Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population.


Journal

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600

Informations de publication

Date de publication:
13 Jul 2024
Historique:
received: 15 03 2024
accepted: 04 07 2024
medline: 14 7 2024
pubmed: 14 7 2024
entrez: 13 7 2024
Statut: epublish

Résumé

The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.

Identifiants

pubmed: 39002016
doi: 10.1007/s00122-024-04694-x
pii: 10.1007/s00122-024-04694-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

183

Subventions

Organisme : National Key Research and Development Program of China
ID : 2022YFD1201700
Organisme : National Key Research and Development Program of China
ID : 2023YFD140010002
Organisme : Science and Technology Innovation 2030- Major Project
ID : 2023ZD04068
Organisme : National Natural Science Foundation of China
ID : 32101705
Organisme : Earmarked fund for CARS
ID : CARS-02
Organisme : Sichuan Science and Technology Program
ID : 2021YFYZ0021

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Asea G, Vivek BS, Bigirwa G, Lipps PE, Pratt RC (2009) Validation of consensus quantitative trait loci associated with resistance to multiple foliar pathogens of maize. Phytopathology® 99:540–547
pubmed: 19351250
Balint-Kurti PJ, Wisser R, Zwonitzer JC (2008) Use of an advanced intercross line population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci 48:1696–1704
Benson JM, Poland JA, Benson BM, Stromberg EL, Nelson RJ (2015) Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis. PLoS Genet 11:e1005045
pubmed: 25764179 pmcid: 4357430
Berger DK, Carstens M, Korsman JN, Middleton F, Kloppers FJ et al (2014) Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina. BMC Genet 15:60
pubmed: 24885661 pmcid: 4059882
Bhatia A, Munkvold GP (2002) Relationships of environmental and cultural factors with severity of gray leaf spot in maize. Plant Dis 86:1127–1133
pubmed: 30818507
Bluhm BH, Dhillon B, Lindquist EA, Kema GHJ, Goodwin SB et al (2008) Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth. BMC Genomics 9:523
pubmed: 18983654 pmcid: 2596140
Broman KW, Gatti DM, Simecek P, Furlotte NA, Prins P et al (2019) R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multiparent populations. Genetics 211:495–502
pubmed: 30591514 pmcid: 6366910
Bubeck DM, Goodman MM, Beavis WD, Grant D (1993) Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci 33:838
Carson ML, Goodman MM, Williamson SM (2002) Variation in aggressiveness among isolates of Cercospora from maize as a potential cause of genotype-environment interaction in gray leaf spot trials. Plant Dis 86:1089–1093
pubmed: 30818501
Chen J, Wang Z, Tan K, Huang W, Shi J et al (2023) A complete telomere-to-telomere assembly of the maize genome. Nat Genet 55:1221–1231
pubmed: 37322109 pmcid: 10335936
Chen L, Liu L, Li Z, Zhang Y, Kang MS et al (2021) High-density mapping for gray leaf spot resistance using two related tropical maize recombinant inbred line populations. Mol Biol Rep 48:3379–3392
pubmed: 33890197
Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890
pubmed: 30423086 pmcid: 6129281
Christie N, Myburg AA, Joubert F, Murray SL, Carstens M et al (2017) Systems genetics reveals a transcriptional network associated with susceptibility in the maize–grey leaf spot pathosystem. Plant J 89:746–763
pubmed: 27862526
Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971
pubmed: 7851788 pmcid: 1206241
Clements MJ, Dudley JW, White DG (2000) Quantitative trait loci associated with resistance to gray leaf spot of corn. Phytopathology® 90:1018–1025
pubmed: 18944528
Coates ST, White DG (1998) Inheritance of resistance to gray leaf spot in crosses involving selected resistant inbred lines of corn. Phytopathology® 88:972–982
pubmed: 18944876
Dai W, Li Q, Liu T, Long P, He Y et al (2024a) Combining genome-wide association study and linkage mapping in the genetic dissection of amylose content in maize (Zea mays L.). Theor Appl Genet 137:159
pubmed: 38872054
Dai W, Yu H, Liu K, Chengxu Y, Yan J et al (2023) Combined linkage mapping and association analysis uncovers candidate genes for 25 leaf-related traits across three environments in maize. Theor Appl Genet 136:12
pubmed: 36662253
Dai Z, Pi Q, Liu Y, Hu L, Li B et al (2024b) ZmWAK02 encoding an RD-WAK protein confers maize resistance against gray leaf spot. New Phytol 241:1780–1793
pubmed: 38058244
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21
pubmed: 23104886 pmcid: 3530905
Du L, Yu F, Zhang H, Wang B, Ma K et al (2020) Genetic mapping of quantitative trait loci and a major locus for resistance to grey leaf spot in maize. Theor Appl Genet 133:2521–2533
pubmed: 32468093
Dunkle LD, Levy M (2000) Genetic relatedness of African and United States populations of Cercospora zeae-maydis. Phytopathology® 90:486–490
pubmed: 18944554
Goodwin SB, Dunkle LD, Zismann VL (2001) Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathology® 91:648–658
pubmed: 18942994
Gordon SG, Lipps PE, Pratt RC (2006) Heritability and components of resistance to Cercospora zeae-maydis derived from maize inbred VO613Y. Phytopathology® 96:593–598
pubmed: 18943176
Gray J, Janick-Buckner D, Buckner B, Close PS, Johal GS (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130:1894–1907
pubmed: 12481072 pmcid: 166700
Guo W, Fiziev P, Yan W, Cokus S, Sun X et al (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics 14:774
pubmed: 24206606 pmcid: 3840619
He W, Zhu Y, Leng Y, Yang L, Zhang B et al (2021) Transcriptomic analysis reveals candidate genes responding maize gray leaf spot caused by Cercospora zeina. Plants 10:2257
pubmed: 34834621 pmcid: 8625984
Hok S, Danchin EGJ, Allasia V, Panabières FA, ATTARD et al (2011) An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. Plant Cell Environ 34:1944–1957
pubmed: 21711359
Hu C, Kuang T, Shaw RK, Zhang Y, Fan J et al (2024) Genetic dissection of resistance to gray leaf spot by genome-wide association study in a multi-parent maize population. BMC Plant Biol 24:10
pubmed: 38163896 pmcid: 10759574
Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793
pubmed: 7973631
Kibe M, Nair SK, Das B, Bright JM, Makumbi D et al (2020) Genetic dissection of resistance to gray leaf spot by combining genome-wide association, linkage mapping, and genomic prediction in tropical maize germplasm. Front Plant Sci. https://doi.org/10.3389/fpls.2020.572027
doi: 10.3389/fpls.2020.572027 pubmed: 33224163 pmcid: 7667048
Komjanc M, Festi S, Rizzotti L, Cattivelli L, Cervone F et al (1999) A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Mol Biol 40:945–957
pubmed: 10527419
Kuki MC, Scapim CA, Rossi ES, Mangolin CA, Amaral Júnior ATd et al (2018) Genome wide association study for gray leaf spot resistance in tropical maize core. PLoS ONE 13:e0199539
pubmed: 29953466 pmcid: 6023161
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
pubmed: 22388286 pmcid: 3322381
Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ (2016) Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Sci 56:209–218
Lian J, Han H, Chen X, Chen Q, Zhao J et al (2022) Stemphylium lycopersici Nep1-like Protein (NLP) is a key virulence factor in tomato gray leaf spot disease. J Fungi (basel) 8:518
pubmed: 35628773
Liang Z, Xi N, Liu T, Li M, Sang M et al (2024) A combination of QTL mapping and genome-wide association study revealed the key gene for husk number in maize. Theor Appl Genet 137:112
pubmed: 38662228
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930
pubmed: 24227677
Liu H, Niu Y, Gonzalez-Portilla PJ, Zhou H, Wang L et al (2015) An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize. BMC Genomics 16:1078
pubmed: 26691201 pmcid: 4687334
Liu L, Zhang YD, Li HY, Bi YQ, Yu LJ et al (2016) QTL mapping for gray leaf spot resistance in a tropical maize population. Plant Dis 100:304–312
pubmed: 30694127
Liu M, Tan X, Yang Y, Liu P, Zhang X et al (2020) Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J 18:207–221
pubmed: 31199064
Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. Agric Yields Sci 299:1032–1032
Lopez-Zuniga LO, Wolters P, Davis S, Weldekidan T, Kolkman JM et al (2019) Using maize chromosome segment substitution line populations for the identification of loci associated with multiple disease resistance. G3 Genes Genomes Genet 9:189–201
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
pubmed: 25516281 pmcid: 4302049
Mahuku G, Chen J, Shrestha R, Narro LA, Guerrero KVO et al (2016) Combined linkage and association mapping identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize. Theor Appl Genet 129:1217–1229
pubmed: 26971113
Mammadov J, Sun X, Gao Y, Ochsenfeld C, Bakker E et al (2015) Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.). BMC Genomics 16:916
pubmed: 26555731 pmcid: 4641357
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al (2018) MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 14:e1005944
pubmed: 29373581 pmcid: 5802927
Maroof MAS, Yue YG, Xiang ZX, Stromberg EL, Rufener GK (1996) Identification of quantitative trait loci controlling resistance to gray leaf spot disease in maize. Theor Appl Genet 93:539–546
pubmed: 24162345
Martins LB, Rucker E, Thomason E, Wisser RJ, Holland JB et al (2019) Validation and characterization of maize multiple disease resistance QTL. G3 Genes Genomes Genet 9:2905–2912
Meyer J, Berger DK, Christensen SA, Murray SL (2017) RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biol 17:197
pubmed: 29132306 pmcid: 5683525
Mourtzinis S, Ortiz BV, Damianidis D (2016) Climate change and ENSO effects on Southeastern US climate patterns and maize yield. Sci Rep 6:29777
pubmed: 27432777 pmcid: 4949459
Mourtzinis S, Specht JE, Lindsey LE, Wiebold WJ, Ross J et al (2015) Climate-induced reduction in US-wide soybean yields underpinned by region- and in-season-specific responses. Nat Plants 1:14026
pubmed: 27246761
Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322
Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P et al (2013) Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9:e1003235
pubmed: 23516366 pmcid: 3597514
Perrin RM, DeRocher AE, Bar-Peled M, Zeng W, Norambuena L et al (1999) Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284:1976–1979
pubmed: 10373113
Pozar G, Butruille D, Silva HD, McCuddin ZP, Penna JCV (2009) Mapping and validation of quantitative trait loci for resistance to Cercospora zeae-maydis infection in tropical maize (Zea mays L.). Theor Appl Genet 118:553–564
pubmed: 18989654
Qiu H, Li C, Yang W, Tan K, Yi Q et al (2021) Fine mapping of a new major QTL-qGLS8 for gray leaf spot resistance in maize. Front Plant Sci. https://doi.org/10.3389/fpls.2021.743869
doi: 10.3389/fpls.2021.743869 pubmed: 35046983 pmcid: 8714666
Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25
pubmed: 20196867 pmcid: 2864565
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115
pubmed: 19965430
Shi L-Y, Li X-H, Hao Z-F, Xie C-X, Ji H-L et al (2007) Comparative QTL mapping of resistance to gray leaf spot in maize based on bioinformatics. Agric Sci China 6:1411–1419
Shi L, Lv X, Weng J, Zhu H, Liu C et al (2014) Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.). Crop J 2:132–143
Silva LDCE, Wang S, Zeng Z-B (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using windows QTL cartographer. In: Rifkin SA (ed) Quantitative trait loci (QTL) methods protocol. Humana Press, NJ, pp 75–119
Sun S, Zhou Y, Chen J, Shi J, Zhao H et al (2018a) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50:1289–1295
pubmed: 30061735
Tehon LR, Daniels E (1925) Notes on the parasitic fungi of Illinois—II. Mycologia 17:240–249
Vontimitta V, Olukolu BA, Penning BW, Johal G, Balint-Kurti PJ (2015) The genetic basis of flecking and its relationship to disease resistance in the IBM maize mapping population. Theor Appl Genet 128:2331–2339
pubmed: 26239408
Wang H, Hou J, Ye P, Hu L, Huang J et al (2021) A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. Mol Plant 14:1846–1863
pubmed: 34271176
Wang J, Levy M, Dunkle LD (1998) Sibling species of Cercospora associated with gray leaf spot of maize. Phytopathology® 88:1269–1275
pubmed: 18944828
Wang S, Chen Z, Tian L, Ding Y, Zhang J et al (2019) Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. Plant Biotechnol J 17:2153–2168
pubmed: 30972847 pmcid: 6790363
Welgemoed T, Pierneef R, Sterck L, Van de Peer Y, Swart V et al (2020) De novo assembly of transcriptomes from a B73 maize line introgressed with a QTL for resistance to gray leaf spot disease reveals a candidate allele of a lectin receptor-like kinase. Front Plant Sci 11:191
pubmed: 32231673 pmcid: 7083176
Xu L, Zhang Y, Shao S, Chen W, Tan J et al (2014) High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. BMC Plant Biol 14:230
pubmed: 25174589 pmcid: 4175277
Xu Q, Wang X, Wang Y, Zhang H, Zhang H et al (2022) Combined QTL mapping and RNA-Seq pro-filing reveal candidate genes related to low-temperature tolerance in maize. Mol Breed 42:33
pubmed: 37312966 pmcid: 10248625
Yang Q, He Y, Kabahuma M, Chaya T, Kelly A et al (2017) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 49:1364–1372
pubmed: 28740263
Yu Y, Shi J, Li X, Liu J, Geng Q et al (2018) Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize. BMC Genomics 19:742
pubmed: 30305015 pmcid: 6180411
Yuan G, Li Y, He D, Shi J, Yang Y et al (2023) A Combination of QTL mapping and gradedpool-seq to dissect genetic complexity for gibberella ear rot resistance in maize using an IBM Syn10 DH population. Plant Dis 107:1115–1121
pubmed: 36131495
Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468
pubmed: 8013918 pmcid: 1205924
Zhang X, Guan Z, Li Z, Liu P, Ma L et al (2020) A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor Appl Genet 133:2881–2895
pubmed: 32594266
Zhang X, Yang Q, Rucker E, Thomason W, Balint-Kurti P (2017) Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis). Theor Appl Genet 130:1285–1295
pubmed: 28342108
Zhang Y, Xu L, Fan X, Tan J, Chen W et al (2012) QTL mapping of resistance to gray leaf spot in maize. Theor Appl Genet 125:1797–1808
pubmed: 22903692
Zhong T, Zhu M, Zhang Q, Zhang Y, Deng S et al (2024) The ZmWAKL–ZmWIK–ZmBLK1–ZmRBOH4 module provides quantitative resistance to gray leaf spot in maize. Nat Genet. https://doi.org/10.1038/s41588-023-01644-z
doi: 10.1038/s41588-023-01644-z pubmed: 38509386 pmcid: 10864183
Zwonitzer JC, Coles ND, Krakowsky MD, Arellano C, Holland JB et al (2010) Mapping resistance quantitative trait loci for three foliar diseases in a maize recombinant inbred line population—evidence for multiple disease resistance? Phytopathology® 100:72–795
pubmed: 19968551

Auteurs

Lina Cui (L)

Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China.

Mingfei Sun (M)

State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.

Lin Zhang (L)

Department of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.

Hongjie Zhu (H)

State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.

Qianqian Kong (Q)

School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.

Ling Dong (L)

Department of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.

Xianjun Liu (X)

Department of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.

Xing Zeng (X)

Department of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.

Yanjie Sun (Y)

Suihua Branch, Heilongjiang Academy of Agricultural Sciences, Suihua, 152052, China.

Haiyan Zhang (H)

Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China.

Luyao Duan (L)

Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China.

Wenyi Li (W)

Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China.

Chengjia Zou (C)

Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China.

Zhenyu Zhang (Z)

Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China.

WeiLi Cai (W)

Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China.

Yulin Ming (Y)

Liangshan Seed Management Station, Xichang, 615000, China.

Thomas Lübberstedt (T)

Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.

Hongjun Liu (H)

State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.

Xuerong Yang (X)

State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China. xryang@sdau.edu.cn.

Xiao Li (X)

Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China. lixiaomaize@163.com.
Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China. lixiaomaize@163.com.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism

Classifications MeSH