Intestinal organoids to model Salmonella infection and its impact on progenitors.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 07 2024
Historique:
received: 04 01 2024
accepted: 20 06 2024
medline: 3 7 2024
pubmed: 3 7 2024
entrez: 2 7 2024
Statut: epublish

Résumé

In order to survive and replicate, Salmonella has evolved mechanisms to gain access to intestinal epithelial cells of the crypt. However, the impact of Salmonella Typhimurium on stem cells and progenitors, which are responsible for the ability of the intestinal epithelium to renew and protect itself, remains unclear. Given that intestinal organoids growth is sustained by stem cells and progenitors activity, we have used this model to document the effects of Salmonella Typhimurium infection on epithelial proliferation and differentiation, and compared it to an in vivo model of Salmonella infection in mice. Among gut segments, the caecum was preferentially targeted by Salmonella. Analysis of infected crypts and organoids demonstrated increased length and size, respectively. mRNA transcription profiles of infected crypts and organoids pointed to upregulated EGFR-dependent signals, associated with a decrease in secretory cell lineage differentiation. To conclude, we show that organoids are suited to mimic the impact of Salmonella on stem cells and progenitors cells, carrying a great potential to drastically reduce the use of animals for scientific studies on that topic. In both models, the EGFR pathway, crucial to stem cells and progenitors proliferation and differentiation, is dysregulated by Salmonella, suggesting that repeated infections might have consequences on crypt integrity and further oncogenesis.

Identifiants

pubmed: 38956132
doi: 10.1038/s41598-024-65485-4
pii: 10.1038/s41598-024-65485-4
doi:

Substances chimiques

ErbB Receptors EC 2.7.10.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15160

Informations de copyright

© 2024. The Author(s).

Références

Gehart, H. & Clevers, H. Tales from the crypt: New insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).
doi: 10.1038/s41575-018-0081-y pubmed: 30429586
Shanker, E. B. & Sun, J. Salmonella infection acts as an environmental risk factor for human colon cancer. Cell Insight 2, 100125 (2023).
doi: 10.1016/j.cellin.2023.100125 pubmed: 37886657 pmcid: 10597815
Hou, Q. et al. Bacillus subtilis programs the differentiation of intestinal secretory lineages to inhibit Salmonella infection. Cell Rep. 40, 111416 (2022).
doi: 10.1016/j.celrep.2022.111416 pubmed: 36170821
Wang, Z., Qu, Y.-J. & Cui, M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J. Stem Cells 15, 354–368 (2023).
doi: 10.4252/wjsc.v15.i5.354 pubmed: 37342221 pmcid: 10277971
Liu, X., Lu, R., Wu, S. & Sun, J. Salmonella regulation of intestinal stem cells through the Wnt/β-catenin pathway. FEBS Lett. 584, 911–916 (2010).
doi: 10.1016/j.febslet.2010.01.024 pubmed: 20083111 pmcid: 2829849
Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003).
doi: 10.1128/IAI.71.5.2839-2858.2003 pubmed: 12704158 pmcid: 153285
Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: Comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).
doi: 10.3389/fphys.2018.01534 pubmed: 30429801 pmcid: 6220354
Reikvam, D. H. et al. Depletion of murine intestinal microbiota: Effects on gut mucosa and epithelial gene expression. PLoS One 6, e17996 (2011).
doi: 10.1371/journal.pone.0017996 pubmed: 21445311 pmcid: 3061881
Ekmekciu, I., Fiebiger, U., Stingl, K., Bereswill, S. & Heimesaat, M. M. Amelioration of intestinal and systemic sequelae of murine Campylobacter Jejuni infection by probiotic VSL#3 treatment. Gut Pathog. 9, 17 (2017).
doi: 10.1186/s13099-017-0168-y pubmed: 28413453 pmcid: 5387377
Wilen, C. B. et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360, 204–208 (2018).
doi: 10.1126/science.aar3799 pubmed: 29650672 pmcid: 6039974
Puschhof, J., Pleguezuelos-Manzano, C. & Clevers, H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host Microbe 29, 867–878 (2021).
doi: 10.1016/j.chom.2021.04.002 pubmed: 34111395
Rossi, O., Vlazaki, M., Kanvatirth, P., Restif, O. & Mastroeni, P. Within-host spatiotemporal dynamic of systemic salmonellosis: Ways to track infection, reaction to vaccination and antimicrobial treatment. J. Microbiol. Methods 176, 106008 (2020).
doi: 10.1016/j.mimet.2020.106008 pubmed: 32707153
Santos, R. L. et al. Animal models of Salmonella infections: Enteritis versus typhoid fever. Microbes Infect. 3, 1335–1344 (2001).
doi: 10.1016/S1286-4579(01)01495-2 pubmed: 11755423
Nilsson, O. R., Kari, L. & Steele-Mortimer, O. Foodborne infection of mice with Salmonella Typhimurium. PLoS One 14, e0215190 (2019).
doi: 10.1371/journal.pone.0215190 pubmed: 31393874 pmcid: 6687127
Walker, G. T., Gerner, R. R., Nuccio, S.-P. & Raffatellu, M. Murine models of Salmonella infection. Curr. Protoc. 3, e824 (2023).
doi: 10.1002/cpz1.824 pubmed: 37478288 pmcid: 10372748
Miyoshi, H., Ajima, R., Luo, C. T., Yamaguchi, T. P. & Stappenbeck, T. S. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science 338, 108–113 (2012).
doi: 10.1126/science.1223821 pubmed: 22956684 pmcid: 3706630
Basak, O. et al. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing Enteroendocrine cells. Cell Stem Cell 20, 177-190.e4 (2017).
doi: 10.1016/j.stem.2016.11.001 pubmed: 27939219
Kyrova, K. et al. The response of porcine monocyte derived macrophages and dendritic cells to Salmonella Typhimurium and lipopolysaccharide. BMC Vet. Res. 10, 244 (2014).
doi: 10.1186/s12917-014-0244-1 pubmed: 25270530 pmcid: 4195948
Furter, M., Sellin, M. E., Hansson, G. C. & Hardt, W.-D. Mucus architecture and near-surface swimming affect distinct Salmonella Typhimurium infection patterns along the murine intestinal tract. Cell Rep. 27, 2665-2678.e3 (2019).
doi: 10.1016/j.celrep.2019.04.106 pubmed: 31141690 pmcid: 6547020
Buchon, N., Broderick, N. A., Kuraishi, T. & Lemaitre, B. Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol. 8, 152 (2010).
doi: 10.1186/1741-7007-8-152 pubmed: 21176204 pmcid: 3022776
Huan, Y. W. et al. Lawsonia intracellularis exploits β-catenin/Wnt and Notch signalling pathways during infection of intestinal crypt to alter cell homeostasis and promote cell proliferation. PLoS One 12, e0173782 (2017).
doi: 10.1371/journal.pone.0173782 pubmed: 28323899 pmcid: 5360247
Huang, J., Zhou, C., Zhou, G., Li, H. & Ye, K. Effect of Listeria monocytogenes on intestinal stem cells in the co-culture model of small intestinal organoids. Microb. Pathog. 153, 104776 (2021).
doi: 10.1016/j.micpath.2021.104776 pubmed: 33548482
Liu, C. Y. et al. Wound-healing plasticity enables clonal expansion of founder progenitor cells in colitis. Dev. Cell 58, 2309-2325.e7 (2023).
doi: 10.1016/j.devcel.2023.08.011 pubmed: 37652012
Yan, K. S. et al. Intestinal Enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell 21, 78-90.e6 (2017).
doi: 10.1016/j.stem.2017.06.014 pubmed: 28686870 pmcid: 5642297
Jadhav, U. et al. Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. Cell Stem Cell 21, 65-77.e5 (2017).
doi: 10.1016/j.stem.2017.05.001 pubmed: 28648363 pmcid: 5505276
Sanman, L. E. et al. Transit-amplifying cells coordinate changes in intestinal epithelial cell-type composition. Dev. Cell 56, 356-365.e9 (2021).
doi: 10.1016/j.devcel.2020.12.020 pubmed: 33484640 pmcid: 7917018
Wiedemann, A. et al. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion. FASEB J. 30, 4180–4191 (2016).
doi: 10.1096/fj.201600701R pubmed: 27609774
Mambu, J. et al. Rck of Salmonella Typhimurium delays the host cell cycle to facilitate bacterial invasion. Front. Cell Infect. Microbiol. 10, 586934 (2020).
doi: 10.3389/fcimb.2020.586934 pubmed: 33330131 pmcid: 7734966
Abed, N. et al. Direct regulation of the pefI-srgC operon encoding the Rck invasin by the quorum-sensing regulator SdiA in Salmonella Typhimurium. Mol. Microbiol. 94, 254–271 (2014).
doi: 10.1111/mmi.12738 pubmed: 25080967
Smith, J. N. & Ahmer, B. M. M. Detection of other microbial species by Salmonella: Expression of the SdiA regulon. J. Bacteriol. 185, 1357–1366 (2003).
doi: 10.1128/JB.185.4.1357-1366.2003 pubmed: 12562806 pmcid: 142872
Scanu, T. et al. Salmonella manipulation of host Signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17, 763–774 (2015).
doi: 10.1016/j.chom.2015.05.002 pubmed: 26028364
Aguirre Garcia, M. et al. Intestinal organoids: New tools to comprehend the virulence of bacterial foodborne pathogens. Foods 11, 108 (2022).
doi: 10.3390/foods11010108 pubmed: 35010234 pmcid: 8750402
Berger, M. et al. Prenatal stress induces changes in PAR2- and M3-dependent regulation of colon primitive cells. Am. J. Physiol. Gastrointest. Liver Physiol. 323, G609–G626 (2022).
doi: 10.1152/ajpgi.00061.2022 pubmed: 36283083 pmcid: 9722261
Lacroix-Lamandé, S. et al. Differential Salmonella Typhimurium intracellular replication and host cell responses in caecal and ileal organoids derived from chicken. Vet. Res. 54, 63 (2023).
doi: 10.1186/s13567-023-01189-3 pubmed: 37525204 pmcid: 10391861

Auteurs

Jin Yan (J)

IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China.
Research Center of Digestive Disease, Central South University, Changsha, China.

Claire Racaud-Sultan (C)

IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.

Tiffany Pezier (T)

ISP, INRAE, Université de Tours, 37380, Nouzilly, France.

Anissa Edir (A)

IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.

Corinne Rolland (C)

IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.

Coralie Claverie (C)

IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.

Julien Burlaud-Gaillard (J)

Plateforme IBISA de Microscopie Electronique, Université de Tours, CHRU de Tours, Tours, France.

Michel Olivier (M)

ISP, INRAE, Université de Tours, 37380, Nouzilly, France.

Philippe Velge (P)

ISP, INRAE, Université de Tours, 37380, Nouzilly, France.

Sonia Lacroix-Lamandé (S)

ISP, INRAE, Université de Tours, 37380, Nouzilly, France.

Nathalie Vergnolle (N)

IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.

Agnès Wiedemann (A)

IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France. agnes.wiedemann@inrae.fr.
ISP, INRAE, Université de Tours, 37380, Nouzilly, France. agnes.wiedemann@inrae.fr.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH