Enhanced biodegradation of benzo[a]pyrene with Trametes versicolor stimulated by citric acid.
Benzo[a]pyrene
Biodegradation
Citric acid
White-rot fungi
Journal
Environmental geochemistry and health
ISSN: 1573-2983
Titre abrégé: Environ Geochem Health
Pays: Netherlands
ID NLM: 8903118
Informations de publication
Date de publication:
04 Jul 2024
04 Jul 2024
Historique:
received:
26
01
2024
accepted:
24
05
2024
medline:
4
7
2024
pubmed:
4
7
2024
entrez:
4
7
2024
Statut:
epublish
Résumé
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.
Identifiants
pubmed: 38963450
doi: 10.1007/s10653-024-02053-9
pii: 10.1007/s10653-024-02053-9
doi:
Substances chimiques
Benzo(a)pyrene
3417WMA06D
Citric Acid
2968PHW8QP
Soil Pollutants
0
Laccase
EC 1.10.3.2
Types de publication
Journal Article
Letter
Langues
eng
Sous-ensembles de citation
IM
Pagination
282Subventions
Organisme : the National Key R & D Program of the Science and Technology of China
ID : 2020YFC1808801
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Acevedo, F., Pizzul, L., Castillo, M. D. P., Cuevas, R., & Diez, M. C. (2010). Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. Journal of Hazardous Materials, 185, 212–215. https://doi.org/10.1016/j.jhazmat.2010.09.020
doi: 10.1016/j.jhazmat.2010.09.020
Agnello, A. C., Bagard, M., van Hullebusch, E. D., Esposito, G., & Huguenot, D. (2015). Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the Total Environment, 563–564, 693–703. https://doi.org/10.1016/j.scitotenv.2015.10.061
doi: 10.1016/j.scitotenv.2015.10.061
Ali, M., Song, X., Wang, Q., Zhang, Z., Che, J., Chen, X., Tang, Z., & Liu, X. (2023). Mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX mixed contaminants in soil by native microbial consortium. Environmental Pollution, 318, 120831. https://doi.org/10.1016/j.envpol.2022.120831
doi: 10.1016/j.envpol.2022.120831
Bautista-Zamudio, P. A., Flórez-Restrepo, M. A., López-Legarda, X., Monroy-Giraldo, L. C., & Segura-Sánchez, F. (2023). Biodegradation of plastics by white rot fungi: A review. Science of the Total Environment, 901, 165950. https://doi.org/10.1016/j.scitotenv.2023.165950
doi: 10.1016/j.scitotenv.2023.165950
Chen, B., Xu, J., Lu, H., & Zhu, L. (2023). Remediation of benzo[a]pyrene contaminated soils by moderate chemical oxidation coupled with microbial degradation. Science of the Total Environment, 871, 161801. https://doi.org/10.1016/j.scitotenv.2023.161801
doi: 10.1016/j.scitotenv.2023.161801
Chen, J., Zhou, H. C., Wang, C., Zhu, C. Q., & Tam, N.F.-Y. (2015). Short-term enhancement effect of nitrogen addition on microbial degradation and plant uptake of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove soil. Journal of Hazardous Materials, 300, 84–92. https://doi.org/10.1016/j.jhazmat.2015.06.053
doi: 10.1016/j.jhazmat.2015.06.053
Chun, S. C., Muthu, M., Hasan, N., Tasneem, S., & Gopal, J. (2019). Mycoremediation of PCBs by Pleurotus ostreatus: Possibilities and prospects. Applied Sciences, 9(19), 4185. https://doi.org/10.3390/app9194185
doi: 10.3390/app9194185
Crampon, M., Bodilis, J., & Portet-Koltalo, F. (2018). Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. Journal of Hazardous Materials, 359, 500–509. https://doi.org/10.1016/j.jhazmat.2018.07.088
doi: 10.1016/j.jhazmat.2018.07.088
Dittmer, N. T., Suderman, R. J., Jiang, H., Zhu, Y.-C., Gorman, M. J., Kramer, K. J., & Kanost, M. R. (2004). Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, 34(1), 29–41. https://doi.org/10.1016/j.ibmb.2003.08.003
doi: 10.1016/j.ibmb.2003.08.003
Eibes, G., Lú-Chau, T., Feijoo, G., Moreira, M. T., & Lema, J. M. (2005). Complete degradation of anthracene by Manganese Peroxidase in organic solvent mixtures. Enzyme and Microbial Technology, 37(4), 365–372. https://doi.org/10.1016/j.enzmictec.2004.02.010
doi: 10.1016/j.enzmictec.2004.02.010
El Fantroussi, S., & Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology, 8(3), 268–275. https://doi.org/10.1016/j.mib.2005.04.011
doi: 10.1016/j.mib.2005.04.011
Gao, Y., He, J., Ling, W., Hu, H., & Liu, F. (2003). Effects of organic acids on copper and cadmium desorption from contaminated soils. Environment International, 29, 613–618. https://doi.org/10.1016/s0160-4120(03)00048-5
doi: 10.1016/s0160-4120(03)00048-5
Gao, Y., Ren, L., Ling, W., Gong, S., Sun, B., & Zhang, Y. (2009). Desorption of phenanthrene and pyrene in soils by root exudates. Bioresource Technology, 101, 1159–1165. https://doi.org/10.1016/j.biortech.2009.09.062
doi: 10.1016/j.biortech.2009.09.062
Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2009). Laccases: A never-ending story. Cellular and Molecular Life Sciences, 67, 369–385. https://doi.org/10.1007/s00018-009-0169-1
doi: 10.1007/s00018-009-0169-1
Haoliang, L., Chongling, Y., & Jingchun, L. (2007). Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environmental and Experimental Botany, 61, 159–166. https://doi.org/10.1016/j.envexpbot.2007.05.007
doi: 10.1016/j.envexpbot.2007.05.007
Huang, Z., Wang, Q., Khan, I. A., Li, Y., Wang, J., Wang, J., Liu, X., Lin, F., & Lu, J. (2023). The methylcitrate cycle and its crosstalk with the glyoxylate cycle and tricarboxylic acid cycle in pathogenic fungi. Molecules, 28(18), 6667. https://doi.org/10.3390/molecules28186667
doi: 10.3390/molecules28186667
Ivanova-Petropulos, V., Petruševa, D., & Mitrev, S. (2020). Rapid and simple method for determination of target organic acids in wine using HPLC-DAD analysis. Food Analytical Methods, 13, 1078–1087. https://doi.org/10.1007/s12161-020-01724-4
doi: 10.1007/s12161-020-01724-4
Jia, H., Lu, H., Dai, M., Hong, H., Liu, J., & Yan, C. (2016). Effect of root exudates on sorption, desorption, and transport of phenanthrene in mangrove sediments. Marine Pollution Bulletin, 109, 171–177. https://doi.org/10.1016/j.marpolbul.2016.06.004
doi: 10.1016/j.marpolbul.2016.06.004
Jiang, S., Xie, F., Lu, H., Liu, J., & Yan, C. (2017). Response of low-molecular-weight organic acids in mangrove root exudates to exposure of polycyclic aromatic hydrocarbons. Environmental Science and Pollution Research, 24, 12484–12493. https://doi.org/10.1007/s11356-017-8845-4
doi: 10.1007/s11356-017-8845-4
Kadri, T., Rouissi, T., Kaur Brar, S., Cledon, M., Sarma, S., & Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. Journal of Environmental Sciences, 51, 52–74. https://doi.org/10.1016/j.jes.2016.08.023
doi: 10.1016/j.jes.2016.08.023
Li, Q., Wang, J., Wang, Z., Zhang, W., Zhan, H., Xiao, T., Yu, X., & Zheng, Y. (2023). Surfactants double the biodegradation rate of persistent polycyclic aromatic hydrocarbons (PAHs) by a white-rot fungus Phanerochaete sordida. Environmental Earth Sciences, 82(12), 285. https://doi.org/10.1007/s12665-023-10970-8
doi: 10.1007/s12665-023-10970-8
Li, Y., Zhao, H., Wang, L., Bai, Y., Tang, T., Liang, H., & Gao, D. (2024). New insights in the biodegradation of high-cyclic polycyclic aromatic hydrocarbons with crude enzymes of Trametes versicolor. Environmental Technology, 45(11), 2243–2254. https://doi.org/10.1080/09593330.2023.2169639
doi: 10.1080/09593330.2023.2169639
Ling, W., Sun, R., Gao, X., Xu, R., & Li, H. (2015). Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil. European Journal of Soil Science, 66(2), 339–347. https://doi.org/10.1111/ejss.12227
doi: 10.1111/ejss.12227
Lladó, S., Gràcia, E., Solanas, A. M., & Viñas, M. (2013). Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil. Soil Biology and Biochemistry, 67, 114–123. https://doi.org/10.1016/j.soilbio.2013.08.010
doi: 10.1016/j.soilbio.2013.08.010
Lu, S., Li, Q., Wei, H., Chang, M. J., Tunlaya-Anukit, S., Kim, H., Liu, J., Song, J., Sun, Y. H., Yuan, L., & Yeh, T. F. (2013). Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proceedings of the National Academy of Sciences, 110(26), 10848–10853. https://doi.org/10.1073/pnas.1308936110
doi: 10.1073/pnas.1308936110
Ma, H., Li, X., Wei, M., Zeng, G., Hou, S., Li, D., & Xu, H. (2019). Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil. Chemosphere, 239, 124706. https://doi.org/10.1016/j.chemosphere.2019.124706
doi: 10.1016/j.chemosphere.2019.124706
Macias-Benitez, S., Garcia-Martinez, A. M., Caballero Jimenez, P., Gonzalez, J. M., Tejada Moral, M., & Parrado, R. J. (2020). Rhizospheric organic acids as biostimulants: monitoring feedbacks on soil microorganisms and biochemical properties. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00633
doi: 10.3389/fpls.2020.00633
Nzila, A., & Musa, M. M. (2020). Current status of and future perspectives in bacterial degradation of benzo[a]pyrene. International Journal of Environmental Research and Public Health, 18(1), 262. https://doi.org/10.3390/ijerph18010262
doi: 10.3390/ijerph18010262
Ohlendorf, D. H., Lipscomb, J. D., & Weber, P. C. (1988). Structure and assembly of protocatechuate 3,4-dioxygenase. Nature, 336, 403–405. https://doi.org/10.1038/336403a0
doi: 10.1038/336403a0
Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–248. https://doi.org/10.1016/s0167-7799(02)01943-1
doi: 10.1016/s0167-7799(02)01943-1
Schwab, M. A., Sauer, S. W., Okun, J. G., Nijtmans, L. G., Rodenburg, R. J., van den Heuvel, L. P., Dröse, S., Brandt, U., Hoffmann, G. F., Ter Laak, H., & Kölker, S. (2006). Secondary mitochondrial dysfunction in propionic aciduria: A pathogenic role for endogenous mitochondrial toxins. Biochemical Journal, 398(1), 107–112. https://doi.org/10.1042/bj20060221
doi: 10.1042/bj20060221
Sivaram, A. K., Logeshwaran, P., Lockington, R., Naidu, R., & Megharaj, M. (2019). Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria. Chemosphere, 222, 132–140. https://doi.org/10.1016/j.chemosphere.2019.01.110
doi: 10.1016/j.chemosphere.2019.01.110
Suman, S. K., Khatri, M., Dhawaria, M., Kurmi, A., Pandey, D., Ghosh, S., et al. (2018). Potential of Trametes maxima IIPLC-32 derived laccase for the detoxification of phenolic inhibitors in lignocellulosic biomass prehydrolysate. International Biodeterioration & Biodegradation, 222, 132–140. https://doi.org/10.1016/j.chemosphere.2019.01.110
doi: 10.1016/j.chemosphere.2019.01.110
Ting, W. T. E., Yuan, S. Y., Wu, S. D., & Chang, B. V. (2011). Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. International Biodeterioration & Biodegradation, 65(1), 238–242. https://doi.org/10.1016/j.ibiod.2010.11.007
doi: 10.1016/j.ibiod.2010.11.007
Victor, T. O., Alfonso, J.L.-B., Cynthia, N. I., & Kirk, T. S. (2021). Effects of biological pre-treatment of lignocellulosic waste with white-rot fungi on the stimulation of 14C-phenanthrene catabolism in soils. International Biodeterioration & Biodegradation, 165, 105324. https://doi.org/10.1016/j.ibiod.2021.105324
doi: 10.1016/j.ibiod.2021.105324
Wang, Z., Xu, Z., Zhao, J., Pan, B., Song, X., & Xing, B. (2014). Effects of low-molecular-weight organic acids on soil micropores and implication for organic contaminant availability. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103624.2013.867062
doi: 10.1080/00103624.2013.867062
Wen, J., Gao, D., Zhang, B., & Liang, H. (2011). Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China. International Biodeterioration & Biodegradation, 65, 600–604. https://doi.org/10.1016/j.ibiod.2011.03.003
doi: 10.1016/j.ibiod.2011.03.003
White, J. C., Mattina, M. I., Lee, W. Y., Eitzer, B. D., & Iannucci-Berger, W. (2003). Role of organic acids in enhancing the desorption and uptake of weathered p, p’-DDE by Cucurbita pepo. Environmental Pollution, 124, 71–80. https://doi.org/10.1016/s0269-7491(02)00409-8
doi: 10.1016/s0269-7491(02)00409-8
Wu, X., Tovilla-Coutiño, D. B., & Eiteman, M. A. (2020). Engineered citrate synthase improves citramalic acid generation in Escherichia coli. Biotechnology and Bioengineering, 117(9), 2781–2790. https://doi.org/10.1002/bit.27450
doi: 10.1002/bit.27450
Xin, T. (2023). Remediation of PAHs contaminated soil enhanced by nano-zero-valent iron combined with white rot fungi Peniophora incarnata. Alexandria Engineering Journal, 83, 85–91. https://doi.org/10.1016/j.aej.2023.10.046
doi: 10.1016/j.aej.2023.10.046
Yao, L., Teng, Y., Luo, Y., Christie, P., Ma, W., Liu, F., Wu, Y., Luo, Y., & Li, Z. (2015). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Trichoderma reesei FS10-C and effect of bioaugmentation on an aged PAH-contaminated soil. Bioremediation Journal, 19(1), 9–17. https://doi.org/10.1080/10889868.2014.939137
doi: 10.1080/10889868.2014.939137
Zhang, X., Zhang, Y., Wang, X., Zhang, L., Ning, G., Feng, S., Zhang, A., & Yang, Z. (2023). Enhancement of soil high-molecular-weight polycyclic aromatic hydrocarbon degradation by Fusarium sp. ZH-H2 using different carbon sources. Ecotoxicology and Environmental Safety, 249, 114379. https://doi.org/10.1016/j.ecoenv.2022.114379
doi: 10.1016/j.ecoenv.2022.114379
Zou, X., Su, Q., Yi, Q., Guo, L., Chen, D., Wang, B., Li, Y., & Li, J. (2023). Determining the degradation mechanism and application potential of benzopyrene-degrading bacterium Acinetobacter XS-4 by screening. Journal of Hazardous Materials, 456, 131666. https://doi.org/10.1016/j.jhazmat.2023.131666
doi: 10.1016/j.jhazmat.2023.131666