Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells.


Journal

Medical microbiology and immunology
ISSN: 1432-1831
Titre abrégé: Med Microbiol Immunol
Pays: Germany
ID NLM: 0314524

Informations de publication

Date de publication:
15 Jul 2024
Historique:
received: 09 04 2024
accepted: 06 07 2024
medline: 15 7 2024
pubmed: 15 7 2024
entrez: 15 7 2024
Statut: epublish

Résumé

Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.

Identifiants

pubmed: 39008129
doi: 10.1007/s00430-024-00798-9
pii: 10.1007/s00430-024-00798-9
doi:

Substances chimiques

Bacterial Proteins 0
Type III Secretion Systems 0
Virulence Factors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15

Informations de copyright

© 2024. The Author(s).

Références

Collingro A, Kostlbacher S, Horn M (2020) Chlamydiae in the Environment. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.05.020 . 28:877 – 88
doi: 10.1016/j.tim.2020.05.020 pubmed: 32591108
Horn M (2008) Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol. https://doi.org/10.1146/annurev.micro.62.081307.162818 . 62:113 – 31
doi: 10.1146/annurev.micro.62.081307.162818 pubmed: 18473699
Dharamshi JE, Kostlbacher S, Schon ME, Collingro A, Ettema TJG, Horn M (2023) Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 8:40–54. https://doi.org/10.1038/s41564-022-01284-9
doi: 10.1038/s41564-022-01284-9 pubmed: 36604515 pmcid: 9816063
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M (2023) Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 13:1178736. https://doi.org/10.3389/fcimb.2023.1178736
doi: 10.3389/fcimb.2023.1178736 pubmed: 37287464 pmcid: 10242142
Vorimore F, Holzer M, Liebler-Tenorio EM, Barf LM, Delannoy S, Vittecoq M, Wedlarski R et al (2021) Evidence for the existence of a new genus Chlamydiifrater gen. nov. inside the family Chlamydiaceae with two new species isolated from flamingo (Phoenicopterus roseus): Chlamydiifrater phoenicopteri sp. nov. and chlamydiifrater volucris sp. nov. Syst Appl Microbiol 44:126200. https://doi.org/10.1016/j.syapm.2021.126200
doi: 10.1016/j.syapm.2021.126200 pubmed: 34298369
Elwell C, Mirrashidi K, Engel J (2016) Chlamydia cell biology and pathogenesis. Nat Rev Microbiol 14:385–400. https://doi.org/10.1038/nrmicro.2016.30
doi: 10.1038/nrmicro.2016.30 pubmed: 27108705 pmcid: 4886739
Abdelrahman YM, Belland RJ (2005) The chlamydial developmental cycle. FEMS Microbiol Rev. https://doi.org/10.1016/j.femsre.2005.03.002 . 29:949 – 59
doi: 10.1016/j.femsre.2005.03.002 pubmed: 16043254
Bugalhão JN, Mota LJ (2019) The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. Microb cell. https://doi.org/10.15698/mic2019.09.691 . 6:414 – 49
doi: 10.15698/mic2019.09.691 pubmed: 31528632 pmcid: 6717882
Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, Brandt P et al (2004) Illuminating the evolutionary history of chlamydiae. Science 304:728–730. https://doi.org/10.1126/science.1096330
doi: 10.1126/science.1096330 pubmed: 15073324
Fields KA, Hackstadt T (2000) Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 38:1048–1060. https://doi.org/10.1046/j.1365-2958.2000.02212.x
doi: 10.1046/j.1365-2958.2000.02212.x pubmed: 11123678
Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W et al (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759. https://doi.org/10.1126/science.282.5389.754
doi: 10.1126/science.282.5389.754 pubmed: 9784136
Subtil A, Parsot C, Dautry-Varsat A (2001) Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Mol Microbiol 39:792–800. https://doi.org/10.1046/j.1365-2958.2001.02272.x
doi: 10.1046/j.1365-2958.2001.02272.x pubmed: 11169118
Rockey DD, Scidmore MA, Bannantine JP, Brown WJ (2002) Proteins in the chlamydial inclusion membrane. Microbes Infect. https://doi.org/10.1016/s1286-4579(02)01546-0 . 4:333 – 40
doi: 10.1016/s1286-4579(02)01546-0 pubmed: 11909744
Cosse MM, Barta ML, Fisher DJ, Oesterlin LK, Niragire B, Perrinet S, Millot GA, Hefty PS, Subtil A (2018) The loss of expression of a single type 3 Effector (CT622) strongly reduces Chlamydia trachomatis Infectivity and Growth. Frontiers in cellular and infection microbiology. 8:145. https://doi.org/10.3389/fcimb.2018.00145
Muschiol S, Boncompain G, Vromman F, Dehoux P, Normark S, Henriques-Normark B, Subtil A (2011) Identification of a family of effectors secreted by the type III secretion system that are conserved in pathogenic Chlamydiae. Infect Immun 79:571–580. https://doi.org/10.1128/IAI.00825-10
doi: 10.1128/IAI.00825-10 pubmed: 21078856
Pennini ME, Perrinet S, Dautry-Varsat A, Subtil A (2010) Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog 6:e1000995. https://doi.org/10.1371/journal.ppat.1000995
doi: 10.1371/journal.ppat.1000995 pubmed: 20657819 pmcid: 2904774
Pais SV, Key CE, Borges V, Pereira IS, Gomes JP, Fisher DJ, Mota LJ (2019) CteG is a Chlamydia trachomatis effector protein that associates with the golgi complex of infected host cells. Sci Rep 9:6133. https://doi.org/10.1038/s41598-019-42647-3
doi: 10.1038/s41598-019-42647-3 pubmed: 30992493 pmcid: 6468002
Kumar Y, Cocchiaro J, Valdivia RH (2006) The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol 16:1646–1651. https://doi.org/10.1016/j.cub.2006.06.060
doi: 10.1016/j.cub.2006.06.060 pubmed: 16920627
Wang X, Hybiske K, Stephens RS (2018) Direct visualization of the expression and localization of chlamydial effector proteins within infected host cells. Pathogens Disease 76. https://doi.org/10.1093/femspd/fty011
Lutter EI, Bonner C, Holland MJ, Suchland RJ, Stamm WE, Jewett TJ, McClarty G, Hackstadt T (2010) Phylogenetic analysis of Chlamydia trachomatis Tarp and correlation with clinical phenotype. Infect Immun 78:3678–3688. https://doi.org/10.1128/IAI.00515-10
doi: 10.1128/IAI.00515-10 pubmed: 20605986 pmcid: 2937449
Lutter EI, Martens C, Hackstadt T (2012) Evolution and conservation of predicted inclusion membrane proteins in chlamydiae. Comp Funct Genomics 2012:362104. https://doi.org/10.1155/2012/362104
doi: 10.1155/2012/362104 pubmed: 22454599 pmcid: 3290821
Pereira IS, Pais SV, Borges V, Borrego MJ, Gomes JP, Mota LJ (2022) The type III secretion Effector CteG mediates host cell lytic exit of Chlamydia trachomatis. Front Cell Infect Microbiol 12:902210. https://doi.org/10.3389/fcimb.2022.902210
doi: 10.3389/fcimb.2022.902210 pubmed: 35903198 pmcid: 9318579
Steiert B, Icardi CM, Faris R, McCaslin PN, Smith P, Klingelhutz AJ, Yau PM, Weber MM (2023) The Chlamydia trachomatis type III-secreted effector protein CteG induces centrosome amplification through interactions with centrin-2. Proc Natl Acad Sci USA 120:e2303487120. https://doi.org/10.1073/pnas.2303487120
doi: 10.1073/pnas.2303487120 pubmed: 37155906 pmcid: 10193975
Dharamshi JE, Tamarit D, Eme L, Stairs CW, Martijn J, Homa F, Jorgensen SL, Spang A, Ettema TJG (2020) Marine sediments illuminate Chlamydiae Diversity and Evolution. Curr Biol 30:1032–48e7. https://doi.org/10.1016/j.cub.2020.02.016
doi: 10.1016/j.cub.2020.02.016 pubmed: 32142706
Keller O, Kollmar M, Stanke M, Waack S (2011) A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27:757–763. https://doi.org/10.1093/bioinformatics/btr010
doi: 10.1093/bioinformatics/btr010 pubmed: 21216780
Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. https://doi.org/10.1186/s13059-019-1832-y
doi: 10.1186/s13059-019-1832-y pubmed: 31727128 pmcid: 6857279
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300
doi: 10.1093/molbev/msu300 pubmed: 25371430
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular biology and evolution. 35:518 – 22. https://doi.org/10.1093/molbev/msx281
Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158
doi: 10.1093/bioinformatics/btl158 pubmed: 16731699
Katoh K, Standley DM (2014) MAFFT: iterative refinement and additional methods. Methods Mol Biol. https://doi.org/10.1007/978-1-62703-646-7_8 . 1079:131 – 46
doi: 10.1007/978-1-62703-646-7_8 pubmed: 24170399
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. https://doi.org/10.1093/bioinformatics/btp348 . 25:1972-3
doi: 10.1093/bioinformatics/btp348 pubmed: 19505945 pmcid: 2712344
Iriarte M, Cornelis GR (1998) YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol Microbiol. https://doi.org/10.1046/j.1365-2958.1998.00992.x . 29:915 – 29
doi: 10.1046/j.1365-2958.1998.00992.x pubmed: 9723929
Almeida F, Borges V, Ferreira R, Borrego MJ, Gomes JP, Mota LJ (2012) Polymorphisms in Inc Proteins and Differential expression of inc genes among Chlamydia trachomatis strains correlate with invasiveness and tropism of Lymphogranuloma Venereum isolates. J Bacteriol 194:6574–6585. https://doi.org/10.1128/JB.01428-12
doi: 10.1128/JB.01428-12 pubmed: 23042990 pmcid: 3497493
Sorg I, Wagner S, Amstutz M, Muller SA, Broz P, Lussi Y, Engel A, Cornelis GR (2007) YscU recognizes translocators as export substrates of the Yersinia injectisome. EMBO J 26:3015–3024. https://doi.org/10.1038/sj.emboj.7601731
doi: 10.1038/sj.emboj.7601731 pubmed: 17510628 pmcid: 1894769
da Cunha M, Milho C, Almeida F, Pais SV, Borges V, Mauricio R, Borrego MJ, Gomes JP, Mota LJ (2014) Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system. BMC Microbiol 14:40. https://doi.org/10.1186/1471-2180-14-40
doi: 10.1186/1471-2180-14-40 pubmed: 24533538 pmcid: 3931295
Marenne MN, Journet L, Mota LJ, Cornelis GR (2003) Genetic analysis of the formation of the Ysc-Yop translocation pore in macrophages by Yersinia enterocolitica: role of LcrV, YscF and YopN. Microb Pathog 35:243–258. https://doi.org/10.1016/s0882-4010(03)00154-2
doi: 10.1016/s0882-4010(03)00154-2 pubmed: 14580388
Agaisse H, Derre I (2013) A C. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter. PLoS ONE 8:e57090. https://doi.org/10.1371/journal.pone.0057090
doi: 10.1371/journal.pone.0057090 pubmed: 23441233 pmcid: 3575495
Uphoff CC, Drexler HG (2011) Detecting mycoplasma contamination in cell cultures by polymerase chain reaction. Methods Mol Biol 731:93–103. https://doi.org/10.1007/978-1-61779-080-5_8
doi: 10.1007/978-1-61779-080-5_8 pubmed: 21516400
Scidmore MA (2005) Cultivation and laboratory maintenance of Chlamydia trachomatis. Curr Protoc Microbiol Chapter 11. https://doi.org/10.1002/9780471729259.mc11a01s00 . Unit 11A 1
da Cunha M, Pais SV, Bugalhão JN, Mota LJ (2017) The Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion. PLoS ONE 12:e0178856. https://doi.org/10.1371/journal.pone.0178856
doi: 10.1371/journal.pone.0178856 pubmed: 28622339 pmcid: 5473537
Gehre L, Gorgette O, Perrinet S, Prevost MC, Ducatez M, Giebel AM, Nelson DE, Ball SG, Subtil A (2016) Sequestration of host metabolism by an intracellular pathogen. eLife 5:e12552. https://doi.org/10.7554/eLife.12552
doi: 10.7554/eLife.12552 pubmed: 26981769 pmcid: 4829429
Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL, Starnbach MN (2006) Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol 61:142–150. https://doi.org/10.1111/j.1365-2958.2006.05199.x
doi: 10.1111/j.1365-2958.2006.05199.x pubmed: 16824101
Nunes A, Gomes JP (2014) Evolution, phylogeny, and molecular epidemiology of Chlamydia. Infect Genet Evol 23:49–64. https://doi.org/10.1016/j.meegid.2014.01.029
doi: 10.1016/j.meegid.2014.01.029 pubmed: 24509351
Phillips S, Quigley BL, Timms P (2019) Seventy years of Chlamydia Vaccine Research - limitations of the past and directions for the future. Front Microbiol 10:70. https://doi.org/10.3389/fmicb.2019.00070
doi: 10.3389/fmicb.2019.00070 pubmed: 30766521 pmcid: 6365973
Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763. https://doi.org/10.1093/bioinformatics/14.9.755
doi: 10.1093/bioinformatics/14.9.755 pubmed: 9918945
Thomson NR, Holden MT, Carder C, Lennard N, Lockey SJ, Marsh P, Skipp P et al (2008) Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 18:161–171
doi: 10.1101/gr.7020108 pubmed: 18032721 pmcid: 2134780
Vasilevsky S, Stojanov M, Greub G, Baud D (2016) Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Virulence 7:11–22. https://doi.org/10.1080/21505594.2015.1111509
doi: 10.1080/21505594.2015.1111509 pubmed: 26580416
Subtil A, Delevoye C, Balana ME, Tastevin L, Perrinet S, Dautry-Varsat A (2005) A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol Microbiol 56:1636–1647. https://doi.org/10.1111/j.1365-2958.2005.04647.x
doi: 10.1111/j.1365-2958.2005.04647.x pubmed: 15916612
Chellas-Gery B, Linton CN, Fields KA (2007) Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model. Cell Microbiol 9:2417–2430. https://doi.org/10.1111/j.1462-5822.2007.00970.x
doi: 10.1111/j.1462-5822.2007.00970.x pubmed: 17532760
Triboulet S, N’Gadjaga MD, Niragire B, Kostlbacher S, Horn M, Aimanianda V, Subtil A (2022) CT295 Is Chlamydia trachomatis’ Phosphoglucomutase and a Type 3 Secretion Substrate. Frontiers in cellular and infection microbiology. 12:866729. https://doi.org/10.3389/fcimb.2022.866729
Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101:10166–10171. https://doi.org/10.1073/pnas.0402829101
doi: 10.1073/pnas.0402829101 pubmed: 15199184 pmcid: 454183
Hower S, Wolf K, Fields KA (2009) Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol Microbiol 72:1423–1437. https://doi.org/10.1111/j.1365-2958.2009.06732.x
doi: 10.1111/j.1365-2958.2009.06732.x pubmed: 19460098
Chen YS, Bastidas RJ, Saka HA, Carpenter VK, Richards KL, Plano GV, Valdivia RH (2014) The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. PLoS Pathog 10:e1003954. https://doi.org/10.1371/journal.ppat.1003954
doi: 10.1371/journal.ppat.1003954 pubmed: 24586162 pmcid: 3930595
Fling SP, Sutherland RA, Steele LN, Hess B, D’Orazio SE, Maisonneuve J, Lampe MF, Probst P, Starnbach MN (2001) CD8 + T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc Natl Acad Sci USA 98:1160–1165. https://doi.org/10.1073/pnas.98.3.1160
doi: 10.1073/pnas.98.3.1160 pubmed: 11158611 pmcid: 14725
Wurihan W, Wang Y, Yeung S, Zou Y, Lai Z, Fondell JD, Li WV, Zhong G, Fan H (2024) Expression activation of over 70% of Chlamydia trachomatis genes during the first hour of infection. Infect Immun 92:e0053923. https://doi.org/10.1128/iai.00539-23
doi: 10.1128/iai.00539-23 pubmed: 38299827
Kuzmin E, Taylor JS, Boone C (2022) Retention of duplicated genes in evolution. Trends Genet 38:59–72. https://doi.org/10.1016/j.tig.2021.06.016
doi: 10.1016/j.tig.2021.06.016 pubmed: 34294428
Tria FDK, Martin WF (2021) Gene duplications are at least 50 Times less frequent than Gene transfers in Prokaryotic genomes. Genome Biol Evol 13. https://doi.org/10.1093/gbe/evab224
Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:e130. https://doi.org/10.1371/journal.pbio.0030130
doi: 10.1371/journal.pbio.0030130 pubmed: 15799709 pmcid: 1073693
Treangen TJ, Rocha EP (2011) Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 7:e1001284. https://doi.org/10.1371/journal.pgen.1001284
doi: 10.1371/journal.pgen.1001284 pubmed: 21298028 pmcid: 3029252
Sanchez-Herrero JF, Bernabeu M, Prieto A, Huttener M, Juarez A (2020) Gene Duplications in the genomes of Staphylococci and Enterococci. Front Mol Biosci 7:160. https://doi.org/10.3389/fmolb.2020.00160
doi: 10.3389/fmolb.2020.00160 pubmed: 32850954 pmcid: 7396535
Bernabeu M, Sanchez-Herrero JF, Huedo P, Prieto A, Huttener M, Rozas J, Juarez A (2019) Gene duplications in the E. Coli genome: common themes among pathotypes. BMC Genomics 20:313. https://doi.org/10.1186/s12864-019-5683-4
doi: 10.1186/s12864-019-5683-4 pubmed: 31014240 pmcid: 6480617
Hobolt-Pedersen AS, Christiansen G, Timmerman E, Gevaert K, Birkelund S (2009) Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus. FEMS Immunol Med Microbiol 57:46–58. https://doi.org/10.1111/j.1574-695X.2009.00581.x
doi: 10.1111/j.1574-695X.2009.00581.x pubmed: 19682078 pmcid: 2784215
Vromman F, Perrinet S, Gehre L, Subtil A (2016) The DUF582 proteins of Chlamydia trachomatis bind to components of the ESCRT Machinery, which is dispensable for bacterial growth in vitro. Front Cell Infect Microbiol 6:123. https://doi.org/10.3389/fcimb.2016.00123
doi: 10.3389/fcimb.2016.00123 pubmed: 27774439 pmcid: 5053991
Fischer A, Harrison KS, Ramirez Y, Auer D, Chowdhury SR, Prusty BK, Sauer F et al (2017) Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. eLife 6. https://doi.org/10.7554/eLife.21465
Pruneda JN, Bastidas RJ, Bertsoulaki E, Swatek KN, Santhanam B, Clague MJ, Valdivia RH, Urbe S, Komander D (2018) A Chlamydia effector combining deubiquitination and acetylation activities induces golgi fragmentation. Nat Microbiol 3:1377–1384. https://doi.org/10.1038/s41564-018-0271-y
doi: 10.1038/s41564-018-0271-y pubmed: 30397340 pmcid: 6319605
Bastidas RJ, Kedzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH (2023) The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. https://doi.org/10.1101/2023.02.28.530337 . bioRxiv
Domman D, Collingro A, Lagkouvardos I, Gehre L, Weinmaier T, Rattei T, Subtil A, Horn M (2014) Massive expansion of Ubiquitination-related gene families within the Chlamydiae. Molecular biology and evolution. 31:2890 – 904. https://doi.org/10.1093/molbev/msu227
Pais SV, Kim E, Wagner S (2023) Virulence-associated type III secretion systems in Gram-negative bacteria. Microbiol (Reading) 169. https://doi.org/10.1099/mic.0.001328
Galán JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature. https://doi.org/10.1038/nature05272 . 444:567 – 73
doi: 10.1038/nature05272 pubmed: 17136086
Feldman MF, Cornelis GR (2003) The multitalented type III chaperones: all you can do with 15 kDa. FEMS Microbiol Lett 219:151–158. https://doi.org/10.1016/S0378-1097(03)00042-9
doi: 10.1016/S0378-1097(03)00042-9 pubmed: 12620614
Letunic I, Bork P (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W6. https://doi.org/10.1093/nar/gkab301
doi: 10.1093/nar/gkab301 pubmed: 33885785 pmcid: 8265157
Letzelter M, Sorg I, Mota LJ, Meyer S, Stalder J, Feldman M, Kuhn M, Callebaut I, Cornelis GR (2006) The discovery of SycO highlights a new function for type III secretion effector chaperones. Embo J 25:3223–3233. https://doi.org/10.1038/sj.emboj.7601202
doi: 10.1038/sj.emboj.7601202 pubmed: 16794578 pmcid: 1500984

Auteurs

Inês Serrano Pereira (IS)

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.

Maria da Cunha (M)

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.

Inês Pacheco Leal (IP)

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.

Maria Pequito Luís (MP)

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.

Paula Gonçalves (P)

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.

Carla Gonçalves (C)

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.

Luís Jaime Mota (LJ)

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal. ljmota@fct.unl.pt.
UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal. ljmota@fct.unl.pt.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH