Dimeric transport mechanism of human vitamin C transporter SVCT1.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
02 Jul 2024
Historique:
received: 31 05 2023
accepted: 20 06 2024
medline: 3 7 2024
pubmed: 3 7 2024
entrez: 2 7 2024
Statut: epublish

Résumé

Vitamin C plays important roles as a cofactor in many enzymatic reactions and as an antioxidant against oxidative stress. As some mammals including humans cannot synthesize vitamin C de novo from glucose, its uptake from dietary sources is essential, and is mediated by the sodium-dependent vitamin C transporter 1 (SVCT1). Despite its physiological significance in maintaining vitamin C homeostasis, the structural basis of the substrate transport mechanism remained unclear. Here, we report the cryo-EM structures of human SVCT1 in different states at 2.5-3.5 Å resolutions. The binding manner of vitamin C together with two sodium ions reveals the counter ion-dependent substrate recognition mechanism. Furthermore, comparisons of the inward-open and occluded structures support a transport mechanism combining elevator and distinct rotational motions. Our results demonstrate the molecular mechanism of vitamin C transport with its underlying conformational cycle, potentially leading to future industrial and medical applications.

Identifiants

pubmed: 38956111
doi: 10.1038/s41467-024-49899-2
pii: 10.1038/s41467-024-49899-2
doi:

Substances chimiques

Sodium-Coupled Vitamin C Transporters 0
Ascorbic Acid PQ6CK8PD0R
SLC23A1 protein, human 0
Sodium 9NEZ333N27

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5569

Subventions

Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : 20344981
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP23ama121002

Informations de copyright

© 2024. The Author(s).

Références

Englard, S. & Seifter, S. The biochemical functions of ascorbic acid. Annu. Rev. Nutr. 6, 365–406 (1986).
pubmed: 3015170 doi: 10.1146/annurev.nu.06.070186.002053
Du, J., Cullen, J. J. & Buettner, G. R. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta 1826, 443–457 (2012).
pubmed: 22728050 pmcid: 3608474
Padayatty, S. & Levine, M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 22, 463–493 (2016).
pubmed: 26808119 pmcid: 4959991 doi: 10.1111/odi.12446
Cimmino, L., Neel, B. G. & Aifantis, I. Vitamin C in stem cell reprogramming and cancer. Trends Cell Biol. 28, 698–708 (2018).
pubmed: 29724526 pmcid: 6102081 doi: 10.1016/j.tcb.2018.04.001
Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N. & Yagi, K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 269, 13685–13688 (1994).
pubmed: 8175804 doi: 10.1016/S0021-9258(17)36884-9
Li, Y. & Schellhorn, H. E. New developments and novel therapeutic perspectives for vitamin C. J. Nutr. 137, 2171–2184 (2007).
pubmed: 17884994 doi: 10.1093/jn/137.10.2171
Rivas, C. I. et al. Vitamin C transporters. J. Physiol. Biochem. 64, 357–375 (2008).
pubmed: 19391462 doi: 10.1007/BF03174092
Wilson, J. X. The physiological role of dehydroascorbic acid. FEBS Lett. 527, 5–9 (2002).
pubmed: 12220624 doi: 10.1016/S0014-5793(02)03167-8
May, J. M., Qu, Z., Qiao, H. & Koury, M. J. Maturational loss of the vitamin C transporter in erythrocytes. Biochem. Biophys. Res. Commun. 360, 295–298 (2007).
pubmed: 17586466 pmcid: 1964531 doi: 10.1016/j.bbrc.2007.06.072
Tsukaguchi, H. et al. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 399, 70–75 (1999).
pubmed: 10331392 doi: 10.1038/19986
Wang, H. et al. Human Na+-dependent vitamin C transporter 1 (hSVCT1): primary structure, functional characteristics and evidence for a non-functional splice variant. Biochim. Biophys. Acta 1461, 1–9 (1999).
pubmed: 10556483 doi: 10.1016/S0005-2736(99)00182-0
Godoy, A. et al. Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2: Activation by sodium and absolute dependence on bivalent cations. J. Biol. Chem. 282, 615–624 (2007).
pubmed: 17012227 doi: 10.1074/jbc.M608300200
Savini, I., Rossi, A., Pierro, C., Avigliano, L. & Catani, M. V. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 34, 347–355 (2008).
pubmed: 17541511 doi: 10.1007/s00726-007-0555-7
Bürzle, M. et al. The sodium-dependent ascorbic acid transporter family SLC23. Mol. Asp. Med. 34, 436–454 (2013).
doi: 10.1016/j.mam.2012.12.002
Verrax, J. & Buc Calderon, P. The controversial place of vitamin C in cancer treatment. Biochem. Pharmacol. 76, 1644–1652 (2008).
pubmed: 18938145 doi: 10.1016/j.bcp.2008.09.024
Roa, F. J. et al. Therapeutic use of vitamin C in cancer: physiological considerations. Front. Pharmacol. 11, 211 (2020).
pubmed: 32194425 pmcid: 7063061 doi: 10.3389/fphar.2020.00211
Padayatty, S. J. et al. Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann. Intern. Med. 140, 533–537 (2004).
pubmed: 15068981 doi: 10.7326/0003-4819-140-7-200404060-00010
Gournas, C., Papageorgiou, I. & Diallinas, G. The nucleobase–ascorbate transporter (NAT) family: genomics, evolution, structure–function relationships and physiological role. Mol. BioSyst. 4, 404–416 (2008).
pubmed: 18414738 doi: 10.1039/b719777b
Lu, F. et al. Structure and mechanism of the uracil transporter UraA. Nature 472, 243–246 (2011).
pubmed: 21423164 doi: 10.1038/nature09885
Yu, X. et al. Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res. 27, 1020–1033 (2017).
pubmed: 28621327 pmcid: 5539350 doi: 10.1038/cr.2017.83
Alguel, Y. et al. Structure of eukaryotic purine/H
pubmed: 27088252 pmcid: 4837479 doi: 10.1038/ncomms11336
Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Ann. Rev. Biochem. 85, 543–572 (2016).
pubmed: 27023848 doi: 10.1146/annurev-biochem-060815-014520
Pyle, E. et al. Structural lipids enable the formation of functional oligomers of the eukaryotic purine symporter UapA. Cell Chem. Biol. 25, 840–848.e4 (2018).
pubmed: 29681524 pmcid: 6058078 doi: 10.1016/j.chembiol.2018.03.011
Wang, M. et al. Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter. Nat. Commun. 14, 1361 (2023).
pubmed: 36914666 pmcid: 10011568 doi: 10.1038/s41467-023-37037-3
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).
pubmed: 16615909 doi: 10.1016/j.str.2006.01.013
Boggavarapu, R. et al. Expression, purification and low-resolution structure of human vitamin C transporter SVCT1 (SLC23A1). PLoS ONE 8, e76427 (2013).
pubmed: 24124560 pmcid: 3790709 doi: 10.1371/journal.pone.0076427
Arakawa, T. et al. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350, 680–684 (2015).
pubmed: 26542571 doi: 10.1126/science.aaa4335
Huynh, K. W. et al. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. Nat. Commun. 9, 900 (2018).
pubmed: 29500354 pmcid: 5834491 doi: 10.1038/s41467-018-03271-3
Ge, J. et al. Molecular mechanism of prestin electromotive signal amplification. Cell 184, 4669–4679.e13 (2021).
pubmed: 34390643 pmcid: 8674105 doi: 10.1016/j.cell.2021.07.034
Futamata, H. et al. Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility. Nat. Commun. 13, 6208 (2022).
pubmed: 36266333 pmcid: 9584906 doi: 10.1038/s41467-022-34017-x
Xia, X., Liu, S. & Zhou, Z. H. Structure, dynamics and assembly of the ankyrin complex on human red blood cell membrane. Nat. Struct. Mol. Biol. 29, 698–705 (2022).
pubmed: 35655099 pmcid: 9489475 doi: 10.1038/s41594-022-00779-7
Wang, C. et al. Structural mechanism of the active bicarbonate transporter from cyanobacteria. Nat. Plants 5, 1184–1193 (2019).
pubmed: 31712753 doi: 10.1038/s41477-019-0538-1
Subramanian, V. S., Marchant, J. S., Reidling, J. C. & Said, H. M. N-Glycosylation is required for Na
pubmed: 18619416 doi: 10.1016/j.bbrc.2008.06.120
Resh, M. D. Covalent lipid modifications of proteins. Curr. Biol. 23, R431–R435 (2013).
pubmed: 23701681 pmcid: 3712495 doi: 10.1016/j.cub.2013.04.024
Mackenzie, B., Illing, A. C. & Hediger, M. A. Transport model of the human Na
pubmed: 18094143 doi: 10.1152/ajpcell.00439.2007
Wang, W. et al. Cryo-EM structure of the sodium-driven chloride/bicarbonate exchanger NDCBE. Nat. Commun. 12, 5690 (2021).
pubmed: 34584093 pmcid: 8478935 doi: 10.1038/s41467-021-25998-2
Linster, C. L. & Van Schaftingen, E. Vitamin C: biosynthesis, recycling and degradation in mammals. FEBS J. 274, 1–22 (2007).
pubmed: 17222174 doi: 10.1111/j.1742-4658.2006.05607.x
Wang, Y. et al. Human vitamin C (L-ascorbic acid) transporter SVCT1. Biochem. Biophys. Res. Commun. 267, 488–494 (2000).
pubmed: 10631088 doi: 10.1006/bbrc.1999.1929
Walter, J. D., Sawicka, M. & Dutzler, R. Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. eLife 8, e46986 (2019).
pubmed: 31339488 pmcid: 6656431 doi: 10.7554/eLife.46986
Chi, X. et al. Structural insights into the gating mechanism of human SLC26A9 mediated by its C-terminal sequence. Cell Discov. 6, 1–10 (2020).
doi: 10.1038/s41421-020-00193-7
Kourkoulou, A. et al. Specific residues in a purine transporter are critical for dimerization, ER exit, and function. Genetics 213, 1357–1372 (2019).
pubmed: 31611232 pmcid: 6893392 doi: 10.1534/genetics.119.302566
Martzoukou, O. et al. Oligomerization of the UapA purine transporter is critical for ER-exit, plasma membrane localization and turnover. J. Mol. Biol. 427, 2679–2696 (2015).
pubmed: 26049015 doi: 10.1016/j.jmb.2015.05.021
Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).
pubmed: 28077870 pmcid: 5501331 doi: 10.1038/nature20820
Koshy, C. & Ziegler, C. Structural insights into functional lipid–protein interactions in secondary transporters. Biochim. Biophys. Acta 1850, 476–487 (2015).
pubmed: 24859688 doi: 10.1016/j.bbagen.2014.05.010
Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).
pubmed: 25299155 pmcid: 4291175 doi: 10.1038/nprot.2014.173
Kirchhofer, A. et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 17, 133–138 (2010).
pubmed: 20010839 doi: 10.1038/nsmb.1727
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980 pmcid: 6760662 doi: 10.1016/j.jsb.2015.08.008
Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).
pubmed: 32148853 pmcid: 7055373 doi: 10.1107/S2052252520000081
Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).
pubmed: 30713699 pmcid: 6327179 doi: 10.1107/S205225251801463X
Ramlaul, K., Palmer, C. M., Nakane, T. & Aylett, C. H. S. Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER. J. Struct. Biol. 211, 107545 (2020).
pubmed: 32534144 pmcid: 7369633 doi: 10.1016/j.jsb.2020.107545
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
pubmed: 34791371 doi: 10.1093/nar/gkab1061
Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).
pubmed: 20057045 doi: 10.1107/S0907444909042589
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Cryst. D Biol. Crystallogr. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. D Biol. Crystallogr. 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).
pubmed: 29872004 pmcid: 6096492 doi: 10.1107/S2059798318006551
Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr. D Struct. Biol. 77, 1282–1291 (2021).
pubmed: 34605431 pmcid: 8489229 doi: 10.1107/S2059798321009475
Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).
pubmed: 28671674 pmcid: 5533649 doi: 10.1038/nmeth.4347
Bordoli, L. et al. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. 4, 1–13 (2009).
pubmed: 19131951 doi: 10.1038/nprot.2008.197
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943

Auteurs

Takaaki A Kobayashi (TA)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Hiroto Shimada (H)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan.

Fumiya K Sano (FK)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Yuzuru Itoh (Y)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Sawako Enoki (S)

Department of Physics, and Universal Biology Institute (UBI), Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Yasushi Okada (Y)

Department of Physics, and Universal Biology Institute (UBI), Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan.
International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.

Tsukasa Kusakizako (T)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. kusakizako@bs.s.u-tokyo.ac.jp.

Osamu Nureki (O)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. nureki@bs.s.u-tokyo.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH