CT perfusion-guided administration of IV milrinone is associated with a reduction in delayed cerebral infarction after subarachnoid hemorrhage.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 06 2024
Historique:
received: 21 12 2023
accepted: 24 06 2024
medline: 28 6 2024
pubmed: 28 6 2024
entrez: 27 6 2024
Statut: epublish

Résumé

Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid haemorrhage (aSAH) is a singular pathological entity necessitating early diagnostic approaches and both prophylactic and curative interventions. This retrospective before-after study investigates the effects of a management strategy integrating perfusion computed tomography (CTP), vigilant clinical monitoring and standardized systemic administration of milrinone on the occurrence of delayed cerebral infarction (DCIn). The

Identifiants

pubmed: 38937568
doi: 10.1038/s41598-024-65706-w
pii: 10.1038/s41598-024-65706-w
doi:

Substances chimiques

Milrinone JU9YAX04C7

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

14856

Informations de copyright

© 2024. The Author(s).

Références

Suarez, J. I. Aneurysmal subarachnoid hemorrhage. N. Engl. J. Med. 10 https://doi.org/10.1056/NEJMra052732 (2006).
Mackey, J. et al. Stable incidence but declining case-fatality rates of subarachnoid hemorrhage in a population. Neurology 87, 2192–2197. https://doi.org/10.1212/WNL.0000000000003353 (2016).
doi: 10.1212/WNL.0000000000003353 pubmed: 27770074 pmcid: 5123555
Neifert, S. N. et al. Aneurysmal subarachnoid hemorrhage: The last decade. Transl. Stroke Res. 12, 428–446. https://doi.org/10.1007/s12975-020-00867-0 (2021).
doi: 10.1007/s12975-020-00867-0 pubmed: 33078345
Chalard, K. et al. Long-term outcome in patients with aneurysmal subarachnoid hemorrhage requiring mechanical ventilation. PLoS One 16(3), e0247942. https://doi.org/10.1371/journal.pone.0247942 (2021).
doi: 10.1371/journal.pone.0247942 pubmed: 33711023 pmcid: 7954305
Hoh, B. L. et al. 2023 guideline for the management of patients with aneurysmal subarachnoid hemorrhage: A guideline from the American Heart Association/American Stroke Association. Stroke https://doi.org/10.1161/STR.0000000000000436 (2023).
doi: 10.1161/STR.0000000000000436 pubmed: 38011232
Wahood, W. et al. Trends in admissions and outcomes for treatment of aneurysmal subarachnoid hemorrhage in the United States. Neurocrit. Care 37, 209–218. https://doi.org/10.1007/s12028-022-01476-5 (2022).
doi: 10.1007/s12028-022-01476-5 pubmed: 35304707
Molyneux, A. J. et al. Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the International Subarachnoid Aneurysm Trial (ISAT): Long-term follow-up. Lancet Neurol. 8, 427–433. https://doi.org/10.1016/S1474-4422(09)70080-8 (2009).
doi: 10.1016/S1474-4422(09)70080-8 pubmed: 19329361 pmcid: 2669592
Cinotti, R. et al. Evolution of neurological recovery during the first year after subarachnoid haemorrhage in a French University Centre. Anaesth. Crit. Care Pain Med. 38, 251–257. https://doi.org/10.1016/j.accpm.2018.10.002 (2019).
doi: 10.1016/j.accpm.2018.10.002 pubmed: 31079704
Rowland, M. J., Hadjipavlou, G., Kelly, M., Westbrook, J. & Pattinson, K. T. S. Delayed cerebral ischaemia after subarachnoid haemorrhage: Looking beyond vasospasm. Br. J. Anaesth. 109(3), 315–329. https://doi.org/10.1093/bja/aes264 (2012).
doi: 10.1093/bja/aes264 pubmed: 22879655
Galea, J. P., Dulhanty, L. & Patel, H. C. Predictors of outcome in aneurysmal subarachnoid hemorrhage patients: Observations from a multicenter data set. Stroke 48(11), 2958–2963. https://doi.org/10.1161/STROKEAHA.117.017777 (2017).
doi: 10.1161/STROKEAHA.117.017777 pubmed: 28974630
Vergouwen, M. D. I. et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies proposal of a Multidisciplinary Research Group. Stroke 41(10), 2391–2395. https://doi.org/10.1161/STROKEAHA.110.589275 (2010).
doi: 10.1161/STROKEAHA.110.589275 pubmed: 20798370
Westermaier, T. et al. Value of transcranial doppler, perfusion-CT and neurological evaluation to forecast secondary ischemia after aneurysmal SAH. Neurocrit. Care 20, 406–412. https://doi.org/10.1007/s12028-013-9896-0 (2014).
doi: 10.1007/s12028-013-9896-0 pubmed: 23982597
Kumar, G., Shahripour, R. B. & Harrigan, M. R. Vasospasm on transcranial Doppler is predictive of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J. Neurosurg. 124, 1257–1264. https://doi.org/10.3171/2015.4.JNS15428 (2016).
doi: 10.3171/2015.4.JNS15428 pubmed: 26495942
Chen, H. Y. et al. Combining transcranial Doppler and EEG data to predict delayed cerebral ischemia after subarachnoid hemorrhage. Neurology 98, e459–e469. https://doi.org/10.1212/WNL.0000000000013126 (2022).
doi: 10.1212/WNL.0000000000013126 pubmed: 34845057 pmcid: 8826465
van der Schaaf, I. et al. CT after subarachnoid hemorrhage: Relation of cerebral perfusion to delayed cerebral ischemia. Neurology 66(10), 1533–1538. https://doi.org/10.1212/01.wnl.0000216272.67895.d3 (2006).
doi: 10.1212/01.wnl.0000216272.67895.d3 pubmed: 16717213
Cremers, C. H. P. et al. Different CT perfusion algorithms in the detection of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology 57, 469–474. https://doi.org/10.1007/s00234-015-1486-8 (2015).
doi: 10.1007/s00234-015-1486-8 pubmed: 25614332 pmcid: 4412839
Malinova, V. et al. Early whole-brain CT perfusion for detection of patients at risk for delayed cerebral ischemia after subarachnoid hemorrhage. J. Neurosurg. 125, 128–136. https://doi.org/10.3171/2015.6.JNS15720 (2016).
doi: 10.3171/2015.6.JNS15720 pubmed: 26684786
de Oliveira Manoel, A. L. et al. The critical care management of poor-grade subarachnoid haemorrhage. Crit. Care https://doi.org/10.1186/s13054-016-1193-9 (2016).
doi: 10.1186/s13054-016-1193-9 pubmed: 27640182 pmcid: 5027096
Francoeur, C. L. & Mayer, S. A. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit. Care https://doi.org/10.1186/s13054-016-1447-6 (2016).
doi: 10.1186/s13054-016-1447-6 pubmed: 27737684 pmcid: 5064957
Lennihan, L. et al. Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage a randomized controlled trial. Stroke 31(2), 383–391. https://doi.org/10.1161/01.STR.31.2.383 (2000).
doi: 10.1161/01.STR.31.2.383 pubmed: 10657410
Duangthongphon, P., Souwong, B., Munkong, W. & Kitkhuandee, A. Results of a preventive rebleeding protocol in patients with ruptured cerebral aneurysm: A retrospective cohort study. Asian J. Neurosurg. 14, 748–753. https://doi.org/10.4103/ajns.AJNS_32_19 (2019).
doi: 10.4103/ajns.AJNS_32_19 pubmed: 31497096 pmcid: 6703019
Gathier, C. S. et al. Induced hypertension for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: A randomized clinical trial. Stroke 49, 76–83. https://doi.org/10.1161/STROKEAHA.117.017956 (2018).
doi: 10.1161/STROKEAHA.117.017956 pubmed: 29158449
Haegens, N. M. et al. Induced hypertension in preventing cerebral infarction in delayed cerebral ischemia after subarachnoid hemorrhage. Stroke 49, 2630–2636. https://doi.org/10.1161/STROKEAHA.118.022310 (2018).
doi: 10.1161/STROKEAHA.118.022310 pubmed: 30355184
Pickard, J. D. et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. Br. Med. J. 298(6674), 636–642. https://doi.org/10.1136/bmj.298.6674.636 (1989).
doi: 10.1136/bmj.298.6674.636
Hao, G. et al. Clinical effectiveness of nimodipine for the prevention of poor outcome after aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. Front. Neurol. 13, 982498. https://doi.org/10.3389/fneur.2022.982498 (2022).
doi: 10.3389/fneur.2022.982498 pubmed: 36212656 pmcid: 9533126
Biondi, A. et al. Intra-arterial nimodipine for the treatment of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage: Preliminary results. Am. J. Neuroradiol. 25, 1067–1076 (2004).
pubmed: 15205150 pmcid: 7975655
Linfante, I. et al. Angiographic and hemodynamic effect of high concentration of intra-arterial nicardipine in cerebral vasospasm. Neurosurgery 63, 1080–1087. https://doi.org/10.1227/01.NEU.0000327698.66596.35 (2008).
doi: 10.1227/01.NEU.0000327698.66596.35 pubmed: 19057319
Weiss, M. et al. Intraarterial nimodipine versus induced hypertension for delayed cerebral ischemia: A modified treatment protocol. Stroke 53, 2607–2616. https://doi.org/10.1161/STROKEAHA.121.038216 (2022).
doi: 10.1161/STROKEAHA.121.038216 pubmed: 35674046 pmcid: 9329199
Shankar, J. J. S., Santos, MPd., Deus-Silva, L. & Lum, C. Angiographic evaluation of the effect of intra-arterial milrinone therapy in patients with vasospasm from aneurysmal subarachnoid hemorrhage. Neuroradiology 53(2), 123–128. https://doi.org/10.1007/s00234-010-0720-7 (2010).
doi: 10.1007/s00234-010-0720-7 pubmed: 20549498
Romero, C. M. et al. Milrinone as a rescue therapy for symptomatic refractory cerebral vasospasm in aneurysmal subarachnoid hemorrhage. Neurocrit. Care 11, 165–171. https://doi.org/10.1007/s12028-008-9048-0 (2009).
doi: 10.1007/s12028-008-9048-0 pubmed: 18202923
Fraticelli, A. T., Cholley, B. P., Losser, M.-R., Saint Maurice, J.-P. & Payen, D. Milrinone for the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke J. Cereb. Circ. 39(3), 893–898. https://doi.org/10.1161/STROKEAHA.107.492447 (2008).
doi: 10.1161/STROKEAHA.107.492447
Jentzsch, J. et al. Nimodipine versus milrinone—Equal or complementary use? A retrospective analysis. Front. Neurol. 13, 939015. https://doi.org/10.3389/fneur.2022.939015 (2022).
doi: 10.3389/fneur.2022.939015 pubmed: 35911878 pmcid: 9330364
Zwienenberg-Lee, M. et al. Effect of prophylactic transluminal balloon angioplasty on cerebral vasospasm and outcome in patients with fisher grade III subarachnoid hemorrhage: Results of a phase II multicenter, Randomized, clinical trial. Stroke 39, 1759–1765. https://doi.org/10.1161/STROKEAHA.107.502666 (2008).
doi: 10.1161/STROKEAHA.107.502666 pubmed: 18420953
Schacht, H. et al. Transluminal balloon angioplasty for cerebral vasospasm after spontaneous subarachnoid hemorrhage: A single-center experience. Clin. Neurol. Neurosurg. 188, 105590. https://doi.org/10.1016/j.clineuro.2019.105590 (2020).
doi: 10.1016/j.clineuro.2019.105590 pubmed: 31759310
Castle-Kirszbaum, M. et al. Intravenous milrinone for treatment of delayed cerebral ischaemia following subarachnoid haemorrhage: A pooled systematic review. Neurosurg. Rev. 44, 3107–3124. https://doi.org/10.1007/s10143-021-01509-1 (2021).
doi: 10.1007/s10143-021-01509-1 pubmed: 33682040
Santos-Teles, A. G. et al. Efficacy and safety of milrinone in the treatment of cerebral vasospasm after subarachnoid hemorrhage: A systematic review. Revista Brasileira de Terapia Intensiva https://doi.org/10.5935/0103-507X.20200097 (2020).
doi: 10.5935/0103-507X.20200097 pubmed: 33470361 pmcid: 7853682
Lannes, M., Zeiler, F., Guichon, C. & Teitelbaum, J. The use of milrinone in patients with delayed cerebral ischemia following subarachnoid hemorrhage: A systematic review. Can. J. Neurol. Sci./J. Can. Sci. Neurol. 44(02), 152–160. https://doi.org/10.1017/cjn.2016.316 (2017).
doi: 10.1017/cjn.2016.316
Lannes, M., Teitelbaum, J., del Pilar Cortés, M., Cardoso, M. & Angle, M. Milrinone and homeostasis to treat cerebral vasospasm associated with subarachnoid hemorrhage: The montreal neurological hospital protocol. Neurocrit. Care 16(3), 354–362. https://doi.org/10.1007/s12028-012-9701-5 (2012).
doi: 10.1007/s12028-012-9701-5 pubmed: 22528278
Lakhal, K. et al. Intravenous milrinone for cerebral vasospasm in subarachnoid hemorrhage: The MILRISPASM controlled beforeâ€-after study. Neurocrit. Care 35, 669–679. https://doi.org/10.1007/s12028-021-01331-z (2021).
doi: 10.1007/s12028-021-01331-z pubmed: 34478028
Bernier, T. D. et al. Treatment of Subarachnoid Hemorrhage-associated Delayed Cerebral Ischemia With Milrinone: A review and proposal. J. Neurosurg. Anesthesiol. https://doi.org/10.1097/ANA.0000000000000755 (2021).
doi: 10.1097/ANA.0000000000000755 pubmed: 33480639 pmcid: 8192346
Toulouse, E. et al. French legal approach to clinical research. Anaesth. Crit. Care Pain Med. 37(6), 607–614. https://doi.org/10.1016/j.accpm.2018.10.013 (2018).
doi: 10.1016/j.accpm.2018.10.013 pubmed: 30580775
Austin, P. C. & Stuart, E. A. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 34, 3661–3679. https://doi.org/10.1002/sim.6607 (2015).
doi: 10.1002/sim.6607 pubmed: 26238958 pmcid: 4626409
Claassen, J. A. H. R., Thijssen, D. H. J., Panerai, R. B. & Faraci, F. M. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation. Physiol. Rev. 101, 1487–1559. https://doi.org/10.1152/physrev.00022.2020 (2021).
doi: 10.1152/physrev.00022.2020 pubmed: 33769101 pmcid: 8576366
Sun, H., Li, W., Ma, J., Liu, Y. & You, C. CT perfusion diagnoses delayed cerebral ischemia in the early stage of the time-window after aneurysmal subarachnoid hemorrhage. J. Neuroradiol. 44, 313–318. https://doi.org/10.1016/j.neurad.2016.12.013 (2017).
doi: 10.1016/j.neurad.2016.12.013 pubmed: 28237366
Abdulazim, A., Heilig, M., Rinkel, G. & Etminan, N. Diagnosis of delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage and triggers for intervention. Neurocrit. Care 39, 311–319. https://doi.org/10.1007/s12028-023-01812-3 (2023).
doi: 10.1007/s12028-023-01812-3 pubmed: 37537496 pmcid: 10542310
Abulhasan, Y. B., Ortiz Jimenez, J., Teitelbaum, J. & Angle, M. R. Role of induced hypertension and intravenous milrinone after aneurysmal subarachnoid hemorrhage: Is it time to shift the paradigm?. Neurocrit. Care 35, 920–921. https://doi.org/10.1007/s12028-021-01379-x (2021).
doi: 10.1007/s12028-021-01379-x pubmed: 34734374
Lakhal, K., Hivert, A., Rozec, B. & Cadiet, J. Induced hypertension or intravenous milrinone for cerebral vasospasm: Why choose?. Neurocrit. Care 35, 922–923. https://doi.org/10.1007/s12028-021-01378-y (2021).
doi: 10.1007/s12028-021-01378-y pubmed: 34725779
Mathew, R. et al. Milrinone as compared with dobutamine in the treatment of cardiogenic shock. N. Engl. J. Med. 385, 516–525. https://doi.org/10.1056/NEJMoa2026845 (2021).
doi: 10.1056/NEJMoa2026845 pubmed: 34347952
Friedrich, B., Müller, F., Feiler, S., Schöller, K. & Plesnila, N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: An in-vivo microscopy study. J. Cereb. Blood Flow Metab. 32(3), 447–455. https://doi.org/10.1038/jcbfm.2011.154 (2012).
doi: 10.1038/jcbfm.2011.154 pubmed: 22146194
Terpolilli, N. A., Brem, C., Bühler, D. & Plesnila, N. Are we barking up the wrong vessels?: Cerebral microcirculation after subarachnoid hemorrhage. Stroke 46(10), 3014–3019. https://doi.org/10.1161/STROKEAHA.115.006353 (2015).
doi: 10.1161/STROKEAHA.115.006353 pubmed: 26152299
El Amki, M. et al. Long-lasting cerebral vasospasm, microthrombosis, apoptosis and paravascular alterations associated with neurological deficits in a mouse model of subarachnoid hemorrhage. Mol. Neurobiol. 55(4), 2763–2779. https://doi.org/10.1007/s12035-017-0514-6 (2018).
doi: 10.1007/s12035-017-0514-6 pubmed: 28455691
Anzabi, M. et al. Capillary flow disturbances after experimental subarachnoid hemorrhage: A contributor to delayed cerebral ischemia?. Microcirculation 26, e12516. https://doi.org/10.1111/micc.12516 (2019).
doi: 10.1111/micc.12516 pubmed: 30431201
de Oliveira Manoel, A. L. & Macdonald, R. L. Neuroinflammation as a target for intervention in subarachnoid hemorrhage. Front. Neurol.9. https://doi.org/10.3389/fneur.2018.00292 (2018).
Lin, X. et al. Perivascular macrophages mediate microvasospasms after experimental subarachnoid hemorrhage. Stroke 54, 2126–2134. https://doi.org/10.1161/STROKEAHA.122.042290 (2023).
doi: 10.1161/STROKEAHA.122.042290 pubmed: 37325921

Auteurs

Vivien Szabo (V)

Department of Critical Care Medicine and Anesthesiology (DAR GDC), Gui de Chauliac University Hospital of Montpellier, Montpellier, France.
IGF, Univ. Montpellier, CNRS UMR5203, Inserm U1191, Montpellier, France.

Sarah Baccialone (S)

Department of Critical Care Medicine and Anesthesiology (DAR GDC), Gui de Chauliac University Hospital of Montpellier, Montpellier, France.

Florentin Kucharczak (F)

Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, Nimes, France.
Department of Nuclear Medicine, Gui de Chauliac University Hospital of Montpellier, University of Montpellier, Montpellier, France.

Cyril Dargazanli (C)

IGF, Univ. Montpellier, CNRS UMR5203, Inserm U1191, Montpellier, France.
Department of Neuroradiology, Gui de Chauliac University Hospital of Montpellier, Montpellier, France.

Oceane Garnier (O)

Department of Critical Care Medicine and Anesthesiology (DAR GDC), Gui de Chauliac University Hospital of Montpellier, Montpellier, France.

Frederique Pavillard (F)

Department of Critical Care Medicine and Anesthesiology (DAR GDC), Gui de Chauliac University Hospital of Montpellier, Montpellier, France.

Nicolas Molinari (N)

Epidemiology and Clinical Research Department, University Hospital of Montpellier, Montpellier, France.
IMAG, Univ Montpellier, CNRS, CHU Montpellier, Montpellier, France.

Vincent Costalat (V)

IGF, Univ. Montpellier, CNRS UMR5203, Inserm U1191, Montpellier, France.
Department of Neuroradiology, Gui de Chauliac University Hospital of Montpellier, Montpellier, France.

Pierre-Francois Perrigault (PF)

Department of Critical Care Medicine and Anesthesiology (DAR GDC), Gui de Chauliac University Hospital of Montpellier, Montpellier, France.

Kevin Chalard (K)

Department of Critical Care Medicine and Anesthesiology (DAR GDC), Gui de Chauliac University Hospital of Montpellier, Montpellier, France. k-chalard@chu-montpellier.fr.
IGF, Univ. Montpellier, CNRS UMR5203, Inserm U1191, Montpellier, France. k-chalard@chu-montpellier.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH