Fabrication, characterization and numerical validation of a novel thin-wall hydrogel vessel model for cardiovascular research based on a patient-specific stenotic carotid artery bifurcation.
Cardiovascular engineering
Fluid dynamics
Fluid–structure interaction (FSI)
Hydrogel
In vitro
Numerical simulation
Ultrasound
Vessel compliance
Vessel model
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 Jul 2024
15 Jul 2024
Historique:
received:
25
10
2023
accepted:
03
07
2024
medline:
16
7
2024
pubmed:
16
7
2024
entrez:
15
7
2024
Statut:
epublish
Résumé
In vitro vascular models, primarily made of silicone, have been utilized for decades for studying hemodynamics and supporting the development of implants for catheter-based treatments of diseases such as stenoses and aneurysms. Hydrogels have emerged as prominent materials in tissue-engineering applications, offering distinct advantages over silicone models for fabricating vascular models owing to their viscoelasticity, low friction, and tunable mechanical properties. Our study evaluated the feasibility of fabricating thin-wall, anatomical vessel models made of polyvinyl alcohol hydrogel (PVA-H) based on a patient-specific carotid artery bifurcation using a combination of 3D printing and molding technologies. The model's geometry, elastic modulus, volumetric compliance, and diameter distensibility were characterized experimentally and numerically simulated. Moreover, a comparison with silicone models with the same anatomy was performed. A PVA-H vessel model was integrated into a mock circulatory loop for a preliminary ultrasound-based assessment of fluid dynamics. The vascular model's geometry was successfully replicated, and the elastic moduli amounted to 0.31 ± 0.007 MPa and 0.29 ± 0.007 MPa for PVA-H and silicone, respectively. Both materials exhibited nearly identical volumetric compliance (0.346 and 0.342% mmHg
Identifiants
pubmed: 39009618
doi: 10.1038/s41598-024-66777-5
pii: 10.1038/s41598-024-66777-5
doi:
Substances chimiques
Polyvinyl Alcohol
9002-89-5
Hydrogels
0
polyvinyl alcohol hydrogel
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
16301Subventions
Organisme : the German Federal Ministry of Education and Research (BMBF) joint project
ID : 05M2020-MLgSA
Informations de copyright
© 2024. The Author(s).
Références
Lusis, A. J. Atherosclerosis. Nature 407, 233–241. https://doi.org/10.1038/35025203 (2000).
doi: 10.1038/35025203
pubmed: 11001066
pmcid: 2826222
Geoghegan, P. H., Buchmann, N. A., Spence, C. J. T., Moore, S. & Jermy, M. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp. Fluids 52, 1331–1347. https://doi.org/10.1007/s00348-011-1258-0 (2012).
doi: 10.1007/s00348-011-1258-0
Harloff, A. Carotid plaque hemodynamics. Interv. Neurol. 1, 44–54. https://doi.org/10.1159/000338360 (2012).
doi: 10.1159/000338360
pubmed: 25187766
pmcid: 4031766
Oh-Park, M., Zampolini, M. & Bitterman, J. Stroke syndromes. In Braddom’s Rehabilitation Care. A Clinical Handbook. Braddom’s Rehabilitation Care (ed. Cifu, D. X. & Lew, H. L.) 315–320 (Elsevier, 2018).
Mechtouff, L. et al. A narrative review of the pathophysiology of ischemic stroke in carotid plaques: A distinction versus a compromise between hemodynamic and embolic mechanism. Ann. Transl. Med. 9, 1208. https://doi.org/10.21037/atm-20-7490 (2021).
doi: 10.21037/atm-20-7490
pubmed: 34430649
pmcid: 8350662
Moulakakis, K. G. et al. Acute carotid stent thrombosis: A comprehensive review. Vasc. Endovasc. Surg. 50, 511–521. https://doi.org/10.1177/1538574416665986 (2016).
doi: 10.1177/1538574416665986
Alexandratou, M. et al. Advances in noninvasive carotid wall imaging with ultrasound: A narrative review. J. Clin. Med. https://doi.org/10.3390/jcm11206196 (2022).
doi: 10.3390/jcm11206196
pubmed: 36294515
pmcid: 9604731
Hewlin, R. L. & Kizito, J. P. Development of an experimental and digital cardiovascular arterial model for transient hemodynamic and postural change studies: “A preliminary framework analysis”. Cardiovasc. Eng. Technol. 9, 1–31. https://doi.org/10.1007/s13239-017-0332-z (2018).
doi: 10.1007/s13239-017-0332-z
pubmed: 29124548
Hoving, A. M., de Vries, E. E., Mikhal, J., de Borst, G. J. & Slump, C. H. A systematic review for the design of in vitro flow studies of the carotid artery bifurcation. Cardiovasc. Eng. Technol. 11, 111–127. https://doi.org/10.1007/s13239-019-00448-9 (2020).
doi: 10.1007/s13239-019-00448-9
pubmed: 31823191
Chee, A. J. Y., Ho, C. K., Yiu, B. Y. S. & Yu, A. C. H. Walled carotid bifurcation phantoms for imaging investigations of vessel wall motion and blood flow dynamics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1852–1864. https://doi.org/10.1109/TUFFC.2016.2591946 (2016).
doi: 10.1109/TUFFC.2016.2591946
pubmed: 27429436
Cibis, M. et al. The effect of spatial and temporal resolution of cine phase contrast MRI on wall shear stress and oscillatory shear index assessment. PLoS One 11, e0163316. https://doi.org/10.1371/journal.pone.0163316 (2016).
doi: 10.1371/journal.pone.0163316
pubmed: 27669568
pmcid: 5036833
Li, G. & Chen, B. I. Computational model of platelet flow in carotid artery bifurcation. J. Mech. Med. Biol. 15, 1540042. https://doi.org/10.1142/S0219519415400424 (2015).
doi: 10.1142/S0219519415400424
Clauser, J. et al. A novel plasma-based fluid for particle image velocimetry (piv): In-vitro feasibility study of flow diverter effects in aneurysm model. Ann. Biomed. Eng. 46, 841–848. https://doi.org/10.1007/s10439-018-2002-1 (2018).
doi: 10.1007/s10439-018-2002-1
pubmed: 29488139
Gester, K. et al. In vitro evaluation of intra-aneurysmal, flow-diverter-induced thrombus formation: A feasibility study. AJNR Am. J. Neuroradiol. 37, 490–496. https://doi.org/10.3174/ajnr.A4555 (2016).
doi: 10.3174/ajnr.A4555
pubmed: 26450536
pmcid: 7960119
Büsen, M. et al. Development of an in vitro PIV setup for preliminary investigation of the effects of aortic compliance on flow patterns and hemodynamics. Cardiovasc. Eng. Technol. 8, 368–377. https://doi.org/10.1007/s13239-017-0309-y (2017).
doi: 10.1007/s13239-017-0309-y
pubmed: 28597231
Shimizu, Y., Javadzadegan, A., Hayase, T. & Ohta, M. Flow observations in elastic stenosis biomodel with comparison to rigid-like model. Technol. Health Care 21, 305–314 (2013).
doi: 10.3233/THC-130725
pubmed: 23949173
Kosukegawa, H. et al. Measurements of dynamic viscoelasticity of poly (vinyl alcohol) hydrogel for the development of blood vessel biomodeling. J. Fluid Sci. Technol. 3, 533–543. https://doi.org/10.1299/jfst.3.533 (2008).
doi: 10.1299/jfst.3.533
Ding, A., Braschkat, A., Guber, A. & Cattaneo, G. New concept of patient-specific flow diversion treatment of intracranial aneurysms: Design aspects and in vitro fluid dynamics. Clin. Neuroradiol. https://doi.org/10.1007/s00062-020-00930-1 (2020).
doi: 10.1007/s00062-020-00930-1
pubmed: 32651611
Corbett, T. J., Doyle, B. J., Callanan, A., Walsh, M. T. & McGloughlin, T. M. Engineering silicone rubbers for in vitro studies: Creating AAA models and ILT analogues with physiological properties. J. Biomech. Eng. 132, 11008. https://doi.org/10.1115/1.4000156 (2010).
doi: 10.1115/1.4000156
Alexandre, N. et al. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—In vitro and in vivo studies. J. Biomed. Mater. Res. Part A 102, 4262–4275. https://doi.org/10.1002/jbm.a.35098 (2014).
doi: 10.1002/jbm.a.35098
Gupta, S., Webster, T. J. & Sinha, A. Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J. Mater. Sci. Mater. Med. 22, 1763–1772. https://doi.org/10.1007/s10856-011-4343-2 (2011).
doi: 10.1007/s10856-011-4343-2
pubmed: 21643819
Kumar, A. & Han, S. S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 66, 159–182. https://doi.org/10.1080/00914037.2016.1190930 (2017).
doi: 10.1080/00914037.2016.1190930
Wang, M. et al. Poly(vinyl alcohol) hydrogels: The old and new functional materials. Int. J. Polym. Sci. 2021, 1–16. https://doi.org/10.1155/2021/2225426 (2021).
doi: 10.1155/2021/2225426
Eulzer, P., Meuschke, M., Klingner, C. M. & Lawonn, K. Visualizing carotid blood flow simulations for stroke prevention. Comput. Graph. Forum 40, 435–446. https://doi.org/10.1111/cgf.14319 (2021).
doi: 10.1111/cgf.14319
Saba, L., Sanfilippo, R., Montisci, R. & Mallarini, G. Carotid artery wall thickness: Comparison between sonography and multi-detector row CT angiography. Neuroradiology 52, 75–82. https://doi.org/10.1007/s00234-009-0589-5 (2010).
doi: 10.1007/s00234-009-0589-5
pubmed: 19727693
Fedorov, A. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323–1341. https://doi.org/10.1016/j.mri.2012.05.001 (2012).
doi: 10.1016/j.mri.2012.05.001
pubmed: 22770690
pmcid: 3466397
Pascaner, A. F. et al. Continuous assessment of carotid intima-media thickness applied to estimate a volumetric compliance using B-mode ultrasound sequences. Physiol. Meas. 36, 397–407. https://doi.org/10.1088/0967-3334/36/3/397 (2015).
doi: 10.1088/0967-3334/36/3/397
pubmed: 25651999
Richter, K., Probst, T., Hundertmark, A., Eulzer, P. & Lawonn, K. Longitudinal wall shear stress evaluation using centerline projection approach in the numerical simulations of the patient-based carotid artery (2022).
Ebrahimi, A. P. Mechanical properties of normal and diseased cerebrovascular system. J. Vasc. Interv. Neurol. 2, 155–162 (2009).
pubmed: 22518247
pmcid: 3317338
Wang, H., Krüger, T. & Varnik, F. Geometry and flow properties affect the phase shift between pressure and shear stress waves in blood vessels. Fluids 6, 378. https://doi.org/10.3390/fluids6110378 (2021).
doi: 10.3390/fluids6110378
Gallarello, A. et al. Patient-specific aortic phantom with tunable compliance. J. Eng. Sci. Med. Diagn. Ther. https://doi.org/10.1115/1.4044611 (2019).
doi: 10.1115/1.4044611
Cao, P., Duhamel, Y., Olympe, G., Ramond, B. & Langevin, F. A new production method of elastic silicone carotid phantom based on MRI acquisition using rapid prototyping technique. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2013, 5331–5334. https://doi.org/10.1109/EMBC.2013.6610753 (2013).
doi: 10.1109/EMBC.2013.6610753
pubmed: 24110940
Ghriallais, R. N., McNamara, L. & Bruzzi, M. Comparison of in vitro human endothelial cell response to self-expanding stent deployment in a straight and curved peripheral artery simulator. J. R. Soc. Interface. 10, 20120965. https://doi.org/10.1098/rsif.2012.0965 (2013).
doi: 10.1098/rsif.2012.0965
pubmed: 23365191
pmcid: 3627103
McCulloch, A., Turcott, A., Graham, G., Frenklakh, S. & Cardinal, K. O. Endothelialized silicone aneurysm models for in vitro evaluation of flow diverters. J. Neurointerv. Surg. 13, 727–731. https://doi.org/10.1136/neurintsurg-2020-016859 (2021).
doi: 10.1136/neurintsurg-2020-016859
pubmed: 33106319
Nemati, M. et al. Application of full field optical studies for pulsatile flow in a carotid artery phantom. Biomed. Opt. Express 6, 4037–4050. https://doi.org/10.1364/BOE.6.004037 (2015).
doi: 10.1364/BOE.6.004037
pubmed: 26504652
pmcid: 4605061
Hou, Y. et al. Preparation of PVA hydrogel with high-transparence and investigations of its transparent mechanism. RSC Adv. 5, 24023–24030. https://doi.org/10.1039/C5RA01280E (2015).
doi: 10.1039/C5RA01280E
Mamada, K., Fridrici, V., Kosukegawa, H., Kapsa, P. & Ohta, M. Friction properties of poly(vinyl alcohol) hydrogel: Effects of degree of polymerization and saponification value. Tribol. Lett. 42, 241–251. https://doi.org/10.1007/s11249-011-9768-8 (2011).
doi: 10.1007/s11249-011-9768-8
Winkler, C. M., Kuhn, A. I., Hentschel, G. & Glasmacher, B. A review on novel channel materials for particle image velocimetry measurements-usability of hydrogels in cardiovascular applications. Gels (Basel, Switzerland). https://doi.org/10.3390/gels8080502 (2022).
doi: 10.3390/gels8080502
pubmed: 36005103
pmcid: 9407631
DiCarlo, A. L. & Poepping, T. Investigation of flow and turbulence in carotid artery models of varying compliance using particle image velocimetry. In World Congress on Medical Physics and Biomedical Engineering, June 7–12, 2015, Toronto, Canada, vol. 51 (ed. Jaffray, D. A.) 1743–1746 (Springer, Toronto, 2015).
Geoghegan, P. H., Jermy, M. C. & Nobes, D. S. A PIV comparison of the flow field and wall shear stress in rigid and compliant models of healthy carotid arteries. J. Mech. Med. Biol. 17, 1750041. https://doi.org/10.1142/S0219519417500415 (2017).
doi: 10.1142/S0219519417500415
Williamson, P. N. et al. Review of the development of haemodynamic modelling techniques to capture flow behaviour in arteries affected by aneurysm, atherosclerosis and stenting. J. Biomech. Eng. https://doi.org/10.1115/1.4053082 (2021).
doi: 10.1115/1.4053082
Raj, J. R., Rahman, S. & Anand, S. An insight into elasticity analysis of common carotid artery using ultrasonography. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 230, 750–760. https://doi.org/10.1177/0954411916650220 (2016).
doi: 10.1177/0954411916650220
Chen, Y., Li, J., Lu, J., Ding, M. & Chen, Y. Synthesis and properties of Poly(vinyl alcohol) hydrogels with high strength and toughness. Polym. Test. 108, 107516. https://doi.org/10.1016/j.polymertesting.2022.107516 (2022).
doi: 10.1016/j.polymertesting.2022.107516
Adelnia, H. et al. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur. Polym. J. 164, 110974. https://doi.org/10.1016/j.eurpolymj.2021.110974 (2022).
doi: 10.1016/j.eurpolymj.2021.110974
Warnert, E. A. H., Murphy, K., Hall, J. E. & Wise, R. G. Noninvasive assessment of arterial compliance of human cerebral arteries with short inversion time arterial spin labeling. J. Cereb. Blood Flow Metab. 35, 461–468. https://doi.org/10.1038/jcbfm.2014.219 (2015).
doi: 10.1038/jcbfm.2014.219
pubmed: 25515216
Godia, E. C. et al. Carotid artery distensibility: A reliability study. J. Med. Ultrasound 26, 1157–1165. https://doi.org/10.7863/jum.2007.26.9.1157 (2007).
doi: 10.7863/jum.2007.26.9.1157
Hansen, F., Mangell, P., Sonesson, B. & Länne, T. Diameter and compliance in the human common carotid artery—Variations with age and sex. Ultrasound Med. Biol. 21, 1–9. https://doi.org/10.1016/0301-5629(94)00090-5 (1995).
doi: 10.1016/0301-5629(94)00090-5
pubmed: 7754568
Marlatt, K. L., Kelly, A. S., Steinberger, J. & Dengel, D. R. The influence of gender on carotid artery compliance and distensibility in children and adults. J. Clin. Ultrasound 41, 340–346. https://doi.org/10.1002/jcu.22015 (2013).
doi: 10.1002/jcu.22015
pubmed: 23233368
Mikola, H. et al. Distensibility of the aorta and carotid artery and left ventricular mass from childhood to early adulthood. Hypertension 65, 146–152. https://doi.org/10.1161/HYPERTENSIONAHA.114.03316 (2015).
doi: 10.1161/HYPERTENSIONAHA.114.03316
pubmed: 25350980
Pedersen, M. M. et al. Novel flow quantification of the carotid bulb and the common carotid artery with vector flow ultrasound. Ultrasound Med. Biol. 40, 2700–2706. https://doi.org/10.1016/j.ultrasmedbio.2014.06.001 (2014).
doi: 10.1016/j.ultrasmedbio.2014.06.001
pubmed: 25218449
Harloff, A. et al. Wall shear stress distribution at the carotid bifurcation: Influence of eversion carotid endarterectomy. Eur. Radiol. 23, 3361–3369. https://doi.org/10.1007/s00330-013-2953-4 (2013).
doi: 10.1007/s00330-013-2953-4
pubmed: 23812310
Camasão, D. B. & Mantovani, D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater. Today. Bio 10, 100106. https://doi.org/10.1016/j.mtbio.2021.100106 (2021).
doi: 10.1016/j.mtbio.2021.100106
pubmed: 33889837
pmcid: 8050780