Unraveling the molecular architecture of autoimmune thyroid diseases at spatial resolution.
Humans
Graves Disease
/ pathology
Thyroid Gland
/ pathology
Hashimoto Disease
/ pathology
Antigens, Differentiation, B-Lymphocyte
/ metabolism
Fibroblasts
/ metabolism
Histocompatibility Antigens Class II
/ metabolism
Thyroid Epithelial Cells
/ metabolism
Endothelial Cells
/ metabolism
Transcriptome
Myofibroblasts
/ metabolism
Stromal Cells
/ metabolism
Female
Macrophage Migration-Inhibitory Factors
Intramolecular Oxidoreductases
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
13 Jul 2024
13 Jul 2024
Historique:
received:
08
11
2023
accepted:
25
06
2024
medline:
14
7
2024
pubmed:
14
7
2024
entrez:
13
7
2024
Statut:
epublish
Résumé
Autoimmune thyroid diseases (AITD) such as Graves' disease (GD) or Hashimoto's thyroiditis (HT) are organ-specific diseases that involve complex interactions between distinct components of thyroid tissue. Here, we use spatial transcriptomics to explore the molecular architecture, heterogeneity and location of different cells present in the thyroid tissue, including thyroid follicular cells (TFCs), stromal cells such as fibroblasts, endothelial cells, and thyroid infiltrating lymphocytes. We identify damaged antigen-presenting TFCs with upregulated CD74 and MIF expression in thyroid samples from AITD patients. Furthermore, we discern two main fibroblast subpopulations in the connective tissue including ADIRF
Identifiants
pubmed: 39003267
doi: 10.1038/s41467-024-50192-5
pii: 10.1038/s41467-024-50192-5
doi:
Substances chimiques
Antigens, Differentiation, B-Lymphocyte
0
invariant chain
0
Histocompatibility Antigens Class II
0
MIF protein, human
EC 5.3.2.1
Macrophage Migration-Inhibitory Factors
0
Intramolecular Oxidoreductases
EC 5.3.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5895Informations de copyright
© 2024. The Author(s).
Références
Quintans, J. & Degroot, L. J. The causes of autoimmune thyroid disease*. Endocr. Rev. 10, 537–562 (1989).
pubmed: 2693084
doi: 10.1210/edrv-10-4-537
Antonelli, A., Ferrari, S. M., Corrado, A., Di Domenicantonio, A. & Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev. 14, 174–180 (2015).
pubmed: 25461470
doi: 10.1016/j.autrev.2014.10.016
Ramos-Leví, A. M. & Marazuela, M. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms. Endocrinol. Nutr. 63, 421–429 (2016).
pubmed: 27234136
doi: 10.1016/j.endonu.2016.04.003
Ajjan, R. A. & Weetman, A. P. The pathogenesis of Hashimoto’s thyroiditis: further developments in our understanding. Horm. Metab. Res. 47, 702–710 (2015).
pubmed: 26361257
doi: 10.1055/s-0035-1548832
Brand, O. J. et al. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves’ disease. Hum. Mol. Genet. 18, 1704–1713 (2009).
pubmed: 19244275
doi: 10.1093/hmg/ddp087
Armengol, M. P. et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am. J. Pathol. 159, 861–873 (2001).
pubmed: 11549579
pmcid: 1850445
doi: 10.1016/S0002-9440(10)61762-2
Weetman, A. & DeGroot, L. J. Autoimmunity to the Thyroid Gland. (MDText.com, Inc., 2000).
Buzdugă, C. M. et al. Cytological, histopathological and immunological aspects of autoimmune thyroiditis: a review. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 58, 731–738 (2017).
Weetman, A. P. Graves’ disease. N. Engl. J. Med. 343, 1236–1248 (2000).
pubmed: 11071676
doi: 10.1056/NEJM200010263431707
Xiaoheng, C. et al. General and specific genetic polymorphism of cytokines-related gene in AITD. Mediators Inflamm. 2017, 1–8 (2017).
doi: 10.1155/2017/3916395
Sacristán-Gómez, P., Serrano-Somavilla, A., González-Amaro, R., Martínez-Hernández, R. & Marazuela, M. Analysis of expression of different histone deacetylases in autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 106, 3213–3227 (2021).
pubmed: 34272941
pmcid: 8530745
doi: 10.1210/clinem/dgab526
Yang, X. et al. SIRT1-regulated abnormal acetylation of FOXP3 induces regulatory T-cell function defect in Hashimoto’s thyroiditis. Thyroid 28, 246–256 (2018).
pubmed: 29336238
doi: 10.1089/thy.2017.0286
Prummel, M. F. & Wiersinga, W. M. Smoking and risk of Graves’ disease. JAMA 269, 479–482 (1993).
pubmed: 8419666
doi: 10.1001/jama.1993.03500040045034
Weetman, A. P. Cellular immune responses in autoimmune thyroid disease. Clin. Endocrinol. 61, 405–413 (2004).
doi: 10.1111/j.1365-2265.2004.02085.x
Li, Q., Wang, B., Mu, K. & Zhang, J. The pathogenesis of thyroid autoimmune diseases: new T lymphocytes—cytokines circuits beyond the Th1−Th2 paradigm. J. Cell. Physiol. 234, 2204–2216 (2019).
pubmed: 30246383
doi: 10.1002/jcp.27180
García-López, M. A. et al. Regulatory T cells in human autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 91, 3639–3646 (2006).
pubmed: 16804051
doi: 10.1210/jc.2005-2337
Vitales-Noyola, M. et al. Pathogenic Th17 and Th22 cells are increased in patients with autoimmune thyroid disorders. Endocrine 57, 409–417 (2017).
pubmed: 28669056
doi: 10.1007/s12020-017-1361-y
Nanba, T., Watanabe, M., Inoue, N. & Iwatani, Y. Increases of the Th1/Th2 cell ratio in severe Hashimoto’s disease and in the proportion of Th17 cells in intractable Graves’ disease. Thyroid 19, 495–501 (2009).
pubmed: 19415997
doi: 10.1089/thy.2008.0423
Leskela, S. et al. Plasmacytoid dendritic cells in patients with autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 98, 2822–2833 (2013).
pubmed: 23666960
doi: 10.1210/jc.2013-1273
Ortega-Rodríguez, A. C. et al. Quantitative and functional analysis of PD-1+ NK cells in patients with autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 105, dgaa569 (2020).
pubmed: 32823277
doi: 10.1210/clinem/dgaa569
GarcÍa-López, M. Á., Sancho, D., Sánchez-Madrid, F. & Marazuela, M. Thyrocytes from autoimmune thyroid disorders produce the chemokines IP-10 and Mig and attract CXCR3+ lymphocytes. J. Clin. Endocrinol. Metab. 86, 5008–5016 (2001).
Giordano, C. et al. Thyrocytes—not innocent bystanders in autoimmune disease. Nat. Immunol. 2, 183–183 (2001).
pubmed: 11224508
doi: 10.1038/85224
Chen, K., Wei, Y., Sharp, G. C. & Braley-Mullen, H. Mechanisms of spontaneous resolution versus fibrosis in granulomatous experimental autoimmune thyroiditis. J. Immunol. 171, 6236–6243 (2003).
pubmed: 14634140
doi: 10.4049/jimmunol.171.11.6236
Sacristán-Gómez, P. et al. Evaluation of epithelial–mesenchymal transition markers in autoimmune thyroid diseases. Int. J. Mol. Sci. 24, 3359 (2023).
pubmed: 36834770
pmcid: 9965822
doi: 10.3390/ijms24043359
Marazuela, M., Sánchez-Madrid, F., Acevedo, A., Larrañaga, E. & de Landázuri, M. O. Expression of vascular adhesion molecules on human endothelia in autoimmune thyroid disorders. Clin. Exp. Immunol. 102, 328–334 (1995).
pubmed: 7586686
pmcid: 1553426
doi: 10.1111/j.1365-2249.1995.tb03785.x
Figueroa-Vega, N. et al. Tie-2 is overexpressed by monocytes in autoimmune thyroid disorders and participates in their recruitment to the thyroid gland. J. Clin. Endocrinol. Metab. 94, 2626–2633 (2009).
pubmed: 19351722
doi: 10.1210/jc.2009-0220
Zhang, Q.-Y. et al. Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis. Nat. Commun. 13, 775 (2022).
pubmed: 35140214
pmcid: 8828859
doi: 10.1038/s41467-022-28120-2
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819
pmcid: 6884693
doi: 10.1038/s41592-019-0619-0
Agrawal, N. et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).
pmcid: 4243044
doi: 10.1016/j.cell.2014.09.050
Pu, W. et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat. Commun. 12, 6058 (2021).
pubmed: 34663816
pmcid: 8523550
doi: 10.1038/s41467-021-26343-3
Schomburg, L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat. Rev. Endocrinol. 8, 160–171 (2012).
doi: 10.1038/nrendo.2011.174
Zhang, X. et al. Thymosin beta 10 is a key regulator of tumorigenesis and metastasis and a novel serum marker in breast cancer. Breast Cancer Res. 19, 15 (2017).
pubmed: 28179017
pmcid: 5299657
doi: 10.1186/s13058-016-0785-2
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522
pmcid: 7889871
doi: 10.1038/s41467-021-21246-9
Bernhagen, J. et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat. Med. 13, 587–596 (2007).
pubmed: 17435771
doi: 10.1038/nm1567
Liso, A. et al. IGFBP-6: At the crossroads of immunity, tissue repair and fibrosis. Int. J. Mol. Sci. 23, 4358 (2022).
Valcourt, U., Alcaraz, L. B., Exposito, J.-Y., Lethias, C. & Bartholin, L. Tenascin-X: beyond the architectural function. Cell Adhes. Migr. 9, 154–165 (2015).
doi: 10.4161/19336918.2014.994893
Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807 (2022).
pubmed: 35883004
pmcid: 7613625
doi: 10.1038/s43018-022-00411-z
Li, S. et al. An integrated map of fibroblastic populations in human colon mucosa and cancer tissues. Commun. Biol. 5, 1326 (2022).
pubmed: 36463319
pmcid: 9719516
doi: 10.1038/s42003-022-04298-5
Chen, Z. et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun. 11, 5077 (2020).
pubmed: 33033240
pmcid: 7545162
doi: 10.1038/s41467-020-18916-5
Nicolas, A. M. et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell 40, 168–184.e13 (2022).
pubmed: 35120600
doi: 10.1016/j.ccell.2022.01.004
Diebold, L. P. et al. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat. Metab. 1, 158–171 (2019).
pubmed: 31106291
pmcid: 6521885
doi: 10.1038/s42255-018-0011-x
Nichol, D. & Stuhlmann, H. EGFL7: a unique angiogenic signaling factor in vascular development and disease. Blood 119, 1345–1352 (2012).
pubmed: 22160377
pmcid: 3286203
doi: 10.1182/blood-2011-10-322446
Denzer, L., Muranyi, W., Schroten, H. & Schwerk, C. The role of PLVAP in endothelial cells. Cell Tissue Res. 392, 393–412 (2023).
pubmed: 36781482
pmcid: 10172233
doi: 10.1007/s00441-023-03741-1
Stan, R. V., Tkachenko, E. & Niesman, I. R. PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms. Mol. Biol. Cell 15, 3615–3630 (2004).
pubmed: 15155804
pmcid: 491823
doi: 10.1091/mbc.e03-08-0593
Guo, L., Zhang, H., Hou, Y., Wei, T. & Liu, J. Plasmalemma vesicle‑associated protein: a crucial component of vascular homeostasis (Review). Exp. Ther. Med. 12, 1639–1644 (2016).
pubmed: 27602081
pmcid: 4998186
doi: 10.3892/etm.2016.3557
Álvarez-Sierra, D. et al. Single cell transcriptomic analysis of Graves’ disease thyroid glands reveals the broad immunoregulatory potential of thyroid follicular and stromal cells and implies a major re-interpretation of the role of aberrant HLA class II expression in autoimmunity. J. Autoimmun. 139, 103072 (2023).
pubmed: 37336012
doi: 10.1016/j.jaut.2023.103072
Zimmermann, F. A. et al. Deficiency of respiratory chain complex I in Hashimoto thyroiditis. Mitochondrion 26, 1–6 (2016).
pubmed: 26554844
doi: 10.1016/j.mito.2015.11.002
Cheng, S.-P. et al. CD74 expression and its therapeutic potential in thyroid carcinoma. Endocr. Relat. Cancer 22, 179–190 (2015).
pubmed: 25600560
doi: 10.1530/ERC-14-0269
De, R. et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74–NF-κB signalling. J. Biol. Chem. 293, 19740–19760 (2018).
pubmed: 30366984
pmcid: 6314129
doi: 10.1074/jbc.RA118.003935
Pan, J. et al. Papillary thyroid carcinoma landscape and its immunological link with hashimoto thyroiditis at single-cell resolution. Front. Cell Dev. Biol. 9, 758339 (2021).
pubmed: 34805166
pmcid: 8602800
doi: 10.3389/fcell.2021.758339
Boutzios, G. et al. Higher incidence of tall cell variant of papillary thyroid carcinoma in Graves’ disease. Thyroid 24, 347–354 (2014).
pubmed: 23786233
doi: 10.1089/thy.2013.0133
Schröder, B. The multifaceted roles of the invariant chain CD74–More than just a chaperone. Biochim. Biophys. Acta 1863, 1269–1281 (2016).
pubmed: 27033518
doi: 10.1016/j.bbamcr.2016.03.026
Davies, T. F. et al. Thyroid cell MHC class II antigens: a perspective on the aetiology of autoimmune thyroid disease. Acta Endocrinol. Suppl. 281, 13–20 (1987).
Londei, M., Lamb, J. R., Bottazzo, G. F. & Feldmann, M. Epithelial cells expressing aberrant MHC class II determinants can present antigen to cloned human T cells. Nature 312, 639–641 (1984).
pubmed: 6334239
doi: 10.1038/312639a0
Tanese, K. et al. Cell surface CD74-MIF interactions drive melanoma survival in response to interferon-γ. J. Investig. Dermatol. 135, 2775–2784 (2015).
pubmed: 26039541
doi: 10.1038/jid.2015.204
Sanchez-Niño, M. D. et al. The MIF receptor CD74 in diabetic podocyte injury. J. Am. Soc. Nephrol. JASN 20, 353–362 (2009).
pubmed: 18842989
doi: 10.1681/ASN.2008020194
Farr, L., Ghosh, S. & Moonah, S. Role of MIF cytokine/CD74 receptor pathway in protecting against injury and promoting repair. Front. Immunol. 11, 1273 (2020).
pubmed: 32655566
pmcid: 7325688
doi: 10.3389/fimmu.2020.01273
Korf, H. et al. MIF inhibition interferes with the inflammatory and T cell-stimulatory capacity of NOD macrophages and delays autoimmune diabetes onset. PLoS ONE 12, e0187455 (2017).
pubmed: 29095944
pmcid: 5667746
doi: 10.1371/journal.pone.0187455
Farr, L. et al. CD74 signaling links inflammation to intestinal epithelial cell regeneration and promotes mucosal healing. Cell. Mol. Gastroenterol. Hepatol. 10, 101–112 (2020).
pubmed: 32004754
pmcid: 7215244
doi: 10.1016/j.jcmgh.2020.01.009
Frölich, D. et al. The anti-CD74 humanized monoclonal antibody, milatuzumab, which targets the invariant chain of MHC II complexes, alters B-cell proliferation, migration, and adhesion molecule expression. Arthritis Res. Ther. 14, R54 (2012).
pubmed: 22404985
pmcid: 3446420
doi: 10.1186/ar3767
Wallace, D. J., Figueras, F., Wegener, W. A. & Goldenberg, D. M. Experience with milatuzumab, an anti-CD74 antibody against immunomodulatory macrophage migration inhibitory factor (MIF) receptor, for systemic lupus erythematosus (SLE). Ann. Rheum. Dis. 80, 954–955 (2021).
pubmed: 33619162
doi: 10.1136/annrheumdis-2020-219803
Nguyen, H. N. et al. Autocrine loop involving IL-6 family member LIF, LIF receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators. Immunity 46, 220–232 (2017).
pubmed: 28228280
pmcid: 5567864
doi: 10.1016/j.immuni.2017.01.004
Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552, 110–115 (2017).
pubmed: 29160304
pmcid: 5807082
doi: 10.1038/nature24676
Ng, B. et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci. Transl. Med. 11, eaaw1237 (2019).
pubmed: 31554736
doi: 10.1126/scitranslmed.aaw1237
Franz, J. K. et al. Interleukin-16, produced by synovial fibroblasts, mediates chemoattraction for CD4+ T lymphocytes in rheumatoid arthritis. Eur. J. Immunol. 28, 2661–2671 (1998).
pubmed: 9754554
doi: 10.1002/(SICI)1521-4141(199809)28:09<2661::AID-IMMU2661>3.0.CO;2-N
Bainbridge, P. Wound healing and the role of fibroblasts. J. Wound Care 22, 407–412 (2013).
Moretti, L., Stalfort, J., Barker, T. H. & Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 298, 101530 (2022).
pubmed: 34953859
doi: 10.1016/j.jbc.2021.101530
Darby, I. A., Zakuan, N., Billet, F. & Desmoulière, A. The myofibroblast, a key cell in normal and pathological tissue repair. Cell. Mol. Life Sci. 73, 1145–1157 (2016).
pubmed: 26681260
doi: 10.1007/s00018-015-2110-0
Kasperkovitz, P. V. et al. Fibroblast-like synoviocytes derived from patients with rheumatoid arthritis show the imprint of synovial tissue heterogeneity: Evidence of a link between an increased myofibroblast-like phenotype and high-inflammation synovitis. Arthritis Rheum. 52, 430–441 (2005).
pubmed: 15692990
doi: 10.1002/art.20811
Bauer, S. et al. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res. Ther. 8, R171 (2006).
pubmed: 17105646
pmcid: 1794515
doi: 10.1186/ar2080
Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).
pubmed: 33911232
doi: 10.1038/s41577-021-00540-z
Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).
pubmed: 28232471
pmcid: 5339682
doi: 10.1084/jem.20162024
Smith, T. J. et al. Fibroblasts expressing the thyrotropin receptor overarch thyroid and orbit in Graves’ disease. J. Clin. Endocrinol. Metab. 96, 3827–3837 (2011).
pubmed: 21956421
pmcid: 3232631
doi: 10.1210/jc.2011-1249
Chen, K., Wei, Y., Sharp, G. C. & Braley-Mullen, H. Balance of proliferation and cell death between thyrocytes and myofibroblasts regulates thyroid fibrosis in granulomatous experimental autoimmune thyroiditis (G-EAT). J. Leukoc. Biol. 77, 166–172 (2005).
pubmed: 15536125
doi: 10.1189/jlb.0904538
Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 (2016).
pubmed: 27667365
pmcid: 5228327
doi: 10.1016/j.cels.2016.08.011
Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).
pubmed: 31197017
pmcid: 6727976
doi: 10.1158/2159-8290.CD-19-0094
Chen, K. et al. Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine 66, 103315 (2021).
pubmed: 33819739
pmcid: 8047497
doi: 10.1016/j.ebiom.2021.103315
Wu, Y. et al. The role of stellate cells in pancreatic ductal adenocarcinoma: targeting perspectives. Front. Oncol. 10, 621937 (2020).
pubmed: 33520728
doi: 10.3389/fonc.2020.621937
Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).
pubmed: 22566629
pmcid: 3386114
doi: 10.1073/pnas.1201840109
Ni, Y. et al. A Novel pro-adipogenesis factor abundant in adipose tissues and over-expressed in obesity acts upstream of PPARγ and C/EBPα. J. Bioenerg. Biomembr. 45, 219–228 (2013).
pubmed: 23239344
doi: 10.1007/s10863-012-9492-6
Öhlund, D., Elyada, E. & Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 211, 1503–1523 (2014).
pubmed: 25071162
pmcid: 4113948
doi: 10.1084/jem.20140692
Yan, T. et al. Single-cell transcriptomic analysis of ecosystems in papillary thyroid carcinoma progression. Front. Endocrinol. 12, 729565 (2021).
doi: 10.3389/fendo.2021.729565
Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).
pubmed: 35649411
doi: 10.1016/j.medj.2022.05.002
García-Cuesta, E. M. et al. The role of the CXCL12/CXCR4/ACKR3 axis in autoimmune diseases. Front. Endocrinol. 10, 585 (2019).
doi: 10.3389/fendo.2019.00585
Luther, S. A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol. 169, 424–433 (2002).
pubmed: 12077273
doi: 10.4049/jimmunol.169.1.424
Armengol, M.-P. et al. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J. Immunol. 170, 6320–6328 (2003).
pubmed: 12794165
doi: 10.4049/jimmunol.170.12.6320
Alunno, A. et al. Insulin-like growth factor binding protein 6 in rheumatoid arthritis: a possible novel chemotactic factor? Front. Immunol. 8, 554 (2017).
pubmed: 28572803
pmcid: 5435743
doi: 10.3389/fimmu.2017.00554
Li, Y., Nishihara, E. & Kakudo, K. Hashimoto’s thyroiditis: old concepts and new insights. Curr. Opin. Rheumatol. 23, 102–107 (2011).
pubmed: 21124092
doi: 10.1097/BOR.0b013e328341378c
Figueroa-Vega, N. et al. Serum levels of angiogenic molecules in autoimmune thyroid diseases and their correlation with laboratory and clinical. Features J. Clin. Endocrinol. Metab. 94, 1145–1153 (2009).
pubmed: 19141578
doi: 10.1210/jc.2008-1571
Ramsden, J. Angiogenesis in the thyroid gland. J. Endocrinol. 166, 475–480 (2000).
pubmed: 11029748
doi: 10.1677/joe.0.1660475
Tseleni-Balafouta, S., Kavantzas, N., Balafoutas, D. & Patsouris, E. Comparative study of angiogenesis in thyroid glands with Graves disease and Hashimoto’s thyroiditis. Appl. Immunohistochem. Mol. Morphol. 14, 203–207 (2006).
pubmed: 16785791
doi: 10.1097/01.pai.0000174262.33385.5e
Li, J., Zhang, Y.-P. & Kirsner, R. S. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech. 60, 107–114 (2003).
pubmed: 12500267
doi: 10.1002/jemt.10249
Wisniewska-Kruk, J. et al. PLVAP modulates angiogenesis by tuning VEGF signaling in endothelial cells. Investig. Ophthalmol. Vis. Sci. 55, 2241–2241 (2014).
Keuschnigg, J. et al. The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood 114, 478–484 (2009).
pubmed: 19420356
doi: 10.1182/blood-2008-11-188763
Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).
pubmed: 31597160
pmcid: 6876711
doi: 10.1038/s41586-019-1631-3
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
pubmed: 34062119
pmcid: 8238499
doi: 10.1016/j.cell.2021.04.048
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J. Integr. Biol. 16, 284–287 (2012).
doi: 10.1089/omi.2011.0118
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
pubmed: 10592173
pmcid: 102409
doi: 10.1093/nar/28.1.27
Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).
pubmed: 34788843
doi: 10.1093/nar/gkab1028
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).
pubmed: 30954475
pmcid: 6853612
doi: 10.1016/j.cels.2019.03.003
Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).
pubmed: 35027729
doi: 10.1038/s41587-021-01139-4
endonutriHUPR & Nuria. endonutriHUPR/AITD_SpatialTranscriptomics: Spatial transcriptomics in Autoimmune Thyoid Diseases. https://doi.org/10.5281/zenodo.11551773 (2024).