Luo X, Wang Y, Lan Y, An L, Wang G, Li M, et al. Microbial oxidation of organic and elemental selenium to selenite. Sci Total Environ. 2022;833:155203.
pubmed: 35421462
doi: 10.1016/j.scitotenv.2022.155203
Zhang Z, Chen G, Tang Y. Towards selenium recovery: Biocathode induced selenate reduction to extracellular elemental selenium nanoparticles. Chem Eng J. 2018;351:1095–103.
doi: 10.1016/j.cej.2018.06.172
Khamkhash A, Srivastava V, Ghosh T, Akdogan G, Ganguli R, Aggarwal S. Mining-related selenium contamination in Alaska, and the state of current knowledge. Minerals. 2017;7:46.
doi: 10.3390/min7030046
Velayudhan J, Subramanian S. Dual-Chambered Fuel Cell for Selenite Removal and Bio-Electricity Generation from Wastewater Effluent by Bacillus cereus. Energies. 2023,. 2023;16, 2880:1–15.
Zannoni D, Borsetti F, Harrison JJ, Turner RJ. The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol. 2007;53:1–312.
doi: 10.1016/S0065-2911(07)53001-8
Sinharoy A, Lens PNL. Biological selenate and selenite reduction by waste activated sludge using hydrogen as electron donor. J Environ Manage. 2022;319:115745.
pubmed: 35853309
doi: 10.1016/j.jenvman.2022.115745
Nancharaiah YV, Lens PNL. Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev. 2015;79:61–80.
pubmed: 25631289
pmcid: 4402961
doi: 10.1128/MMBR.00037-14
Yang L, Wu Z, Wu J, Zhang Y, Li M, Lin ZQ, et al. Simultaneous removal of selenite and electricity production from Se-laden wastewater by constructed wetland coupled with microbial fuel cells. Selenium Environ Hum Heal. 2014;212:212–4.
Sravan JS, Nancharaiah YV, Lens PNL, Mohan SV. Cathodic selenium recovery in bioelectrochemical system: Regulatory in Fl uence on anodic electrogenic activity. J Hazard Mater. 2020;399:12284.
doi: 10.1016/j.jhazmat.2020.122843
Khater DZ, Amin RS, Fetohi AE, Mahmoud M, El-Khatib KM. Reduced graphene oxide-supported palladium oxide-MOx for improving the performance of air-cathode microbial fuel cells: influence of the Sn, Ce, Zn, and Fe precursors. J Power Sources. 2024;591:2338.
doi: 10.1016/j.jpowsour.2023.233809
Sakr EAE, Khater DZ, Kheiralla ZMH, El–khatib KM. Statistical optimization of waste molasses-based exopolysaccharides and self-sustainable bioelectricity production for dual chamber microbial fuel cell by Bacillus piscis. Microb Cell Fact. 2023;202:1–20.
Khater DZ, Amin RS, Fetohi AE, Mahmoud M, El–Khatib KM. Insights on hexavalent chromium(VI) remediation strategies in abiotic and biotic dual chamber microbial fuel cells: electrochemical, physical, and metagenomics characterizations. Sci Rep. 2023;13:20184.
pubmed: 37978236
pmcid: 10656525
doi: 10.1038/s41598-023-47450-9
Khater DZ, Amin RS, Zhran MO, El-aziz ZKA, Hassan HM, Mahmoud M, et al. Overcoming the bottlenecks of Cellulose utilization in Microbial fuel cells via Bioaugmentation Strategy with cellulose–degrading isolates. Egypt J Chem. 2023;66:371–80.
Khater DZ, Amin RS, Zhran MO, El-Aziz A, Zeinab K, Mahmoud M, et al. The enhancement of microbial fuel cell performance by anodic bacterial community adaptation and cathodic mixed nickel–copper oxides on a graphene electrocatalyst. J Genet Eng Biotechnol. 2022;20:1–16.
doi: 10.1186/s43141-021-00292-2
Modestra JA, Velvizhi G, Krishna KV, Arunasri K, Lens PNL, Nancharaiah Y et al. Bioelectrochemical systems for heavy metal removal and recovery. Sustain Heavy Met Remediat Vol 1 Princ Process. 2017;165–98.
Tang Y, Werth CJ, Sanford RA, Singh R, Michelson K, Nobu M, et al. Immobilization of selenite via two parallel pathways during in situ bioremediation. Environ Sci \& Technol. 2015;49:4543–50.
doi: 10.1021/es506107r
Mathuriya AS, Yakhmi JV. Microbial fuel cells to recover heavy metals. Environ Chem Lett. 2014;12:483–94.
doi: 10.1007/s10311-014-0474-2
Catal T, Bermek H, Liu H. Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett. 2009;31:1211–6.
pubmed: 19343501
doi: 10.1007/s10529-009-9990-8
Park Y, Yu J, Lee T. others. Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater. Bioresour Technol. 2016;212:182–9.
Chaturvedi V, Verma P. Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess. 2016;38:1–14.
Nguyen VK, Park Y, Yu J, Lee T. Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater. Bioresour Technol. 2016;212:182–9.
pubmed: 27099943
doi: 10.1016/j.biortech.2016.04.033
Zheng S, Su J, Wang L, Yao R, Wang D, Deng Y et al. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil. BMC Microbiol. 2014;204.
Eswayah AS, Smith TJ, Gardiner PHE. Microbial transformations of selenium species of relevance to bioremediation. Appl Environ Microbiol. 2016;82:4848–59.
pubmed: 27260359
pmcid: 4968552
doi: 10.1128/AEM.00877-16
Tawfik A, Al-Sayed A, Hassan GK, Nasr M, El-Shafai SA, Alhajeri NS, et al. Electron donor addition for stimulating the microbial degradation of 1, 4 dioxane by sequential batch membrane bioreactor: a techno-economic approach. Chemosphere. 2022;306:135580.
pubmed: 35810864
doi: 10.1016/j.chemosphere.2022.135580
Lai C-Y, Yang X, Tang Y, Rittmann BE, Zhao H-P. Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environ Sci \& Technol. 2014;48:3395–402.
doi: 10.1021/es4053939
Sakr EAE, Khater DZ, El KM. Anodic and cathodic biofilms coupled with electricity generation in single – chamber microbial fuel cell using activated sludge. Bioprocess Biosyst Eng. 2021;44:2627–43.
pubmed: 34498106
doi: 10.1007/s00449-021-02632-5
Sakr EAE, Ahmed HAE, Saif FAAA. Characterization of low-cost glycolipoprotein biosurfactant produced by Lactobacillus plantarum 60 FHE isolated from cheese samples using food wastes through response surface methodology and its potential as antimicrobial, antiviral, and anticancer activi. Int J Biol Macromol. 2021;170:94–106.
pubmed: 33358950
doi: 10.1016/j.ijbiomac.2020.12.140
Mal J, Nancharaiah YV, Van Hullebusch ED, Lens PNL. Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge. Bioresour Technol. 2016;206:1–8.
pubmed: 26836844
doi: 10.1016/j.biortech.2016.01.064
Espinosa-Ortiz EJ, Rene ER, Pakshirajan K, van Hullebusch ED, Lens PNL. Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem Eng J. 2016;283:553–71.
doi: 10.1016/j.cej.2015.07.068
Wang Y, Shu X, Zhou Q, Fan T, Wang T, Chen X, et al. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamus alternatus (Coleoptera: Cerambycidae). Int J Mol Sci. 2018;19:2799.
pubmed: 30227664
pmcid: 6164237
doi: 10.3390/ijms19092799
La JA, Jeon J-M, Sang B-I, Yang Y-H, Cho EC. A hierarchically modified graphite cathode with au nanoislands, cysteamine, and au nanocolloids for increased electricity-assisted production of isobutanol by engineered Shewanella oneidensis MR-1. ACS Appl Mater \& Interfaces. 2017;9:43563–74.
doi: 10.1021/acsami.7b09874
Singh N, Marwa N, Mishra J, Verma PC, Rathaur S, Singh N, et al. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol Environ Saf. 2016;125:25–34.
pubmed: 26650422
doi: 10.1016/j.ecoenv.2015.11.020
Ali A, Li M, Su J, Li Y, Wang Z, Bai Y, et al. Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd2+) and zinc (Zn2+) through calcium carbonate precipitation: microscopic and spectroscopic investigations. Sci Total Environ. 2022;813:152668.
pubmed: 34963589
doi: 10.1016/j.scitotenv.2021.152668
Rathi M, Yogalakshmi KN. Brevundimonas diminuta MYS6 associated Helianthus annuus L. for enhanced copper phytoremediation. Chemosphere. 2021;263:128195.
pubmed: 33297160
doi: 10.1016/j.chemosphere.2020.128195
Kwon H-K, Jung J-O. Isolation and characteristics of novel ammonia oxidizing bacteria Brevundimonas diminuta. J Environ Heal Sci. 2007;33:293–8.
doi: 10.5668/JEHS.2007.33.4.293
Wang G, Wei L, Cao C, Su M, Shen J. Novel resolution-contrast method employed for investigating electron transfer mechanism of the mixed bacteria microbial fuel cell. Int J Hydrogen Energy. 2017;42:11614–21.
doi: 10.1016/j.ijhydene.2017.02.029
Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J et al. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomed. 2013;4277–90.
Lampis S, Zonaro E, Bertolini C, Cecconi D, Monti F, Micaroni M, et al. Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: novel clues on the route to bacterial biogenesis of selenium nanoparticles. J Hazard Mater. 2017;324:3–14.
pubmed: 26952084
doi: 10.1016/j.jhazmat.2016.02.035
Buchs B, Evangelou MWH, Winkel LHE, Lenz M. Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci \& Technol. 2013;47:2401–7.
doi: 10.1021/es304940s
Sinharoy A, Lens PNL. Biological removal of selenate and selenite from wastewater: options for selenium recovery as nanoparticles. Curr Pollut Rep. 2020;6:230–49.
doi: 10.1007/s40726-020-00146-4
Borah SN, Goswami L, Sen S, Sachan D, Sarma H, Montes M, et al. Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate. Environ Pollut. 2021;285:117519.
pubmed: 34380220
doi: 10.1016/j.envpol.2021.117519
Kulasekara HMIP, Zhang Y, Papelis C. Microbial enhancement of selenium removal in chemically modified Zeolite columns. Water. 2023;15:1837.
doi: 10.3390/w15101837
Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, et al. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. Int J Mol Sci. 2021;22:989.
pubmed: 33498184
pmcid: 7863925
doi: 10.3390/ijms22030989
Cittrarasu V, Kaliannan D, Dharman K, Maluventhen V, Easwaran M, Liu WC, et al. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep. 2021;11:1032.
pubmed: 33441811
pmcid: 7806947
doi: 10.1038/s41598-020-80327-9
Chen T, Wong Y-S, Zheng W, Bai Y, Huang L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B Biointerfaces. 2008;67:26–31.
pubmed: 18805679
doi: 10.1016/j.colsurfb.2008.07.010
Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D. Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B Biointerfaces. 2011;88:196–201.
pubmed: 21752611
doi: 10.1016/j.colsurfb.2011.06.031
Darvishi E, Kahrizi D, Arkan E. Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods. J Mol Liq. 2019;286:110831.
doi: 10.1016/j.molliq.2019.04.108
Ramya S, Shanmugasundaram T, Balagurunathan R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol. 2015;32:30–9.
pubmed: 26302909
doi: 10.1016/j.jtemb.2015.05.005
Debieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, et al. A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci. 2011;108:13480–5.
pubmed: 21808043
pmcid: 3158160
doi: 10.1073/pnas.1105959108
Bajaj M, Schmidt S, Winter J. Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India. Microb Cell Fact. 2012;11:1–14.
doi: 10.1186/1475-2859-11-64
Nancharaiah Y, Lens PNL. Ecology and biotechnology of seleniumrespiring bacteria. Microbiol Mol Biol Rev. 2015;79:61–80.
pubmed: 25631289
pmcid: 4402961
doi: 10.1128/MMBR.00037-14
Kumar A, Hsu LH, Kavanagh P, Barrière F, Lens PNL, Lapinsonnière L, Lienhard JH, Schroeder U, et al. The ins and outs of microorganismelectrode electron transfer reactions. Int Rev Chem Eng. 2017;1:1–13.
Zhang J, Wang Y, Shao Z, Li J, Zan S, Zhou S, et al. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. J Environ Sci. 2018;77:238–49.
doi: 10.1016/j.jes.2018.08.002
Tu C, Nguyen T, Lam T, Le D, Xuan C. Biogenic synthesis of selenium nanoparticles by Shewanella sp. HN-41 using a modified bioelectrochemical system. Electron J Biotechnol. 2021;54:1–7.
doi: 10.1016/j.ejbt.2021.07.004
Yan S, Yu K, Ginige MP, Zheng G, Zhou L, Kaksonen H. Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control. J Hazard Mater. 2021;402:123770.
pubmed: 33254781
doi: 10.1016/j.jhazmat.2020.123770
Sudharsan G, Sarvajith M, Nancharaiah YV. Selenite reduction and biogenesis of selenium-nanoparticles by different size groups of aerobic granular sludge under aerobic conditions. J Environ Manage. 2023;334:117482.
pubmed: 36801684
doi: 10.1016/j.jenvman.2023.117482