Autoantibodies Neutralizing GM-CSF in HIV-Negative Colombian Patients Infected with Cryptococcus gattii and C. neoformans.


Journal

Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137

Informations de publication

Date de publication:
15 Jul 2024
Historique:
received: 17 01 2024
accepted: 21 06 2024
medline: 15 7 2024
pubmed: 15 7 2024
entrez: 15 7 2024
Statut: epublish

Résumé

Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera collected from Colombian patients with non-HIV-associated cryptococcosis in a retrospective national cohort from 1997 to 2016. We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs against GM-CSF in 30 HIV negative adults with cryptococcosis (13 caused by C. gattii and 17 caused by C. neoformans). We detected neutralizing auto-Abs against GM-CSF in the sera of 10 out of 13 (77%) patients infected with C. gattii and one out of 17 (6%) patients infected with C. neoformans. We report eleven Colombian patients diagnosed with cryptococcosis who had auto-Abs that neutralize GM-CSF. Among these patients, ten were infected with C. gattii and only one with C. neoformans.

Sections du résumé

BACKGROUND BACKGROUND
Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera collected from Colombian patients with non-HIV-associated cryptococcosis in a retrospective national cohort from 1997 to 2016.
METHODS METHODS
We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs against GM-CSF in 30 HIV negative adults with cryptococcosis (13 caused by C. gattii and 17 caused by C. neoformans).
RESULTS RESULTS
We detected neutralizing auto-Abs against GM-CSF in the sera of 10 out of 13 (77%) patients infected with C. gattii and one out of 17 (6%) patients infected with C. neoformans.
CONCLUSIONS CONCLUSIONS
We report eleven Colombian patients diagnosed with cryptococcosis who had auto-Abs that neutralize GM-CSF. Among these patients, ten were infected with C. gattii and only one with C. neoformans.

Identifiants

pubmed: 39008214
doi: 10.1007/s10875-024-01757-y
pii: 10.1007/s10875-024-01757-y
doi:

Substances chimiques

Granulocyte-Macrophage Colony-Stimulating Factor 83869-56-1
Autoantibodies 0
Antibodies, Neutralizing 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

163

Informations de copyright

© 2024. The Author(s).

Références

Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med. 2014;4(7):a019760. https://doi.org/10.1101/cshperspect.a019760 .
doi: 10.1101/cshperspect.a019760 pubmed: 24985132 pmcid: 4066639
MacDougall L, Fyfe M, Romney M, Starr M, Galanis E. Risk factors for Cryptococcus gattii infection, British Columbia, Canada. Emerg Infect Dis. 2011;17(2):193–9. https://doi.org/10.3201/eid1702.101020 .
doi: 10.3201/eid1702.101020 pubmed: 21291588 pmcid: 3204768
Chen SC, Meyer W, Sorrell TC. Cryptococcus gattii infections. Clin Microbiol Rev. 2014;27(4):1024–980. https://doi.org/10.1128/CMR.00126-13 .
doi: 10.1128/CMR.00126-13 pubmed: 25278580 pmcid: 4187630
Kwon-Chung KJ, Saijo T. Is Cryptococcus gattii a primary pathogen? J Fungi (Basel). 2015;1(2):154–67. https://doi.org/10.3390/jof1020154 .
doi: 10.3390/jof1020154 pubmed: 27795955
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med. 2022;219(4). https://doi.org/10.1084/jem.20211387 .
Ku CL, Chi CY, von Bernuth H, Doffinger R. Autoantibodies against cytokines: phenocopies of primary immunodeficiencies? Hum Genet. 2020;139(6–7):783–94. https://doi.org/10.1007/s00439-020-02180-0 .
doi: 10.1007/s00439-020-02180-0 pubmed: 32419033 pmcid: 7272486
Vinh DC. Of mycelium and men: inherent human susceptibility to fungal diseases. Pathogens. 2023;12(3). https://doi.org/10.3390/pathogens12030456 .
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol. 2024;25(5):743–54. https://doi.org/10.1038/s41590-024-01815-y .
doi: 10.1038/s41590-024-01815-y pubmed: 38698239
Chetchotisakd P, Anunnatsiri S, Nithichanon A, Lertmemongkolchai G. Cryptococcosis in anti-interferon-gamma autoantibody-positive patients: a different clinical manifestation from HIV-infected patients. Jpn J Infect Dis. 2017;70(1):74–69. https://doi.org/10.7883/yoken.JJID.2015.340 .
doi: 10.7883/yoken.JJID.2015.340 pubmed: 27169938
Pithukpakorn M, Roothumnong E, Angkasekwinai N, Suktitipat B, Assawamakin A, Luangwedchakarn V, et al. HLA-DRB1 and HLA-DQB1 are associated with adult-onset immunodeficiency with acquired anti-interferon-gamma autoantibodies. PLoS ONE. 2015;10(5):e0128481. https://doi.org/10.1371/journal.pone.0128481 .
doi: 10.1371/journal.pone.0128481 pubmed: 26011559 pmcid: 4444022
Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, et al. Pulmonary alveolar proteinosis. Nat Rev Dis Primers. 2019;5(1):16. https://doi.org/10.1038/s41572-019-0066-3 .
doi: 10.1038/s41572-019-0066-3 pubmed: 30846703
Lee E, Miller C, Ataya A, Wang T. Opportunistic infection associated with elevated GM-CSF autoantibodies: a case series and review of the literature. Open Forum Infect Dis. 2022;9(5):ofac146. https://doi.org/10.1093/ofid/ofac146 .
doi: 10.1093/ofid/ofac146 pubmed: 35531378 pmcid: 9070348
Rosen LB, Freeman AF, Yang LM, Jutivorakool K, Olivier KN, Angkasekwinai N, et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol. 2013;190(8):3959–66. https://doi.org/10.4049/jimmunol.1202526 .
doi: 10.4049/jimmunol.1202526 pubmed: 23509356
Salvator H, Cheng A, Rosen LB, Williamson PR, Bennett JE, Kashyap A, et al. Neutralizing GM-CSF autoantibodies in pulmonary alveolar proteinosis, cryptococcal meningitis and severe nocardiosis. Respir Res. 2022;23(1):280. https://doi.org/10.1186/s12931-022-02103-9 .
doi: 10.1186/s12931-022-02103-9 pubmed: 36221098 pmcid: 9552154
Kuo CY, Wang SY, Shih HP, Tu KH, Huang WC, Ding JY, et al. Disseminated cryptococcosis due to anti-granulocyte-macrophage colony-stimulating factor autoantibodies in the absence of pulmonary alveolar proteinosis. J Clin Immunol. 2017;37(2):143–52. https://doi.org/10.1007/s10875-016-0364-4 .
doi: 10.1007/s10875-016-0364-4 pubmed: 28013480
Chen GH, Teitz-Tennenbaum S, Neal LM, Murdock BJ, Malachowski AN, Dils AJ, et al. Local GM-CSF-dependent differentiation and activation of pulmonary dendritic cells and macrophages protect against progressive cryptococcal lung infection in mice. J Immunol. 2016;196(4):1810–21. https://doi.org/10.4049/jimmunol.1501512 .
doi: 10.4049/jimmunol.1501512 pubmed: 26755822
Prevel R, Guillotin V, Imbert S, Blanco P, Delhaes L, Duffau P. Central nervous system cryptococcosis in patients with sarcoidosis: comparison with non-sarcoidosis patients and review of potential pathophysiological mechanisms. Front Med (Lausanne). 2022;9:836886. https://doi.org/10.3389/fmed.2022.836886 .
doi: 10.3389/fmed.2022.836886 pubmed: 35425769
Escandon P, Lizarazo J, Agudelo CI, Castaneda E. Cryptococcosis in Colombia: compilation and analysis of data from laboratory-based surveillance. J Fungi (Basel). 2018;4(1). https://doi.org/10.3390/jof4010032 .
Lizarazo J, Escandón P, Agudelo CI, Firacative C, Meyer W, Castañeda E. Retrospective study of the epidemiology and clinical manifestations of Cryptococcus gattii infections in Colombia from 1997–2011. PLoS Negl Trop Dis. 2014;8(11):e3272. https://doi.org/10.1371/journal.pntd.0003272 .
doi: 10.1371/journal.pntd.0003272 pubmed: 25411779 pmcid: 4238989
Arango-Franco CA, Migaud M, Ramirez-Sanchez IC, Arango-Bustamante K, Moncada-Velez M, Rojas J, et al. Anti-GM-CSF neutralizing autoantibodies in Colombian patients with disseminated cryptococcosis. J Clin Immunol. 2023;43(5):921–32. https://doi.org/10.1007/s10875-023-01451-5 .
doi: 10.1007/s10875-023-01451-5 pubmed: 36821021 pmcid: 9947894
Firacative C, Escandón P. Antifungal susceptibility of clinical Cryptococcus gattii isolates from Colombia varies among molecular types. Med Mycol. 2021;59(11):1122–5. https://doi.org/10.1093/mmy/myab041 .
doi: 10.1093/mmy/myab041 pubmed: 34264298 pmcid: 8757315
Becerra-Álvarez P, Escandón P, Lizarazo J, Quirós-Gómez Ó, Firacative C. Cryptococcus neoformans- and Cryptococcus gattii-specific IgG, IgA and IgM differ among children and adults with and without cryptococcosis from Colombia. Med Mycol. 2022;60(9). https://doi.org/10.1093/mmy/myac067 .
(INS) INdSdC. Tuberculosis en, Colombia. 2024. Proceso vigilancia y analisis del riesgo en salud pública [Internet]. https://www.ins.gov.co/buscador-eventos/Informesdeevento/TUBERCULOSIS%20PE%20III%202024.pdf .
Bryson BD, Rosebrock TR, Tafesse FG, Itoh CY, Nibasumba A, Babunovic GH, et al. Heterogeneous GM-CSF signaling in macrophages is associated with control of Mycobacterium tuberculosis. Nat Commun. 2019;10(1):2329. https://doi.org/10.1038/s41467-019-10065-8 .
doi: 10.1038/s41467-019-10065-8 pubmed: 31133636 pmcid: 6536549
Rothchild AC, Stowell B, Goyal G, Nunes-Alves C, Yang Q, Papavinasasundaram K, et al. Role of granulocyte-macrophage colony-stimulating factor production by T cells during Mycobacterium tuberculosis infection. mBio. 2017;8(5). https://doi.org/10.1128/mBio.01514-17 .
Gonzalez-Juarrero M, Hattle JM, Izzo A, Junqueira-Kipnis AP, Shim TS, Trapnell BC, et al. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. J Leukoc Biol. 2005;77(6):914–22. https://doi.org/10.1189/jlb.1204723 .
doi: 10.1189/jlb.1204723 pubmed: 15767289
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515). https://doi.org/10.1126/science.abd4585 .
Bastard P, Michailidis E, Hoffmann HH, Chbihi M, Le Voyer T, Rosain J, et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J Exp Med. 2021;218(4). https://doi.org/10.1084/jem.20202486 .
Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515). https://doi.org/10.1126/science.abd4570 .
Le Voyer T, Parent AV, Liu X, Cederholm A, Gervais A, Rosain J, et al. Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency. Nature. 2023;623(7988):803–13. https://doi.org/10.1038/s41586-023-06717-x .
doi: 10.1038/s41586-023-06717-x pubmed: 37938781 pmcid: 10665196
Rajasingham R, Govender NP, Jordan A, Loyse A, Shroufi A, Denning DW, et al. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect Dis. 2022;22(12):1748–55. https://doi.org/10.1016/S1473-3099(22)00499-6 .
doi: 10.1016/S1473-3099(22)00499-6 pubmed: 36049486 pmcid: 9701154
Coussement J, Heath CH, Roberts MB, Lane RJ, Spelman T, Smibert OC, et al. Current epidemiology and clinical features of cryptococcus infection in patients without human immunodeficiency virus: a multicenter Study in 46 hospitals in Australia and New Zealand. Clin Infect Dis. 2023;77(7):976–86. https://doi.org/10.1093/cid/ciad321 .
doi: 10.1093/cid/ciad321 pubmed: 37235212
Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS ONE. 2013;8(3):e60431. https://doi.org/10.1371/journal.pone.0060431 .
doi: 10.1371/journal.pone.0060431 pubmed: 23555970 pmcid: 3608592
Hevey MA, George IA, Raval K, Powderly WG, Spec A. Presentation and mortality of cryptococcal infection varies by predisposing illness: a retrospective cohort study. Am J Med. 2019;132(8):977–e831. https://doi.org/10.1016/j.amjmed.2019.04.026 .
doi: 10.1016/j.amjmed.2019.04.026 pubmed: 31077652 pmcid: 6744315
Fang W, Fa Z, Liao W. Epidemiology of Cryptococcus and cryptococcosis in China. Fungal Genet Biol. 2015;78:7–15. https://doi.org/10.1016/j.fgb.2014.10.017 .
doi: 10.1016/j.fgb.2014.10.017 pubmed: 25445309
de Azambuja AZ, Wissmann Neto G, Watte G, Antoniolli L, Goldani LZ. Cryptococcal meningitis: a retrospective cohort of a Brazilian reference hospital in the post-HAART era of universal access. Can J Infect Dis Med Microbiol. 2018;2018:6512468. https://doi.org/10.1155/2018/6512468 .
doi: 10.1155/2018/6512468 pubmed: 30154942 pmcid: 6093042
Nunes JO, Tsujisaki RAS, Nunes MO, Lima GME, Paniago AMM, Pontes ERJC, et al. Cryptococcal meningitis epidemiology: 17 years of experience in a state of the Brazilian pantanal. Rev Soc Bras Med Trop. 2018;51(4):485–92. https://doi.org/10.1590/0037-8682-0050-2018 .
doi: 10.1590/0037-8682-0050-2018 pubmed: 30133632
Lomes NR, Melhem MS, Szeszs MW, Martins MA, Buccheri R. Cryptococcosis in non-HIV/non-transplant patients: a Brazilian case series. Med Mycol. 2016;54(7):669–76. https://doi.org/10.1093/mmy/myw021 .
doi: 10.1093/mmy/myw021 pubmed: 27118805
Debourgogne A, Iriart X, Blanchet D, Veron V, Boukhari R, Nacher M, et al. Characteristics and specificities of cryptococcus infections in French Guiana, 1998–2008. Med Mycol. 2011;49(8):864–71. https://doi.org/10.3109/13693786.2011.584198 .
doi: 10.3109/13693786.2011.584198 pubmed: 21612563
Yang DH, England MR, Salvator H, Anjum S, Park YD, Marr KA, et al. Cryptococcus gattii species complex as an opportunistic pathogen: underlying medical conditions associated with the infection. mBio. 2021;12(5):e0270821. https://doi.org/10.1128/mBio.02708-21 .
doi: 10.1128/mBio.02708-21 pubmed: 34700378

Auteurs

Carlos A Arango-Franco (CA)

Group of Inborn Errors of Immunity (Primary Immunodeficiencies), Department of Microbiology and Parasitology, School of Medicine, University of Antioquia (UdeA), Medellín, Colombia. carlos.arango2@udea.edu.co.
Laboratory of Human Genetics of Infectious Diseases. Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France. carlos.arango2@udea.edu.co.

Julian Rojas (J)

Group of Inborn Errors of Immunity (Primary Immunodeficiencies), Department of Microbiology and Parasitology, School of Medicine, University of Antioquia (UdeA), Medellín, Colombia.

Carolina Firacative (C)

Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.

Mélanie Migaud (M)

Laboratory of Human Genetics of Infectious Diseases. Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.

Clara Inés Agudelo (CI)

Microbiology Group, Instituto Nacional de Salud, Bogotá, Colombia.

José Luis Franco (JL)

Group of Inborn Errors of Immunity (Primary Immunodeficiencies), Department of Microbiology and Parasitology, School of Medicine, University of Antioquia (UdeA), Medellín, Colombia.

Jean-Laurent Casanova (JL)

Laboratory of Human Genetics of Infectious Diseases. Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
University of Paris Cité, Imagine Institute, Paris, France.
St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
Howard Hughes Medical Institute, New York, NY, USA.
Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France.

Anne Puel (A)

Laboratory of Human Genetics of Infectious Diseases. Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
University of Paris Cité, Imagine Institute, Paris, France.
St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.

Jairo Lizarazo (J)

Internal Medicine Department, Hospital Universitario Erasmo Meoz, University of Pamplona, Cúcuta, Colombia.

Elizabeth Castañeda (E)

Microbiology Group, Instituto Nacional de Salud, Bogotá, Colombia.

Andrés A Arias (AA)

Group of Inborn Errors of Immunity (Primary Immunodeficiencies), Department of Microbiology and Parasitology, School of Medicine, University of Antioquia (UdeA), Medellín, Colombia. aaugusto.arias@udea.edu.co.
School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia. aaugusto.arias@udea.edu.co.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH