Cas12a-mediated gene targeting by sequential transformation strategy in Arabidopsis thaliana.


Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
12 Jul 2024
Historique:
received: 03 04 2024
accepted: 04 07 2024
medline: 13 7 2024
pubmed: 13 7 2024
entrez: 12 7 2024
Statut: epublish

Résumé

Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.

Identifiants

pubmed: 38997669
doi: 10.1186/s12870-024-05375-z
pii: 10.1186/s12870-024-05375-z
doi:

Substances chimiques

CRISPR-Associated Proteins 0
Cas12a protein EC 3.1.-
Bacterial Proteins 0
Endodeoxyribonucleases EC 3.1.-

Types de publication

Journal Article Editorial

Langues

eng

Sous-ensembles de citation

IM

Pagination

665

Informations de copyright

© 2024. The Author(s).

Références

Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21:121–31.
pubmed: 25654603 pmcid: 4492683 doi: 10.1038/nm.3793
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1077.
doi: 10.1126/science.1258096
Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol. 2016;428:963–89.
pubmed: 26506267 doi: 10.1016/j.jmb.2015.10.014
Hua K, Zhang J, Botella JR, Ma C, Kong F, Liu B, Zhu J-K. Perspectives on the application of genome-editing technologies in crop breeding. Mol Plant. 2019;12(8):1047–59.
pubmed: 31260812 doi: 10.1016/j.molp.2019.06.009
Weeks DP, Spalding MH, Yang B. Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J. 2016;14:483–95.
pubmed: 26261084 doi: 10.1111/pbi.12448
Miki D, Wang R, Li J, Kong D, Zhang L, Zhu J-K. Gene targeting facilitated by engineered sequence-specific nucleases: potential applications for crop improvement. Plant Cell Physiol. 2021;62(5):752–65.
pubmed: 33638992 pmcid: 8484935 doi: 10.1093/pcp/pcab034
Chen J, Li S, He Y, Li J, Xia L. An update on precision genome editing by homology-directed repair in plants. Plant Physiol. 2022;188(4):1780–94.
pubmed: 35238390 pmcid: 8968426 doi: 10.1093/plphys/kiac037
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125–9.
pubmed: 27120160 doi: 10.1038/nature17664
Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51:503–12.
pubmed: 2822260 doi: 10.1016/0092-8674(87)90646-5
Fauser F, Roth N, Pacher M, Ilg G, Sanchez-Fernandez R, Biesgen C, Puchta H. In planta gene targeting. Proc Natl Acad Sci USA. 2012;109:7535–40.
pubmed: 22529367 pmcid: 3358861 doi: 10.1073/pnas.1202191109
Li S, Zhang Y, Xia L, Qi Y. CRISPR-Cas12a enables efficient biallelic gene targeting in rice. Plant Biotechnol J. 2020;18(6):1351–3.
pubmed: 31730252 doi: 10.1111/pbi.13295
Schindele P, Puchta H. Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. Plant Biotechnol J. 2020;18(5):1118–20.
pubmed: 31606929 doi: 10.1111/pbi.13275
Merker L, Schindele P, Huang T-K, Wolter F, Puchta H. Enhancing in planta gene targeting efficiencies in Arabidopsis using temperature-tolerant CRISPR/LbCas12a. Plant Biotechnol J. 2020;18(12):2382–4.
pubmed: 32473055 pmcid: 7680533 doi: 10.1111/pbi.13426
Gasparis S, Kała M, Przyborowski M, Łyżnik LA, Orczyk W, Nadolska-Orczyk A. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods. 2018;14(1):111.
pubmed: 30568723 pmcid: 6297969 doi: 10.1186/s13007-018-0382-8
Grützner R, Martin P, Horn C, Mortensen S, Cram EJ, Lee-Parsons CWT, et al. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. Plant Commun. 2021;2(2):100135.
Kusano H, Ohnuma M, Mutsuro-Aoki H, Asahi T, Ichinosawa D, Onodera H, Asano K, Noda T, Horie T, Fukumoto K, et al. Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci Rep. 2018;8(1):13753.
pubmed: 30214055 pmcid: 6137036 doi: 10.1038/s41598-018-32049-2
Onodera H, Shingu S, Ohnuma M, Horie T, Kihira M, Kusano H, et al. Establishment of a conditional TALEN system using the translational enhancer dMac3 and an inducible promoter activated by glucocorticoid treatment to increase the frequency of targeted mutagenesis in plants. PLoS ONE. 2018;13(12):e0208959.
Takeuchi A, Ohnuma M, Teramura H, Asano K, Noda T, Kusano H, Tamura K, Shimada H. Creation of a potato mutant lacking the starch branching enzyme gene StSBE3 that was generated by genome editing using the CRISPR/dMac3-Cas9 system. Plant biotechnology (Tokyo, Japan). 2021;38(3):345–53.
pubmed: 34782822 doi: 10.5511/plantbiotechnology.21.0727a
Ohnuma M, Ito K, Hamada K, Takeuchi A, Asano K, Noda T, Watanabe A, Hokura A, Teramura H, Takahashi F, et al. Peculiar properties of tuber starch in a potato mutant lacking the α-glucan water dikinase 1 gene GWD1 created by targeted mutagenesis using the CRISPR/dMac3-Cas9 system. Plant Biotechnol. 2023;40(3):219–27.
doi: 10.5511/plantbiotechnology.23.0823a
Kusano H, Takeuchi A, Shimada H. Efficiency of potato genome editing: Targeted mutation on the genes involved in starch biosynthesis using the CRISPR/dMac3-Cas9 system. Plant Biotechnol. 2023;40(3):201–9.
doi: 10.5511/plantbiotechnology.23.0611a
Peng F, Zhang W, Zeng W, Zhu J-K, Miki D. Gene targeting in Arabidopsis via an all-in-one strategy that uses a translational enhancer to aid Cas9 expression. Plant Biotechnol J. 2020;18(4):892–4.
pubmed: 31553828 doi: 10.1111/pbi.13265
Schindele P, Merker L, Schreiber T, Prange A, Tissier A, Puchta H. Enhancing gene editing and gene targeting efficiencies in Arabidopsis thaliana by using an intron-containing version of ttLbCas12a. Plant Biotechnol J. 2023;21(3):457–9.
pubmed: 36382936 doi: 10.1111/pbi.13964
Dickinson L, Yuan W, LeBlanc C, Thomson G, Wang S, Jacob Y. Regulation of gene editing using T-DNA concatenation. Nature plants. 2023;9(9):1398–408.
pubmed: 37653336 pmcid: 11193869 doi: 10.1038/s41477-023-01495-w
Longkumer T, Grillet L, Chen C-Y, Putra H, Schmidt W, Verslues PE. Insertion of YFP at P5CS1 and AFL1 shows the potential, and potential complications, of gene tagging for functional analyses of stress-related proteins. Plant Cell Environ. 2024;47(6):2011–26.
pubmed: 38392921 doi: 10.1111/pce.14861
Li J, Kong D, Ke Y, Zeng W, Miki D. Application of multiple sgRNAs boosts efficiency of CRISPR/Cas9-mediated gene targeting in Arabidopsis. BMC Biol. 2024;22(1):6.
pubmed: 38233866 pmcid: 10795408 doi: 10.1186/s12915-024-01810-7
Merker L, Feller L, Dorn A, Puchta H. Deficiency of both classical and alternative end-joining pathways leads to a synergistic defect in double-strand break repair but not to an increase in homology-dependent gene targeting in Arabidopsis. Plant J. 2024;118(1):242–54.
pubmed: 38179887 doi: 10.1111/tpj.16604
Kumar J, Char SN, Weiss T, Liu H, Liu B, Yang B, et al. Efficient protein tagging and cis-regulatory element engineering via precise and directional oligonucleotide-based targeted insertion in plants. Plant Cell. 2023;35(8):2722–35.
pubmed: 37191128 pmcid: 10396358 doi: 10.1093/plcell/koad139
Dong OX, Yu S, Jain R, Zhang N, Duong PQ, Butler C, Li Y, Lipzen A, Martin JA, Barry KW, et al. ker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat Commun. 2020;11(1):1178.
pubmed: 32132530 pmcid: 7055238 doi: 10.1038/s41467-020-14981-y
Tian Y, Zhong D, Li X, Shen R, Han H, Dai Y, Yao Q, Zhang X, Deng Q, Cao X, et al. High-throughput genome editing in rice with a virus-based surrogate system. J Integr Plant Biol. 2023;65(3):646–55.
pubmed: 36218268 doi: 10.1111/jipb.13381
Wei Z, Abdelrahman M, Gao Y, Ji Z, Mishra R, Sun H, Sui Y, Wu C, Wang C, Zhao K. Engineering broad-spectrum resistance to bacterial blight by CRISPR-Cas9-mediated precise homology directed repair in rice. Mol Plant. 2021;14(8):1215–8.
pubmed: 33971367 doi: 10.1016/j.molp.2021.05.012
Zhang W, Wang R, Kong D, Peng F, Chen M, Zeng W, et al. Precise and heritable gene targeting in rice using a sequential transformation strategy. Cell Rep Methods. 2023;3(1):100389.
Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, Lowe K, Che P, Anand A, Worden A, van Dyk D, et al. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nature plants. 2023;9(2):255–70.
pubmed: 36759580 pmcid: 9946824 doi: 10.1038/s41477-022-01338-0
Luo W, Suzuki R, Imai R. Precise in planta genome editing via homology-directed repair in wheat. Plant Biotechnol J. 2023;21(4):668–70.
pubmed: 36529912 doi: 10.1111/pbi.13984
Movahedi A, Wei H, Kadkhodaei S, Sun W, Zhuge Q, Yang L, et al. CRISPR-mediated genome editing in poplar issued by efficient transformation. Front Plant Sci. 2023;14:1159615.
Movahedi A, Wei H, Zhou X, Fountain JC, Chen Z-H, Mu Z, Sun W, Zhang J, Li D, Guo B, et al. Precise exogenous insertion and sequence replacements in poplar by simultaneous HDR overexpression and NHEJ suppression using CRISPR-Cas9. Horticulture Res. 2022;9.
Miki D, Zhang W, Zeng W, Feng Z, Zhu J-K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun. 2018;9(1):1967.
pubmed: 29773790 pmcid: 5958078 doi: 10.1038/s41467-018-04416-0
Zhang Z, Zeng W, Zhang W, Li J, Kong D, Zhang L, Wang R, Peng F, Kong Z, Ke Y, et al. Insights into the molecular mechanisms of CRISPR/Cas9-mediated gene targeting at multiple loci in Arabidopsis. Plant Physiol. 2022;190(4):2203–16.
pubmed: 36106983 pmcid: 9706422 doi: 10.1093/plphys/kiac431
Mao Y, Zhang Z, Feng Z, Wei P, Zhang H, Botella JR, Zhu JK. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J. 2016;14(2):519–32.
pubmed: 26360626 doi: 10.1111/pbi.12468
Wang X, Shen C, Meng P, Tan G, Lv L. Analysis and review of trichomes in plants. BMC Plant Biol. 2021;21(1):70.
pubmed: 33526015 pmcid: 7852143 doi: 10.1186/s12870-021-02840-x
Zhang H, Liu P, Wang B, Yuan F. The roles of trichome development genes in stress resistance. Plant Growth Regul. 2021;95(2):137–48.
doi: 10.1007/s10725-021-00733-5
Malzahn AA, Tang X, Lee K, Ren Q, Sretenovic S, Zhang Y, Chen H, Kang M, Bao Y, Zheng X, et al. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol. 2019;17(1):9.
pubmed: 30704461 pmcid: 6357469 doi: 10.1186/s12915-019-0629-5
Wolter F, Puchta H. In planta gene targeting can be enhanced by the use of CRISPR/Cas12a. Plant J. 2019;100(5):1083–94.
pubmed: 31381206 doi: 10.1111/tpj.14488
Yu Q, Powles SB. Resistance to AHAS inhibitor herbicides: current understanding. Pest Manage Sci. 2014;70(9):1340–50.
doi: 10.1002/ps.3710
Shaner DL, Anderson PC, Stidham MA. Imidazolinones: Potent Inhibitors of Acetohydroxyacid Synthase. Plant Physiol. 1984;76(2):545–6.
pubmed: 16663878 pmcid: 1064324 doi: 10.1104/pp.76.2.545
Cheng Y, Zhang L, Li J, Dang X, Zhu J-K, Shimada H, et al. Simple promotion of Cas9 and Cas12a expression improves gene targeting via an all-in-one strategy. Fron Plant Sci. 2024;15:1360925.
Paszkowski J, Baur M, Bogucki A, Potrykus I. Gene targeting in plants. EMBO J. 1988;7:4021–6.
pubmed: 16453864 pmcid: 455109 doi: 10.1002/j.1460-2075.1988.tb03295.x
Köhler A, Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol. 2007;8(10):761–73.
pubmed: 17786152 doi: 10.1038/nrm2255
Rose AB, Elfersi T, Parra G, Korf I. Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell. 2008;20(3):543–51.
pubmed: 18319396 pmcid: 2329928 doi: 10.1105/tpc.107.057190
Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW. Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol. 1990;15(6):913–20.
pubmed: 2103480 doi: 10.1007/BF00039430
Gao H, Mutti J, Young JK, Yang M, Schroder M, Lenderts B, Wang L, Peterson D, St. Clair G, Jones S, et al. Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Front Plant Sci. 2020;11:535.
pubmed: 32431725 pmcid: 7214728 doi: 10.3389/fpls.2020.00535
Vu TV, Doan DTH, Tran MT, Sung YW, Song YJ, Kim J-Y. Improvement of the LbCas12a-crRNA System for efficient gene targeting in tomato. Front Plant Sci. 2021;12:722552–722552.
pubmed: 34447405 pmcid: 8383147 doi: 10.3389/fpls.2021.722552
Huang T-K, Armstrong B, Schindele P, Puchta H. Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a. Plant Biotechnol J. 2021;19(7):1314–24.
pubmed: 33511745 pmcid: 8313123 doi: 10.1111/pbi.13546
Peterson D, Barone P, Lenderts B, Schwartz C, Feigenbutz L, St. Clair G, Jones S, Svitashev S. Advances in Agrobacterium transformation and vector design result in high-frequency targeted gene insertion in maize. Plant Biotechnol J. 2021;19(10):2000–10.
pubmed: 33934470 pmcid: 8486252 doi: 10.1111/pbi.13613
Wolter F, Klemm J, Puchta H. Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus. Plant J. 2018;94(4):735–46.
pubmed: 29573495 doi: 10.1111/tpj.13893
Zhang Q, Xing H-L, Wang Z-P, Zhang H-Y, Yang F, Wang X-C, Chen Q-J. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol. 2018;96(4):445–56.
pubmed: 29476306 pmcid: 5978904 doi: 10.1007/s11103-018-0709-x
Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M, Hassan N, Butt H, Kababji A, Hamdan SM, et al. Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Communications biology. 2020;3(1):44–44.
doi: 10.1038/s42003-020-0768-9
Miki D, Zinta G, Zhang W, Peng F, Feng Z, Zhu J-K. CRISPR/Cas9-based genome editing toolbox for Arabidopsis thaliana. In: Sanchez-Serrano JJ, Salinas J, editors. In: Arabidopsis protocols fourth edition, methods in molecular biology. New York, NY: Springer US; 2021. p. 121–46.
Wang M, Mao Y, Lu Y, Wang Z, Tao X, Zhu J-K. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. J Integr Plant Biol. 2018;60(8):626–31.
pubmed: 29762900 doi: 10.1111/jipb.12667
Concordet J-P, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46(W1):W242–5.
pubmed: 29762716 pmcid: 6030908 doi: 10.1093/nar/gky354
Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42(22):e168–e168.
pubmed: 25300484 pmcid: 4267669 doi: 10.1093/nar/gku936

Auteurs

Jing Li (J)

Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Qi Wei (Q)

Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Yiqiu Cheng (Y)

Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Dali Kong (D)

Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Zhe Kong (Z)

Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Yongping Ke (Y)

Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Xiaofei Dang (X)

Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.

Jian-Kang Zhu (JK)

Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.

Hiroaki Shimada (H)

Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, 125-8585, Japan.

Daisuke Miki (D)

Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China. daisukemiki@cemps.ac.cn.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells

Classifications MeSH