Viral Genomic DNA Packaging Machinery.


Journal

Sub-cellular biochemistry
ISSN: 0306-0225
Titre abrégé: Subcell Biochem
Pays: United States
ID NLM: 0316571

Informations de publication

Date de publication:
2024
Historique:
medline: 4 7 2024
pubmed: 4 7 2024
entrez: 4 7 2024
Statut: ppublish

Résumé

Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.

Identifiants

pubmed: 38963488
doi: 10.1007/978-3-031-58843-3_9
doi:

Substances chimiques

DNA, Viral 0
terminase EC 3.1.-
Viral Proteins 0
Endodeoxyribonucleases EC 3.1.-

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

181-205

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243
doi: 10.1007/s00705-006-0849-1 pubmed: 17051420
Adams MB, Hayden M, Casjens S (1983) On the sequential packaging of bacteriophage P22 DNA. J Virol 46:673–677. https://doi.org/10.1128/jvi.46.2.673-677.1983
doi: 10.1128/jvi.46.2.673-677.1983 pubmed: 6842684 pmcid: 255176
Adelman K, Salmon B, Baines JD (2001) Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc Natl Acad Sci U S A 98:3086–3091. https://doi.org/10.1073/pnas.061555698
doi: 10.1073/pnas.061555698 pubmed: 11248036 pmcid: 30611
Agirrezabala X, Martín-Benito J, Valle M et al (2005) Structure of the connector of bacteriophage T7 at 8 Å resolution: Structural homologies of a basic component of a DNA translocating machinery. J Mol Biol 347:895–902. https://doi.org/10.1016/j.jmb.2005.02.005
doi: 10.1016/j.jmb.2005.02.005 pubmed: 15784250
Al-Zahrani AS, Kondabagil K, Gao S et al (2009) The small terminase, gp16, of bacteriophage T4 is a regulator of the DNA packaging motor. J Biol Chem 284:24490–24500. https://doi.org/10.1074/jbc.M109.025007
doi: 10.1074/jbc.M109.025007 pubmed: 19561086 pmcid: 2782041
Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, pp 288–290
Baumann RG, Black LW (2003) Isolation and characterization of T4 bacteriophage gp17 terminase, a large subunit multimer with enhanced ATPase activity. J Biol Chem 278:4618–4627. https://doi.org/10.1074/jbc.M208574200
doi: 10.1074/jbc.M208574200 pubmed: 12466275
Bayfield OW, Klimuk E, Winkler DC et al (2019) Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids. Proc Natl Acad Sci U S A 116:3556–3561. https://doi.org/10.1073/pnas.1813204116
doi: 10.1073/pnas.1813204116 pubmed: 30737287 pmcid: 6397560
Bayfield OW, Steven AC, Antson AA (2020) Cryo-EM structure in situ reveals a molecular switch that safeguards virus against genome loss. Elife 14(9):e55517. https://doi.org/10.7554/eLife.55517
doi: 10.7554/eLife.55517
Bedwell GJ, Prevelige PE (2017) Targeted mutagenesis of the P22 portal protein reveals the mechanism of signal transmission during DNA packaging. Virology 505:127–138. https://doi.org/10.1016/j.virol.2017.02.019
doi: 10.1016/j.virol.2017.02.019 pubmed: 28242514
Black LW (1989) DNA packaging in dsDNA bacteriophages. Annu Rev Microbiol 43:267–292
doi: 10.1146/annurev.mi.43.100189.001411 pubmed: 2679356
Bogner E, Radsak K, Stinski MF (1998) The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J Virol 72:2259–2264. https://doi.org/10.1128/jvi.72.3.2259-2264.1998
doi: 10.1128/jvi.72.3.2259-2264.1998 pubmed: 9499084 pmcid: 109523
Burroughs A, Iyer L, Aravind L (2007) Comparative genomics and evolutionary trajectories of viral ATP dependent DNA-packaging systems. Genome Dyn 3:48–65
doi: 10.1159/000107603 pubmed: 18753784
Büttner CR, Chechik M, Ortiz-Lombardía M et al (2012) Structural basis for DNA recognition and loading into a viral packaging motor. Proc Natl Acad Sci U S A 109:811–816. https://doi.org/10.1073/pnas.1110270109
doi: 10.1073/pnas.1110270109 pubmed: 22207627
Camacho A, Jiménez F, Viñuela E, Salas M (1979) Order of assembly of the lower collar and the tail proteins of Bacillus subtilis bacteriophage phi 29. J Virol 29:540–545. https://doi.org/10.1128/jvi.29.2.540-545.1979
doi: 10.1128/jvi.29.2.540-545.1979 pubmed: 107325 pmcid: 353188
Casjens S, Huang WM, Hayden M, Parr R (1987) Initiation of bacteriophage P22 DNA packaging series. Analysis of a mutant that alters the DNA target specificity of the packaging apparatus. J Mol Biol 194:411–422. https://doi.org/10.1016/0022-2836(87)90671-1
doi: 10.1016/0022-2836(87)90671-1 pubmed: 3041006
Chaban Y, Lurz R, Brasilès S et al (2015) Structural rearrangements in the phage head-to-tail interface during assembly and infection. Proc Natl Acad Sci U S A 112:7009–7014. https://doi.org/10.1073/pnas.1504039112
doi: 10.1073/pnas.1504039112 pubmed: 25991862 pmcid: 4460457
Chai S, Lurz R, Alonso JC (1995) The small subunit of the terminase enzyme of Bacillus subtilis bacteriophage SPP1 forms a specialized nucleoprotein complex with the packaging initiation region. J Mol Biol 252:386–398. https://doi.org/10.1006/jmbi.1995.0505
doi: 10.1006/jmbi.1995.0505 pubmed: 7563059
Chechik M, Greive SJ, Antson AA, Jenkins HT (2023) Structure of HK97 small terminase:DNA complex unveils a novel DNA binding mechanism by a circular protein. bioRxiv. https://doi.org/10.1101/2023.07.17.549218
Chelikani V, Ranjan T, Kondabagil K (2014) Revisiting the genome packaging in viruses with lessons from the “giants”. Virology 466–467:15–26
doi: 10.1016/j.virol.2014.06.022 pubmed: 24998349
Chemla YR, Aathavan K, Michaelis J et al (2005) Mechanism of force generation of a viral DNA packaging motor. Cell 122:683–692. https://doi.org/10.1016/j.cell.2005.06.024
doi: 10.1016/j.cell.2005.06.024 pubmed: 16143101
Chen W, Xiao H, Wang X et al (2020) Structural changes of a bacteriophage upon DNA packaging and maturation. Protein Cell 11:374–379
doi: 10.1007/s13238-020-00715-9 pubmed: 32266588 pmcid: 7196576
Chistol G, Liu S, Hetherington CL et al (2012) High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Cell 151:1017–1028. https://doi.org/10.1016/j.cell.2012.10.031
doi: 10.1016/j.cell.2012.10.031 pubmed: 23178121 pmcid: 3652982
Cue D, Feiss M (1993) A site required for termination of packaging of the phage λ chromosome. Proc Natl Acad Sci U S A 90:9290–9294. https://doi.org/10.1073/pnas.90.20.9290
doi: 10.1073/pnas.90.20.9290 pubmed: 8415694 pmcid: 47553
Dai L, Singh D, Lu S et al (2021) A viral genome packaging ring-ATPase is a flexibly coordinated pentamer. Nat Commun 12(1):6548. https://doi.org/10.1038/s41467-021-26800-z
doi: 10.1038/s41467-021-26800-z pubmed: 34772936 pmcid: 8589836
Daudén MI, Martiń-Benito J, Sánchez-Ferrero JC et al (2013) Large terminase conformational change induced by connector binding in bacteriophage T7. J Biol Chem 288:16998–17007. https://doi.org/10.1074/jbc.M112.448951
doi: 10.1074/jbc.M112.448951 pubmed: 23632014 pmcid: 3675631
Dedeo CL, Cingolani G, Teschke CM (2019) Portal protein: the orchestrator of capsid assembly for the dsDNA tailed bacteriophages and herpesviruses. Annu Rev Virol 6:141–160. https://doi.org/10.1146/annurev-virology-092818-015819
doi: 10.1146/annurev-virology-092818-015819 pubmed: 31337287 pmcid: 6947915
delToro D, Ortiz D, Ordyan M et al (2019) Functional dissection of a viral DNA packaging machine’s Walker B Motif. J Mol Biol 431:4455–4474. https://doi.org/10.1016/j.jmb.2019.08.012
doi: 10.1016/j.jmb.2019.08.012 pubmed: 31473160 pmcid: 7416571
Didychuk AL, Gates SN, Gardner MR et al (2021) A pentameric protein ring with novel architecture is required for herpesviral packaging. Elife 10. https://doi.org/10.7554/eLife.62261
Ding F, Lu C, Zhao W et al (2011) Structure and assembly of the essential RNA ring component of a viral DNA packaging motor. Proc Natl Acad Sci U S A 108:7357–7362. https://doi.org/10.1073/pnas.1016690108
doi: 10.1073/pnas.1016690108 pubmed: 21471452 pmcid: 3088594
Dixit AB, Ray K, Thomas JA, Black LW (2013) The C-terminal domain of the bacteriophage T4 terminase docks on the prohead portal clip region during DNA packaging. Virology 446:293–302. https://doi.org/10.1016/j.virol.2013.07.011
doi: 10.1016/j.virol.2013.07.011 pubmed: 24074593
Doan DNP, Dokland T (2007) The gpQ portal protein of bacteriophage P2 forms dodecameric connectors in crystals. J Struct Biol 157:432–436. https://doi.org/10.1016/j.jsb.2006.08.009
doi: 10.1016/j.jsb.2006.08.009 pubmed: 17049269
Dröge A, Santos MA, Stiege AC et al (2000) Shape and DNA packaging activity of bacteriophage SPP1 procapsid: protein components and interactions during assembly. J Mol Biol 296:117–132. https://doi.org/10.1006/jmbi.1999.3450
doi: 10.1006/jmbi.1999.3450 pubmed: 10656821
Earnshaw WC, Casjens SR (1980) DNA packaging by the double-stranded DNA bacteriophages. Cell 21:319–331
doi: 10.1016/0092-8674(80)90468-7 pubmed: 6447542
Fang Q, Tang WC, Tao P et al (2020) Structural morphing in a symmetry-mismatched viral vertex. Nat Commun 11:1703. https://doi.org/10.1038/s41467-020-15575-4
doi: 10.1038/s41467-020-15575-4
Feiss M, Catalano CE (2007) Bacteriophage lambda terminase and the mechanism of viral DNA packaging. In: Viral genome packaging machines: genetics, structure, and mechanism. Kluwer Academic/Plenum Publishers, New York, pp 2133–2141
Feiss M, Fisher RA, Crayton MA, Egner C (1977) Packaging of the bacteriophage λ chromosome: effect of chromosome length. Virology 77:281–293. https://doi.org/10.1016/0042-6822(77)90425-1
doi: 10.1016/0042-6822(77)90425-1 pubmed: 841861
Feiss M, Kobayashi I, Widner W (1983a) Separate sites for binding and nicking of bacteriophage λ DNA by terminase. Proc Natl Acad Sci U S A 80:955–959. https://doi.org/10.1073/pnas.80.4.955
doi: 10.1073/pnas.80.4.955 pubmed: 6302676 pmcid: 393506
Feiss M, Widner W, Miller G et al (1983b) Structure of the bacteriophage lambda cohesive end site: location of the sites of terminase binding (cosB) and nicking (cosN). Gene 24:207–218. https://doi.org/10.1016/0378-1119(83)90081-1
doi: 10.1016/0378-1119(83)90081-1 pubmed: 6315537
Fuller DN, Gemmen GJ, Rickgauer JP et al (2006) A general method for manipulating DNA sequences from any organism with optical tweezers. Nucleic Acids Res 34(2):15. https://doi.org/10.1093/nar/gnj016
doi: 10.1093/nar/gnj016
Fuller DN, Raymer DM, Kottadiel VI et al (2007a) Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proc Natl Acad Sci U S A 104:16868–16873. https://doi.org/10.1073/pnas.0704008104
doi: 10.1073/pnas.0704008104 pubmed: 17942694 pmcid: 2040459
Fuller DN, Raymer DM, Rickgauer JP et al (2007b) Measurements of single DNA molecule packaging dynamics in bacteriophage λ reveal high forces, high motor processivity, and capsid transformations. J Mol Biol 373:1113–1122. https://doi.org/10.1016/j.jmb.2007.09.011
doi: 10.1016/j.jmb.2007.09.011 pubmed: 17919653 pmcid: 3311920
Fung HKH, Grimes S, Huet A et al (2022) Structural basis of DNA packaging by a ring-type ATPase from an archetypal viral system. Nucleic Acids Res 50:8719–8732. https://doi.org/10.1093/nar/gkac647
doi: 10.1093/nar/gkac647 pubmed: 35947691 pmcid: 9410871
Guo P, Peterson C, Anderson D (1987) Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage φ29. J Mol Biol 197:229–236. https://doi.org/10.1016/0022-2836(87)90121-5
doi: 10.1016/0022-2836(87)90121-5 pubmed: 2960820
Guo P, Erickso S, Xu W et al (1991) Regulation of the phage φ29 prohead shape and size by the portal vertex. Virology 183:366–373. https://doi.org/10.1016/0042-6822(91)90149-6
doi: 10.1016/0042-6822(91)90149-6 pubmed: 1905079
Hamada K, Fujisawa H, Minagawa T (1986a) A defined in vitro system for packaging of bacteriophage T3 DNA. Virology 151:119–123. https://doi.org/10.1016/0042-6822(86)90109-1
doi: 10.1016/0042-6822(86)90109-1 pubmed: 3754362
Hamada K, Fujisawa H, Minagawa T (1986b) Overproduction and purification of the products of bacteriophage T3 genes 18 and 19, two genes involved in DNA packaging. Virology 151:110–118. https://doi.org/10.1016/0042-6822(86)90108-X
doi: 10.1016/0042-6822(86)90108-X pubmed: 3962187
Hanson PI, Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6:519–529
doi: 10.1038/nrm1684 pubmed: 16072036
Hawkins DEDP, Bayfield OW, Fung HKH et al (2023) Insights into a viral motor: the structure of the HK97 packaging termination assembly. Nucleic Acids Res 51:7025–7035. https://doi.org/10.1093/nar/gkad480
doi: 10.1093/nar/gkad480 pubmed: 37293963 pmcid: 10359639
Hayes JA, Hilbert BJ, Gaubitz C et al (2020) A thermophilic phage uses a small terminase protein with a fixed helix-turn-helix geometry. J Biol Chem 295:3783–3793. https://doi.org/10.1074/jbc.RA119.012224
doi: 10.1074/jbc.RA119.012224 pubmed: 32014998 pmcid: 7086035
Heming JD, Conway JF, Homa FL (2017) Herpesvirus capsid assembly and DNA packaging. Adv Anat Embryol Cell Biol 223:119–142
doi: 10.1007/978-3-319-53168-7_6 pubmed: 28528442 pmcid: 5548147
Hendrix RW (1998) Bacteriophage DNA packaging: RNA gears in a DNA transport machine. Cell 94:147–150
doi: 10.1016/S0092-8674(00)81413-0 pubmed: 9695942
Hilbert BJ, Hayes JA, Stone NP et al (2015) Structure and mechanism of the ATPase that powers viral genome packaging. Proc Natl Acad Sci U S A 112(29):E3792–E3799. https://doi.org/10.1073/pnas.1506951112
doi: 10.1073/pnas.1506951112 pubmed: 26150523 pmcid: 4517215
Hilbert BJ, Hayes JA, Stone NP et al (2017) The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain. Nucleic Acids Res 45:3591–3605. https://doi.org/10.1093/nar/gkw1356
doi: 10.1093/nar/gkw1356 pubmed: 28082398 pmcid: 5389665
Hohn B (1983) DNA sequences necessary for packaging of bacteriophage λ DNA. Proc Natl Acad Sci U S A 80:7456–7460. https://doi.org/10.1073/pnas.80.24.7456
doi: 10.1073/pnas.80.24.7456 pubmed: 6324174 pmcid: 389970
Hou DC-F, Swanson NA, Li F et al (2022) Cryo-EM structure of a kinetically trapped dodecameric portal protein from the pseudomonas-phage PaP3. J Mol Biol 434(9):167537. https://doi.org/10.1016/J.JMB.2022.167537
doi: 10.1016/J.JMB.2022.167537 pmcid: 9066412
Hrebík D, Štveráková D, Škubník K et al (2019) Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Sci Adv 5(10):eaaw7414. https://doi.org/10.1126/sciadv.aaw7414
doi: 10.1126/sciadv.aaw7414 pubmed: 31663016 pmcid: 6795507
Iyer LM, Leipe DD, Koonin EV, Aravind L (2004a) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146(1–2):11–31
doi: 10.1016/j.jsb.2003.10.010 pubmed: 15037234
Iyer LM, Makarova KS, Koonin EV, Aravind L (2004b) Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 32:5260–5279
doi: 10.1093/nar/gkh828 pubmed: 15466593 pmcid: 521647
Jackson EN, Jackson DA, Deans RJ (1978) EcoRI analysis of bacteriophage P22 DNA packaging. J Mol Biol 118:365–388. https://doi.org/10.1016/0022-2836(78)90234-6
doi: 10.1016/0022-2836(78)90234-6 pubmed: 344888
Jing P, Burris B, Zhang R (2016) Forces from the portal govern the late-stage DNA transport in a viral DNA packaging nanomotor. Biophys J 111:162–177. https://doi.org/10.1016/j.bpj.2016.05.040
doi: 10.1016/j.bpj.2016.05.040 pubmed: 27410744 pmcid: 4945582
Juhala RJ, Ford ME, Duda RL et al (2000) Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51. https://doi.org/10.1006/jmbi.2000.3729
doi: 10.1006/jmbi.2000.3729 pubmed: 10860721
Kenniston JA, Baker TA, Fernandez JM, Sauer RT (2003) Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114:511–520. https://doi.org/10.1016/S0092-8674(03)00612-3
doi: 10.1016/S0092-8674(03)00612-3 pubmed: 12941278
Koti JS, Morais MC, Rajagopal R et al (2008) DNA packaging motor assembly intermediate of bacteriophage ϕ29. J Mol Biol 381:1114–1132. https://doi.org/10.1016/j.jmb.2008.04.034
doi: 10.1016/j.jmb.2008.04.034 pubmed: 18674782 pmcid: 2614240
Kottadiel VI, Rao VB, Chemla YR (2012) The dynamic pause-unpackaging state, an off-translocation recovery state of a DNA packaging motor from bacteriophage T4. Proc Natl Acad Sci U S A 109:20000–20005. https://doi.org/10.1073/pnas.1209214109
doi: 10.1073/pnas.1209214109 pubmed: 23169641 pmcid: 3523870
Krupovic M, Koonin EV (2015) Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat Rev Microbiol 13:105–115
doi: 10.1038/nrmicro3389 pubmed: 25534808
Lander GC, Khayat R, Li R et al (2009) The P22 tail machine at subnanometer resolution reveals the architecture of an infection conduit. Structure 17:789–799. https://doi.org/10.1016/j.str.2009.04.006
doi: 10.1016/j.str.2009.04.006 pubmed: 19523897 pmcid: 2714705
Leipe DD, Koonin EV, Aravind L (2003) Evolution and classification of P-loop kinases and related proteins. J Mol Biol 333:781–815. https://doi.org/10.1016/j.jmb.2003.08.040
doi: 10.1016/j.jmb.2003.08.040 pubmed: 14568537
Lin H, Black LW (1998) DNA requirements in vivo for phage T4 packaging. Virology 242:118–127. https://doi.org/10.1006/viro.1997.9019
doi: 10.1006/viro.1997.9019 pubmed: 9501053
Liu S, Chistol G, Hetherington CL et al (2014) A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157:702–713. https://doi.org/10.1016/j.cell.2014.02.034
doi: 10.1016/j.cell.2014.02.034 pubmed: 24766813 pmcid: 4003460
Lokareddy RK, Sankhala RS, Roy A et al (2017) Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nat Commun 8:14310. https://doi.org/10.1038/ncomms14310
doi: 10.1038/ncomms14310 pubmed: 28134243 pmcid: 5290284
Lokareddy RK, Hou CFD, Doll SG et al (2022) Terminase subunits from the pseudomonas-phage E217. J Mol Biol 434(20):167799. https://doi.org/10.1016/j.jmb.2022.167799
doi: 10.1016/j.jmb.2022.167799 pubmed: 36007626 pmcid: 10026623
Lyubimov AY, Strycharska M, Berger JM (2011) The nuts and bolts of ring-translocase structure and mechanism. Curr Opin Struct Biol 21:240–248
doi: 10.1016/j.sbi.2011.01.002 pubmed: 21282052 pmcid: 3070846
Mao H, Saha M, Reyes-Aldrete E et al (2016) Structural and molecular basis for coordination in a viral DNA packaging motor. Cell Rep 14:2017–2029. https://doi.org/10.1016/j.celrep.2016.01.058
doi: 10.1016/j.celrep.2016.01.058 pubmed: 26904950 pmcid: 4824181
Migliori AD, Keller N, Alam TI et al (2014) Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor. Nat Commun 5:6548. https://doi.org/10.1038/ncomms5173
doi: 10.1038/ncomms5173
Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–2028
doi: 10.1146/annurev.biochem.77.043007.090225 pubmed: 18307407
Moffitt JR, Chemla YR, Aathavan K et al (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457:446–450. https://doi.org/10.1038/nature07637
doi: 10.1038/nature07637 pubmed: 19129763 pmcid: 2716090
Morais MC, Koti JS, Bowman VD et al (2008) Defining molecular and domain boundaries in the bacteriophage ϕ29 DNA packaging motor. Structure 16:1267–1274. https://doi.org/10.1016/j.str.2008.05.010
doi: 10.1016/j.str.2008.05.010 pubmed: 18682228 pmcid: 2615250
Morita M, Tasaka M, Fujisawa H (1993) DNA packaging ATPase of bacteriophage T3. Virology 193:748–752. https://doi.org/10.1006/viro.1993.1183
doi: 10.1006/viro.1993.1183 pubmed: 8460483
Murialdo H, Becker A (1978) Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages. Microbiol Rev 42:529–576
doi: 10.1128/mr.42.3.529-576.1978 pubmed: 362149 pmcid: 281443
Nadal M, Mas PJ, Blanco AG et al (2010) Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Proc Natl Acad Sci U S A 107:16078–16083. https://doi.org/10.1073/pnas.1007144107
doi: 10.1073/pnas.1007144107 pubmed: 20805464 pmcid: 2941324
Nowotny M, Gaidamakov SA, Crouch RJ, Yang W (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121:1005–1016. https://doi.org/10.1016/j.cell.2005.04.024
doi: 10.1016/j.cell.2005.04.024 pubmed: 15989951
Ogura T, Whiteheart SW, Wilkinson AJ (2004) Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J Struct Biol 146(1–2):106–112
doi: 10.1016/j.jsb.2003.11.008 pubmed: 15095758
Olia AS, Prevelige PE, Johnson JE, Cingolani G (2011) Three-dimensional structure of a viral genome-delivery portal vertex. Nat Struct Mol Biol 18:597–603. https://doi.org/10.1038/nsmb.2023
doi: 10.1038/nsmb.2023 pubmed: 21499245 pmcid: 3087855
Oliveira L, Tavares P, Alonso JC (2013) Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Res 173:247–259
doi: 10.1016/j.virusres.2013.01.021 pubmed: 23419885
Ordyan M, Alam I, Mahalingam M et al (2018) Nucleotide-dependent DNA gripping and an end-clamp mechanism regulate the bacteriophage T4 viral packaging motor. Nat Commun 9. https://doi.org/10.1038/s41467-018-07834-2
Ortiz D, DelToro D, Ordyan M et al (2019) Evidence that a catalytic glutamate and an “Arginine Toggle” act in concert to mediate ATP hydrolysis and mechanochemical coupling in a viral DNA packaging motor. Nucleic Acids Res 47:1404–1415. https://doi.org/10.1093/nar/gky1217
doi: 10.1093/nar/gky1217 pubmed: 30541105
Pajak J, Atz R, Hilbert BJ et al (2021a) Viral packaging ATPases utilize a glutamate switch to couple ATPase activity and DNA translocation. Proc Natl Acad Sci U S A 118(17):e2024928118. https://doi.org/10.1073/pnas.2024928118
doi: 10.1073/pnas.2024928118 pubmed: 33888587 pmcid: 8092589
Pajak J, Dill E, Reyes-Aldrete E et al (2021b) Atomistic basis of force generation, translocation, and coordination in a viral genome packaging motor. Nucleic Acids Res 49:6474–6488. https://doi.org/10.1093/nar/gkab372
doi: 10.1093/nar/gkab372 pubmed: 34050764 pmcid: 8216284
Peixuan G, Erickson S, Anderson D (1987) A small viral RNA is required for in vitro packaging of bacteriophage φ29 DNA. Science 236:690–694. https://doi.org/10.1126/science.3107124
doi: 10.1126/science.3107124
Petrov AS, Harvey SC (2008) Packaging double-helical DNA into viral capsids: Structures, forces, and energetics. Biophys J 95:497–502
doi: 10.1529/biophysj.108.131797 pubmed: 18487310 pmcid: 2440449
Prokhorov NS, Davis CR, Maruthi K et al (2022) Biophysical and structural characterization of a viral genome packaging motor. bioRxiv. https://doi.org/10.1101/2022.09.25.509378
Purohit PK, Inamdar MM, Grayson PD et al (2005) Forces during bacteriophage DNA packaging and ejection. Biophys J 88. https://doi.org/10.1529/biophysj.104.047134
Rao VB, Black LW (1988) Cloning, overexpression and purification of the terminase proteins gp16 and gp17 of bacteriophage T4. Construction of a defined in-vitro DNA packaging system using purified terminase proteins. J Mol Biol 200:475–488. https://doi.org/10.1016/0022-2836(88)90537-2
doi: 10.1016/0022-2836(88)90537-2 pubmed: 3294420
Rao VB, Fokine A, Fang Q, Shao Q (2023) Bacteriophage T4 head: structure, assembly, and genome packaging. Viruses 15(2):527
doi: 10.3390/v15020527 pubmed: 36851741 pmcid: 9958956
Rawson B, Ordyan M, Yang Q et al (2023) Regulation of phage lambda packaging motor-DNA interactions: nucleotide independent and dependent gripping and friction. bioRxiv. https://doi.org/10.1101/2022.09.24.509349
Reid RJD, Bodley JW, Anderson D (1994) Characterization of the prohead-pRNA interaction of bacteriophage φ29. J Biol Chem 269:5157–5162. https://doi.org/10.1016/s0021-9258(17)37669-x
doi: 10.1016/s0021-9258(17)37669-x pubmed: 8106496
Reyes-Aldrete E, Dill EA, Bussetta C et al (2021) Biochemical and biophysical characterization of the dsDNA packaging motor from the Lactococcus lactis bacteriophage Asccphi28. Viruses 13(1):15. https://doi.org/10.3390/v13010015
doi: 10.3390/v13010015
Rickgauer JP, Fuller DN, Grimes S et al (2008) Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage φ29. Biophys J 94:159–167. https://doi.org/10.1529/biophysj.107.104612
doi: 10.1529/biophysj.107.104612 pubmed: 17827233
Riemer SC, Bloomfield VA (1978) Packaging of DNA in bacteriophage heads: some considerations on energetics. Biopolymers 17:785–794. https://doi.org/10.1002/bip.1978.360170317
doi: 10.1002/bip.1978.360170317 pubmed: 638234
Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG (2004) The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol 14:171–180
doi: 10.1016/j.sbi.2004.02.001 pubmed: 15093831
Roy A, Cingolani G (2012) Structure of P22 headful packaging nuclease. J Biol Chem 287:28196–28205. https://doi.org/10.1074/jbc.M112.349894
doi: 10.1074/jbc.M112.349894 pubmed: 22715098 pmcid: 3431676
Roy A, Bhardwaj A, Cingolani G (2011) Crystallization of the nonameric small terminase subunit of bacteriophage P22. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:104–110. https://doi.org/10.1107/S174430911004697X
doi: 10.1107/S174430911004697X pubmed: 21206037
Roy A, Bhardwaj A, Datta P et al (2012) Small terminase couples viral DNA binding to genome-packaging ATPase activity. Structure 20:1403–1413. https://doi.org/10.1016/j.str.2012.05.014
doi: 10.1016/j.str.2012.05.014 pubmed: 22771211 pmcid: 3563279
Scheffczik H, Savva CGW, Holzenburg A et al (2002) The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucleic Acids Res 30:1695–1703
doi: 10.1093/nar/30.7.1695 pubmed: 11917032 pmcid: 101837
Smits C, Chechik M, Kovalevskiy OV et al (2009) Structural basis for the nuclease activity of a bacteriophage large terminase. EMBO Rep 10:592–598. https://doi.org/10.1038/embor.2009.53
doi: 10.1038/embor.2009.53 pubmed: 19444313 pmcid: 2685612
Sternberg N, Coulby J (1990) Cleavage of the bacteriophage P1 packaging site (pac) is regulated by adenine methylation. Proc Natl Acad Sci U S A 87:8070–8074. https://doi.org/10.1073/pnas.87.20.8070
doi: 10.1073/pnas.87.20.8070 pubmed: 2236019 pmcid: 54894
Sun S, Kondabagil K, Draper B et al (2008) The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell 135:1251–1262. https://doi.org/10.1016/j.cell.2008.11.015
doi: 10.1016/j.cell.2008.11.015 pubmed: 19109896
Suna S, Gao S, Kondabagil K et al (2012) Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages. Proc Natl Acad Sci U S A 109:817–822. https://doi.org/10.1073/pnas.1110224109
doi: 10.1073/pnas.1110224109
Tafoya S, Liu S, Castillo JP et al (2018) Molecular switch-like regulation enables global subunit coordination in a viral ring ATPase. Proc Natl Acad Sci U S A 115:7961–7966. https://doi.org/10.1073/pnas.1802736115
doi: 10.1073/pnas.1802736115 pubmed: 30012596 pmcid: 6077733
Tang J, Lander GC, Olia A et al (2011) Peering down the barrel of a bacteriophage portal: the genome packaging and release valve in P22. Structure 19:496–502. https://doi.org/10.1016/j.str.2011.02.010
doi: 10.1016/j.str.2011.02.010 pubmed: 21439834 pmcid: 3075339
Tavares P, Lurz R, Stiege A et al (1996) Sequential headful packaging and fate of the cleaved DNA ends in bacteriophage SPP1. J Mol Biol 264:954–967. https://doi.org/10.1006/jmbi.1996.0689
doi: 10.1006/jmbi.1996.0689 pubmed: 9000623
Theiß J, Sung MW, Holzenburg A, Bogner E (2019) Full-length human cytomegalovirus terminase pUL89 adopts a two-domain structure specific for DNA packaging. PLoS Pathog 15(12):e1008175. https://doi.org/10.1371/journal.ppat.1008175
doi: 10.1371/journal.ppat.1008175 pubmed: 31809525 pmcid: 6897398
Tu AHT, Voelker LRL, Shen X, Dybvig K (2001) Complete nucleotide sequence of the mycoplasma virus P1 genome. Plasmid 45:122–126. https://doi.org/10.1006/plas.2000.1501
doi: 10.1006/plas.2000.1501 pubmed: 11322826
Tye BK, Huberman JA, Botstein D (1974) Non-random circular permutation of phage P22 DNA. J Mol Biol 85:501–528. https://doi.org/10.1016/0022-2836(74)90312-X
doi: 10.1016/0022-2836(74)90312-X pubmed: 4853363
Vafabakhsh R, Kondabagil K, Earnest T et al (2014) Single-molecule packaging initiation in real time by a viral DNA packaging machine from bacteriophage T4. Proc Natl Acad Sci U S A 111:15096–15101. https://doi.org/10.1073/pnas.1407235111
doi: 10.1073/pnas.1407235111 pubmed: 25288726 pmcid: 4210281
Valpuesta J, Fujisawa H, Marco S et al (1992) Three-dimensional structure of T3 connector purified from overexpressing bacteria. J Mol Biol 224:103–112. https://doi.org/10.1016/0022-2836(92)90579-9
doi: 10.1016/0022-2836(92)90579-9 pubmed: 1548694
Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951. https://doi.org/10.1002/j.1460-2075.1982.tb01276.x
doi: 10.1002/j.1460-2075.1982.tb01276.x pubmed: 6329717 pmcid: 553140
Wang N, Chen W, Zhu L et al (2020) Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein Cell 11(5):366–373
doi: 10.1007/s13238-020-00711-z pubmed: 32285350 pmcid: 7196605
Wieczorek DJ, Didion L, Feiss M (2002) Alterations of the portal protein, gpB, of bacteriophage λ suppress mutations in cosQ, the site required for termination of DNA packaging. Genetics 161:21–31. https://doi.org/10.1093/genetics/161.1.21
doi: 10.1093/genetics/161.1.21 pubmed: 12019220 pmcid: 1462103
Woodson M, Pajak J, Mahler BP et al (2021) A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA. Sci Adv 7. https://doi.org/10.1126/sciadv.abc1955
Xu RG, Jenkins HT, Antson AA, Greive SJ (2017a) Structure of the large terminase from a hyperthermophilic virus reveals a unique mechanism for oligomerization and ATP hydrolysis. Nucleic Acids Res 45:13029–13042. https://doi.org/10.1093/nar/gkx947
doi: 10.1093/nar/gkx947 pubmed: 29069443 pmcid: 5727402
Xu RG, Jenkins HT, Chechik M et al (2017b) Viral genome packaging terminase cleaves DNA using the canonical RuvC-like two-metal catalysis mechanism. Nucleic Acids Res 45:3580–3590. https://doi.org/10.1093/nar/gkw1354
doi: 10.1093/nar/gkw1354 pubmed: 28100693 pmcid: 5389553
Xu J, Wang D, Gui M, Xiang Y (2019) Structural assembly of the tailed bacteriophage ϕ29. Nat Commun 10:2366. https://doi.org/10.1038/s41467-019-10272-3
doi: 10.1038/s41467-019-10272-3 pubmed: 31147544 pmcid: 6542822
Yang Y, Yang P, Wang N et al (2020) Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation. Protein Cell 11:339–351. https://doi.org/10.1007/s13238-020-00710-0
doi: 10.1007/s13238-020-00710-0 pubmed: 32328903 pmcid: 7196598
Zhang Z, Kottadiel VI, Vafabakhsh R et al (2011) A promiscuous DNA packaging machine from bacteriophage T4. PLoS Biol 9(2):e1000592. https://doi.org/10.1371/journal.pbio.1000592
doi: 10.1371/journal.pbio.1000592 pubmed: 21358801 pmcid: 3039672
Zhao H, Christensen TE, Kamau YN, Tang L (2013) Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage. Proc Natl Acad Sci U S A 110:8075–8080. https://doi.org/10.1073/pnas.1301133110
doi: 10.1073/pnas.1301133110 pubmed: 23630261 pmcid: 3657791
Zhao H, Lin Z, Lynn AY et al (2015a) Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: Insight into the two-metal-ion catalytic mechanism. Nucleic Acids Res 43:11003–11016. https://doi.org/10.1093/nar/gkv1018
doi: 10.1093/nar/gkv1018 pubmed: 26450964 pmcid: 4678813
Zhao W, Jardine PJ, Grimes S (2015b) An RNA domain imparts specificity and selectivity to a viral DNA packaging motor. J Virol 89:12457–12466. https://doi.org/10.1128/jvi.01895-15
doi: 10.1128/jvi.01895-15 pubmed: 26423956 pmcid: 4665235
Ziermann R, Calendar R (1990) Characterization of the cos sites of bacteriophages P2 and P4. Gene 96:9–15. https://doi.org/10.1016/0378-1119(90)90334-N
doi: 10.1016/0378-1119(90)90334-N pubmed: 2265763

Auteurs

Dorothy E D P Hawkins (DEDP)

York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK. dorothy.hawkins@york.ac.uk.

Owen C Godwin (OC)

York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
Structural Biology, The Francis Crick Institute, London, UK.

Alfred A Antson (AA)

York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK. fred.antson@york.ac.uk.
Structural Biology, The Francis Crick Institute, London, UK. fred.antson@york.ac.uk.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli
Animals Active Transport, Cell Nucleus RNA, Messenger Humans SARS-CoV-2
Disease Outbreaks Animals Bulgaria Genome, Viral Greece

Classifications MeSH