Autoantibodies Neutralizing GM-CSF in HIV-Negative Colombian Patients Infected with Cryptococcus gattii and C. neoformans.
Humans
Granulocyte-Macrophage Colony-Stimulating Factor
/ immunology
Autoantibodies
/ blood
Male
Colombia
Female
Adult
Cryptococcus gattii
/ immunology
Middle Aged
Cryptococcus neoformans
/ immunology
Cryptococcosis
/ immunology
Antibodies, Neutralizing
/ blood
Retrospective Studies
HIV Seronegativity
/ immunology
Young Adult
Aged
Cryptococcus gattii
Cryptococcus neoformans
Anti-cytokine autoantibodies
Cryptococcosis
Granulocyte-macrophage colony-stimulating factor (GM-CSF)
Human immunodeficiency virus (HIV), Neutralizing auto-abs against GM-CSF
Journal
Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137
Informations de publication
Date de publication:
15 Jul 2024
15 Jul 2024
Historique:
received:
17
01
2024
accepted:
21
06
2024
medline:
15
7
2024
pubmed:
15
7
2024
entrez:
15
7
2024
Statut:
epublish
Résumé
Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera collected from Colombian patients with non-HIV-associated cryptococcosis in a retrospective national cohort from 1997 to 2016. We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs against GM-CSF in 30 HIV negative adults with cryptococcosis (13 caused by C. gattii and 17 caused by C. neoformans). We detected neutralizing auto-Abs against GM-CSF in the sera of 10 out of 13 (77%) patients infected with C. gattii and one out of 17 (6%) patients infected with C. neoformans. We report eleven Colombian patients diagnosed with cryptococcosis who had auto-Abs that neutralize GM-CSF. Among these patients, ten were infected with C. gattii and only one with C. neoformans.
Sections du résumé
BACKGROUND
BACKGROUND
Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera collected from Colombian patients with non-HIV-associated cryptococcosis in a retrospective national cohort from 1997 to 2016.
METHODS
METHODS
We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs against GM-CSF in 30 HIV negative adults with cryptococcosis (13 caused by C. gattii and 17 caused by C. neoformans).
RESULTS
RESULTS
We detected neutralizing auto-Abs against GM-CSF in the sera of 10 out of 13 (77%) patients infected with C. gattii and one out of 17 (6%) patients infected with C. neoformans.
CONCLUSIONS
CONCLUSIONS
We report eleven Colombian patients diagnosed with cryptococcosis who had auto-Abs that neutralize GM-CSF. Among these patients, ten were infected with C. gattii and only one with C. neoformans.
Identifiants
pubmed: 39008214
doi: 10.1007/s10875-024-01757-y
pii: 10.1007/s10875-024-01757-y
doi:
Substances chimiques
Granulocyte-Macrophage Colony-Stimulating Factor
83869-56-1
Autoantibodies
0
Antibodies, Neutralizing
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
163Informations de copyright
© 2024. The Author(s).
Références
Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med. 2014;4(7):a019760. https://doi.org/10.1101/cshperspect.a019760 .
doi: 10.1101/cshperspect.a019760
pubmed: 24985132
pmcid: 4066639
MacDougall L, Fyfe M, Romney M, Starr M, Galanis E. Risk factors for Cryptococcus gattii infection, British Columbia, Canada. Emerg Infect Dis. 2011;17(2):193–9. https://doi.org/10.3201/eid1702.101020 .
doi: 10.3201/eid1702.101020
pubmed: 21291588
pmcid: 3204768
Chen SC, Meyer W, Sorrell TC. Cryptococcus gattii infections. Clin Microbiol Rev. 2014;27(4):1024–980. https://doi.org/10.1128/CMR.00126-13 .
doi: 10.1128/CMR.00126-13
pubmed: 25278580
pmcid: 4187630
Kwon-Chung KJ, Saijo T. Is Cryptococcus gattii a primary pathogen? J Fungi (Basel). 2015;1(2):154–67. https://doi.org/10.3390/jof1020154 .
doi: 10.3390/jof1020154
pubmed: 27795955
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med. 2022;219(4). https://doi.org/10.1084/jem.20211387 .
Ku CL, Chi CY, von Bernuth H, Doffinger R. Autoantibodies against cytokines: phenocopies of primary immunodeficiencies? Hum Genet. 2020;139(6–7):783–94. https://doi.org/10.1007/s00439-020-02180-0 .
doi: 10.1007/s00439-020-02180-0
pubmed: 32419033
pmcid: 7272486
Vinh DC. Of mycelium and men: inherent human susceptibility to fungal diseases. Pathogens. 2023;12(3). https://doi.org/10.3390/pathogens12030456 .
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol. 2024;25(5):743–54. https://doi.org/10.1038/s41590-024-01815-y .
doi: 10.1038/s41590-024-01815-y
pubmed: 38698239
Chetchotisakd P, Anunnatsiri S, Nithichanon A, Lertmemongkolchai G. Cryptococcosis in anti-interferon-gamma autoantibody-positive patients: a different clinical manifestation from HIV-infected patients. Jpn J Infect Dis. 2017;70(1):74–69. https://doi.org/10.7883/yoken.JJID.2015.340 .
doi: 10.7883/yoken.JJID.2015.340
pubmed: 27169938
Pithukpakorn M, Roothumnong E, Angkasekwinai N, Suktitipat B, Assawamakin A, Luangwedchakarn V, et al. HLA-DRB1 and HLA-DQB1 are associated with adult-onset immunodeficiency with acquired anti-interferon-gamma autoantibodies. PLoS ONE. 2015;10(5):e0128481. https://doi.org/10.1371/journal.pone.0128481 .
doi: 10.1371/journal.pone.0128481
pubmed: 26011559
pmcid: 4444022
Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, et al. Pulmonary alveolar proteinosis. Nat Rev Dis Primers. 2019;5(1):16. https://doi.org/10.1038/s41572-019-0066-3 .
doi: 10.1038/s41572-019-0066-3
pubmed: 30846703
Lee E, Miller C, Ataya A, Wang T. Opportunistic infection associated with elevated GM-CSF autoantibodies: a case series and review of the literature. Open Forum Infect Dis. 2022;9(5):ofac146. https://doi.org/10.1093/ofid/ofac146 .
doi: 10.1093/ofid/ofac146
pubmed: 35531378
pmcid: 9070348
Rosen LB, Freeman AF, Yang LM, Jutivorakool K, Olivier KN, Angkasekwinai N, et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol. 2013;190(8):3959–66. https://doi.org/10.4049/jimmunol.1202526 .
doi: 10.4049/jimmunol.1202526
pubmed: 23509356
Salvator H, Cheng A, Rosen LB, Williamson PR, Bennett JE, Kashyap A, et al. Neutralizing GM-CSF autoantibodies in pulmonary alveolar proteinosis, cryptococcal meningitis and severe nocardiosis. Respir Res. 2022;23(1):280. https://doi.org/10.1186/s12931-022-02103-9 .
doi: 10.1186/s12931-022-02103-9
pubmed: 36221098
pmcid: 9552154
Kuo CY, Wang SY, Shih HP, Tu KH, Huang WC, Ding JY, et al. Disseminated cryptococcosis due to anti-granulocyte-macrophage colony-stimulating factor autoantibodies in the absence of pulmonary alveolar proteinosis. J Clin Immunol. 2017;37(2):143–52. https://doi.org/10.1007/s10875-016-0364-4 .
doi: 10.1007/s10875-016-0364-4
pubmed: 28013480
Chen GH, Teitz-Tennenbaum S, Neal LM, Murdock BJ, Malachowski AN, Dils AJ, et al. Local GM-CSF-dependent differentiation and activation of pulmonary dendritic cells and macrophages protect against progressive cryptococcal lung infection in mice. J Immunol. 2016;196(4):1810–21. https://doi.org/10.4049/jimmunol.1501512 .
doi: 10.4049/jimmunol.1501512
pubmed: 26755822
Prevel R, Guillotin V, Imbert S, Blanco P, Delhaes L, Duffau P. Central nervous system cryptococcosis in patients with sarcoidosis: comparison with non-sarcoidosis patients and review of potential pathophysiological mechanisms. Front Med (Lausanne). 2022;9:836886. https://doi.org/10.3389/fmed.2022.836886 .
doi: 10.3389/fmed.2022.836886
pubmed: 35425769
Escandon P, Lizarazo J, Agudelo CI, Castaneda E. Cryptococcosis in Colombia: compilation and analysis of data from laboratory-based surveillance. J Fungi (Basel). 2018;4(1). https://doi.org/10.3390/jof4010032 .
Lizarazo J, Escandón P, Agudelo CI, Firacative C, Meyer W, Castañeda E. Retrospective study of the epidemiology and clinical manifestations of Cryptococcus gattii infections in Colombia from 1997–2011. PLoS Negl Trop Dis. 2014;8(11):e3272. https://doi.org/10.1371/journal.pntd.0003272 .
doi: 10.1371/journal.pntd.0003272
pubmed: 25411779
pmcid: 4238989
Arango-Franco CA, Migaud M, Ramirez-Sanchez IC, Arango-Bustamante K, Moncada-Velez M, Rojas J, et al. Anti-GM-CSF neutralizing autoantibodies in Colombian patients with disseminated cryptococcosis. J Clin Immunol. 2023;43(5):921–32. https://doi.org/10.1007/s10875-023-01451-5 .
doi: 10.1007/s10875-023-01451-5
pubmed: 36821021
pmcid: 9947894
Firacative C, Escandón P. Antifungal susceptibility of clinical Cryptococcus gattii isolates from Colombia varies among molecular types. Med Mycol. 2021;59(11):1122–5. https://doi.org/10.1093/mmy/myab041 .
doi: 10.1093/mmy/myab041
pubmed: 34264298
pmcid: 8757315
Becerra-Álvarez P, Escandón P, Lizarazo J, Quirós-Gómez Ó, Firacative C. Cryptococcus neoformans- and Cryptococcus gattii-specific IgG, IgA and IgM differ among children and adults with and without cryptococcosis from Colombia. Med Mycol. 2022;60(9). https://doi.org/10.1093/mmy/myac067 .
(INS) INdSdC. Tuberculosis en, Colombia. 2024. Proceso vigilancia y analisis del riesgo en salud pública [Internet]. https://www.ins.gov.co/buscador-eventos/Informesdeevento/TUBERCULOSIS%20PE%20III%202024.pdf .
Bryson BD, Rosebrock TR, Tafesse FG, Itoh CY, Nibasumba A, Babunovic GH, et al. Heterogeneous GM-CSF signaling in macrophages is associated with control of Mycobacterium tuberculosis. Nat Commun. 2019;10(1):2329. https://doi.org/10.1038/s41467-019-10065-8 .
doi: 10.1038/s41467-019-10065-8
pubmed: 31133636
pmcid: 6536549
Rothchild AC, Stowell B, Goyal G, Nunes-Alves C, Yang Q, Papavinasasundaram K, et al. Role of granulocyte-macrophage colony-stimulating factor production by T cells during Mycobacterium tuberculosis infection. mBio. 2017;8(5). https://doi.org/10.1128/mBio.01514-17 .
Gonzalez-Juarrero M, Hattle JM, Izzo A, Junqueira-Kipnis AP, Shim TS, Trapnell BC, et al. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. J Leukoc Biol. 2005;77(6):914–22. https://doi.org/10.1189/jlb.1204723 .
doi: 10.1189/jlb.1204723
pubmed: 15767289
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515). https://doi.org/10.1126/science.abd4585 .
Bastard P, Michailidis E, Hoffmann HH, Chbihi M, Le Voyer T, Rosain J, et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J Exp Med. 2021;218(4). https://doi.org/10.1084/jem.20202486 .
Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515). https://doi.org/10.1126/science.abd4570 .
Le Voyer T, Parent AV, Liu X, Cederholm A, Gervais A, Rosain J, et al. Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency. Nature. 2023;623(7988):803–13. https://doi.org/10.1038/s41586-023-06717-x .
doi: 10.1038/s41586-023-06717-x
pubmed: 37938781
pmcid: 10665196
Rajasingham R, Govender NP, Jordan A, Loyse A, Shroufi A, Denning DW, et al. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect Dis. 2022;22(12):1748–55. https://doi.org/10.1016/S1473-3099(22)00499-6 .
doi: 10.1016/S1473-3099(22)00499-6
pubmed: 36049486
pmcid: 9701154
Coussement J, Heath CH, Roberts MB, Lane RJ, Spelman T, Smibert OC, et al. Current epidemiology and clinical features of cryptococcus infection in patients without human immunodeficiency virus: a multicenter Study in 46 hospitals in Australia and New Zealand. Clin Infect Dis. 2023;77(7):976–86. https://doi.org/10.1093/cid/ciad321 .
doi: 10.1093/cid/ciad321
pubmed: 37235212
Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with cryptococcosis according to immune status. PLoS ONE. 2013;8(3):e60431. https://doi.org/10.1371/journal.pone.0060431 .
doi: 10.1371/journal.pone.0060431
pubmed: 23555970
pmcid: 3608592
Hevey MA, George IA, Raval K, Powderly WG, Spec A. Presentation and mortality of cryptococcal infection varies by predisposing illness: a retrospective cohort study. Am J Med. 2019;132(8):977–e831. https://doi.org/10.1016/j.amjmed.2019.04.026 .
doi: 10.1016/j.amjmed.2019.04.026
pubmed: 31077652
pmcid: 6744315
Fang W, Fa Z, Liao W. Epidemiology of Cryptococcus and cryptococcosis in China. Fungal Genet Biol. 2015;78:7–15. https://doi.org/10.1016/j.fgb.2014.10.017 .
doi: 10.1016/j.fgb.2014.10.017
pubmed: 25445309
de Azambuja AZ, Wissmann Neto G, Watte G, Antoniolli L, Goldani LZ. Cryptococcal meningitis: a retrospective cohort of a Brazilian reference hospital in the post-HAART era of universal access. Can J Infect Dis Med Microbiol. 2018;2018:6512468. https://doi.org/10.1155/2018/6512468 .
doi: 10.1155/2018/6512468
pubmed: 30154942
pmcid: 6093042
Nunes JO, Tsujisaki RAS, Nunes MO, Lima GME, Paniago AMM, Pontes ERJC, et al. Cryptococcal meningitis epidemiology: 17 years of experience in a state of the Brazilian pantanal. Rev Soc Bras Med Trop. 2018;51(4):485–92. https://doi.org/10.1590/0037-8682-0050-2018 .
doi: 10.1590/0037-8682-0050-2018
pubmed: 30133632
Lomes NR, Melhem MS, Szeszs MW, Martins MA, Buccheri R. Cryptococcosis in non-HIV/non-transplant patients: a Brazilian case series. Med Mycol. 2016;54(7):669–76. https://doi.org/10.1093/mmy/myw021 .
doi: 10.1093/mmy/myw021
pubmed: 27118805
Debourgogne A, Iriart X, Blanchet D, Veron V, Boukhari R, Nacher M, et al. Characteristics and specificities of cryptococcus infections in French Guiana, 1998–2008. Med Mycol. 2011;49(8):864–71. https://doi.org/10.3109/13693786.2011.584198 .
doi: 10.3109/13693786.2011.584198
pubmed: 21612563
Yang DH, England MR, Salvator H, Anjum S, Park YD, Marr KA, et al. Cryptococcus gattii species complex as an opportunistic pathogen: underlying medical conditions associated with the infection. mBio. 2021;12(5):e0270821. https://doi.org/10.1128/mBio.02708-21 .
doi: 10.1128/mBio.02708-21
pubmed: 34700378