Reduced dynamic changes in pulmonary artery compliance during isometric handgrip exercise in patients with heart failure.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 Jul 2024
06 Jul 2024
Historique:
received:
27
03
2024
accepted:
28
06
2024
medline:
7
7
2024
pubmed:
7
7
2024
entrez:
6
7
2024
Statut:
epublish
Résumé
Exercise intolerance is a debilitating symptom in heart failure (HF), adversely affecting both quality of life and long-term prognosis. Emerging evidence suggests that pulmonary artery (PA) compliance may be a contributing factor. This study aims to non-invasively assess PA compliance and its dynamic properties during isometric handgrip (HG) exercise in HF patients and healthy controls, using cardiovascular magnetic resonance (CMR). We prospectively enrolled 36 subjects, comprising 17 HF patients (NYHA class II and III) and 19 healthy controls. Participants performed an HG test, and we assessed changes in PA compliance and hemodynamic flow parameters using advanced CMR techniques. We also explored the relationship between CMR-derived PA compliance metrics and established clinical indicators, ensuring the validity of our findings through intra- and interobserver agreements. HF patients had significantly lower resting PA compliance compared to controls (28.9% vs. 50.1%, p < 0.01). During HG exercise, HF patients exhibited a dampened adaptability in PA compliance. Hemodynamic responses, including heart rate and blood pressure, were not significantly different between the groups. Further analyses revealed a significant correlation between changes in PA compliance and functional capacity, and an inverse relationship with NYHA class. Our study demonstrates a marked difference in PA vascular responses during HG exercise between HF patients and healthy controls. The compromised adaptability in PA compliance in HF patients is correlated with diminished functional capacity. These findings have significant clinical implications and may guide future interventional strategies in HF management.
Identifiants
pubmed: 38971904
doi: 10.1038/s41598-024-66194-8
pii: 10.1038/s41598-024-66194-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15594Subventions
Organisme : Deutsches Zentrum für Herz-Kreislaufforschung
ID : 81X3100214
Organisme : Deutsche Forschungsgemeinschaft
ID : CRC-1470 - B06
Informations de copyright
© 2024. The Author(s).
Références
Braunwald, E. The war against heart failure: The Lancet lecture. Lancet 385, 812–824. https://doi.org/10.1016/S0140-6736(14)61889-4 (2015).
doi: 10.1016/S0140-6736(14)61889-4
pubmed: 25467564
McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726. https://doi.org/10.1093/eurheartj/ehab368 (2021).
doi: 10.1093/eurheartj/ehab368
pubmed: 34447992
Borlaug, B. A. & Paulus, W. J. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur. Heart J. 32, 670–679. https://doi.org/10.1093/eurheartj/ehq426 (2011).
doi: 10.1093/eurheartj/ehq426
pubmed: 21138935
Zile, M. R., Baicu, C. F. & Gaasch, W. H. Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 350, 1953–1959. https://doi.org/10.1056/NEJMoa032566 (2004).
doi: 10.1056/NEJMoa032566
pubmed: 15128895
Leung, C. C., Moondra, V., Catherwood, E. & Andrus, B. W. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am. J. Cardiol. 106, 284–286. https://doi.org/10.1016/j.amjcard.2010.02.039 (2010).
doi: 10.1016/j.amjcard.2010.02.039
pubmed: 20599017
Humbert, M. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 43, 3618–3731. https://doi.org/10.1093/eurheartj/ehac237 (2022).
doi: 10.1093/eurheartj/ehac237
pubmed: 36017548
Lam, C. S. et al. Pulmonary hypertension in heart failure with preserved ejection fraction: A community-based study. J. Am. Coll. Cardiol. 53, 1119–1126. https://doi.org/10.1016/j.jacc.2008.11.051 (2009).
doi: 10.1016/j.jacc.2008.11.051
pubmed: 19324256
pmcid: 2736110
Miller, W. L., Grill, D. E. & Borlaug, B. A. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: Pulmonary hypertension and heart failure. JACC Heart Fail. 1, 290–299. https://doi.org/10.1016/j.jchf.2013.05.001 (2013).
doi: 10.1016/j.jchf.2013.05.001
pubmed: 24621932
Hou, X. et al. Noninvasive evaluation of pulmonary artery stiffness in heart failure patients via cardiovascular magnetic resonance. Sci. Rep. 13, 22656. https://doi.org/10.1038/s41598-023-49325-5 (2023).
doi: 10.1038/s41598-023-49325-5
pubmed: 38114509
pmcid: 10730605
Gibbons, R. J. et al. ACC/AHA 2002 guideline update for exercise testing: Summary article. A report of the American College of Cardiology/American Heart Association task force on practice guidelines committee to update the 1997 Exercise testing guidelines. J. Am. Coll. Cardiol. 40, 1531–1540. https://doi.org/10.1016/s0735-1097(02)02164-2 (2002).
doi: 10.1016/s0735-1097(02)02164-2
pubmed: 12392846
Blum, M. et al. Variability of myocardial strain during isometric exercise in subjects with and without heart failure. Front. Cardiovasc. Med. 7, 111–111. https://doi.org/10.3389/fcvm.2020.00111 (2020).
doi: 10.3389/fcvm.2020.00111
pubmed: 32714945
pmcid: 7344153
Hashemi, D. et al. CMR detects decreased myocardial deformation in asymptomatic patients at risk for heart failure. Front. Cardiovasc. Med. 9, 1091768. https://doi.org/10.3389/fcvm.2022.1091768 (2022).
doi: 10.3389/fcvm.2022.1091768
pubmed: 36684590
Obokata, M. et al. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction: A simultaneous invasive-echocardiographic study. Circulation 135, 825–838. https://doi.org/10.1161/CIRCULATIONAHA.116.024822 (2017).
doi: 10.1161/CIRCULATIONAHA.116.024822
pubmed: 28039229
Blum, M. et al. Variability of myocardial strain during isometric exercise in subjects with and without heart failure. Front. Cardiovasc. Med. https://doi.org/10.3389/fcvm.2020.00111 (2020).
doi: 10.3389/fcvm.2020.00111
pubmed: 32714945
pmcid: 7344153
Grignola, J. C. Hemodynamic assessment of pulmonary hypertension. World J. Cardiol. 3, 10–17. https://doi.org/10.4330/wjc.v3.i1.10 (2011).
doi: 10.4330/wjc.v3.i1.10
pubmed: 21286213
pmcid: 3030732
Ray, J. C. et al. Pulmonary arterial stiffness assessed by cardiovascular magnetic resonance imaging is a predictor of mild pulmonary arterial hypertension. Int. J. Cardiovasc. Imaging 35, 1881–1892. https://doi.org/10.1007/s10554-018-1397-y (2019).
doi: 10.1007/s10554-018-1397-y
pubmed: 29934885
Hashemi, D. et al. Myocardial deformation assessed among heart failure entities by cardiovascular magnetic resonance imaging. ESC Heart Fail. https://doi.org/10.1002/ehf2.13193 (2021).
doi: 10.1002/ehf2.13193
pubmed: 34480783
pmcid: 8712837
Doeblin, P. et al. CMR tissue characterization in patients with HFmrEF. J. Clin. Med. https://doi.org/10.3390/jcm8111877 (2019).
doi: 10.3390/jcm8111877
pubmed: 31694263
pmcid: 6912482
Tanacli, R. et al. Range variability in CMR feature tracking multilayer strain across different stages of heart failure. Sci. Rep. 9, 16478. https://doi.org/10.1038/s41598-019-52683-8 (2019).
doi: 10.1038/s41598-019-52683-8
pubmed: 31712641
pmcid: 6848170
Tanacli, R. et al. Multilayer myocardial strain improves the diagnosis of heart failure with preserved ejection fraction. ESC Heart Fail. https://doi.org/10.1002/ehf2.12826 (2020).
doi: 10.1002/ehf2.12826
pubmed: 32567247
pmcid: 7524074
Hashemi, D. et al. Reduced functional capacity is associated with the proportion of impaired myocardial deformation assessed in heart failure patients by CMR. Front. Cardiovasc. Med. 10, 1038337. https://doi.org/10.3389/fcvm.2023.1038337 (2023).
doi: 10.3389/fcvm.2023.1038337
pubmed: 36844739
pmcid: 9947709
Redheuil, A. et al. Proximal aortic distensibility is an independent predictor of all-cause mortality and incident CV events: The MESA study. J. Am. Coll. Cardiol. 64, 2619–2629. https://doi.org/10.1016/j.jacc.2014.09.060 (2014).
doi: 10.1016/j.jacc.2014.09.060
pubmed: 25524341
pmcid: 4273646
Terada, M. et al. Low WSS and high OSI measured by 3D cine PC MRI reflect high pulmonary artery pressures in suspected secondary pulmonary arterial hypertension. Magn. Reson. Med. Sci. 15, 193–202. https://doi.org/10.2463/mrms.mp.2015-0038 (2016).
doi: 10.2463/mrms.mp.2015-0038
pubmed: 26567758
Hansen, J., Jacobsen, T. N. & Amtorp, O. The exercise pressor response to sustained handgrip does not augment blood flow in the contracting forearm skeletal muscle. Acta Physiol. Scand. 149, 419–425. https://doi.org/10.1111/j.1748-1716.1993.tb09638.x (1993).
doi: 10.1111/j.1748-1716.1993.tb09638.x
pubmed: 8128890
Borlaug, B. A. & Kass, D. A. Ventricular-vascular interaction in heart failure. Heart Fail. Clin. 4, 23–36. https://doi.org/10.1016/j.hfc.2007.10.001 (2008).
doi: 10.1016/j.hfc.2007.10.001
pubmed: 18313622
pmcid: 2586173
Tartiere-Kesri, L., Tartiere, J. M., Logeart, D., Beauvais, F. & Cohen, S. A. Increased proximal arterial stiffness and cardiac response with moderate exercise in patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 59, 455–461. https://doi.org/10.1016/j.jacc.2011.10.873 (2012).
doi: 10.1016/j.jacc.2011.10.873
pubmed: 22281248
Hundley, W. G. et al. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J. Am. Coll. Cardiol. 38, 796–802. https://doi.org/10.1016/s0735-1097(01)01447-4 (2001).
doi: 10.1016/s0735-1097(01)01447-4
pubmed: 11527636
MacDonald, J. R. Potential causes, mechanisms, and implications of post exercise hypotension. J. Hum. Hypertens. 16, 225–236. https://doi.org/10.1038/sj.jhh.1001377 (2002).
doi: 10.1038/sj.jhh.1001377
pubmed: 11967715
Hartog, R., Bolignano, D., Sijbrands, E., Pucci, G. & Mattace-Raso, F. Short-term vascular hemodynamic responses to isometric exercise in young adults and in the elderly. Clin. Interv. Aging 13, 509–514. https://doi.org/10.2147/CIA.S151984 (2018).
doi: 10.2147/CIA.S151984
pubmed: 29662306
pmcid: 5892960
Lydakis, C. et al. Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise. J. Hum. Hypertens. 22, 320–328. https://doi.org/10.1038/jhh.2008.4 (2008).
doi: 10.1038/jhh.2008.4
pubmed: 18273040
Fisher, M. L., Nutter, D. O., Jacobs, W. & Schlant, R. C. Haemodynamic responses to isometric exercise (handgrip) in patients with heart disease. Br. Heart J. 35, 422–432. https://doi.org/10.1136/hrt.35.4.422 (1973).
doi: 10.1136/hrt.35.4.422
pubmed: 4702373
pmcid: 458629
Anastasiou, V. et al. The prognostic impact of right ventricular-pulmonary arterial coupling in heart failure: A systematic review and meta-analysis. Heart Fail. Rev. https://doi.org/10.1007/s10741-023-10341-2 (2023).
doi: 10.1007/s10741-023-10341-2
pubmed: 37639067
pmcid: 10904417
Zhang, Z. et al. Causal inference with marginal structural modeling for longitudinal data in laparoscopic surgery: A technical note. Laparosc. Endosc. Robot. Surg. 5, 146–152. https://doi.org/10.1016/j.lers.2022.10.002 (2022).
doi: 10.1016/j.lers.2022.10.002
Yang, J. et al. Identification of clinical subphenotypes of sepsis after laparoscopic surgery. Laparosc. Endosc. Robot. Surg. 7, 16–26. https://doi.org/10.1016/j.lers.2024.02.001 (2024).
doi: 10.1016/j.lers.2024.02.001