MHC class II proteins mediate sialic acid independent entry of human and avian H2N2 influenza A viruses.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
15 Jul 2024
Historique:
received: 12 04 2024
accepted: 27 06 2024
medline: 16 7 2024
pubmed: 16 7 2024
entrez: 15 7 2024
Statut: aheadofprint

Résumé

Influenza A viruses (IAV) pose substantial burden on human and animal health. Avian, swine and human IAV bind sialic acid on host glycans as receptor, whereas some bat IAV require MHC class II complexes for cell entry. It is unknown how this difference evolved and whether dual receptor specificity is possible. Here we show that human H2N2 IAV and related avian H2N2 possess dual receptor specificity in cell lines and primary human airway cultures. Using sialylation-deficient cells, we reveal that entry via MHC class II is independent of sialic acid. We find that MHC class II from humans, pigs, ducks, swans and chickens but not bats can mediate H2 IAV entry and that this is conserved in Eurasian avian H2. Our results demonstrate that IAV can possess dual receptor specificity for sialic acid and MHC class II, and suggest a role for MHC class II-dependent entry in zoonotic IAV infections.

Identifiants

pubmed: 39009691
doi: 10.1038/s41564-024-01771-1
pii: 10.1038/s41564-024-01771-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 310030_204166
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : P500PB_206818
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : P400PB_199292
Organisme : Novartis Stiftung für Medizinisch-Biologische Forschung (Novartis Foundation for Medical-Biological Research)
ID : 18C190
Organisme : NIAID NIH HHS
ID : 75N93021C00014
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : U19AI142733
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : U19AI168631

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Long, J. S., Mistry, B., Haslam, S. M. & Barclay, W. S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 17, 67–81 (2019).
pubmed: 30487536 doi: 10.1038/s41579-018-0115-z
Schrauwen, E. J. & Fouchier, R. A. Host adaptation and transmission of influenza A viruses in mammals. Emerg. Microbes Infect. 3, e9 (2014).
pubmed: 26038511 pmcid: 3944123 doi: 10.1038/emi.2014.9
Imai, M. & Kawaoka, Y. The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr. Opin. Virol. 2, 160–167 (2012).
pubmed: 22445963 pmcid: 5605752 doi: 10.1016/j.coviro.2012.03.003
Gamblin, S. J. et al. Hemagglutinin structure and activities. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a038638 (2021).
Gottschalk, A. On the mechanism underlying initiation of influenza virus infection. Ergeb. Mikrobiol. Immunitatsforsch. Exp. Ther. 32, 1–22 (1959).
pubmed: 13652926
Rogers, G. N. & Paulson, J. C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127, 361–373 (1983).
pubmed: 6868370 doi: 10.1016/0042-6822(83)90150-2
Carroll, S. M. & Paulson, J. C. Differential infection of receptor-modified host cells by receptor-specific influenza viruses. Virus Res. 3, 165–179 (1985).
pubmed: 4060886 doi: 10.1016/0168-1702(85)90006-1
Stevens, J. et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155 (2006).
pubmed: 16343533 doi: 10.1016/j.jmb.2005.11.002
Gambaryan, A. S. et al. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6’-sialyl(N-acetyllactosamine). Virology 232, 345–350 (1997).
pubmed: 9191848 doi: 10.1006/viro.1997.8572
Matrosovich, M. N. et al. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233, 224–234 (1997).
pubmed: 9201232 doi: 10.1006/viro.1997.8580
Zhu, X. et al. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc. Natl Acad. Sci. USA 110, 1458–1463 (2013).
pubmed: 23297216 pmcid: 3557073 doi: 10.1073/pnas.1218509110
Sun, X. et al. Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep. 3, 769–778 (2013).
pubmed: 23434510 doi: 10.1016/j.celrep.2013.01.025
Tong, S. et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 9, e1003657 (2013).
pubmed: 24130481 pmcid: 3794996 doi: 10.1371/journal.ppat.1003657
Tong, S. et al. A distinct lineage of influenza A virus from bats. Proc. Natl Acad. Sci. USA 109, 4269–4274 (2012).
pubmed: 22371588 pmcid: 3306675 doi: 10.1073/pnas.1116200109
Karakus, U. et al. MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature 567, 109–112 (2019).
pubmed: 30787439 doi: 10.1038/s41586-019-0955-3
Ciminski, K., Pfaff, F., Beer, M. & Schwemmle, M. Bats reveal the true power of influenza A virus adaptability. PLoS Pathog. 16, e1008384 (2020).
pubmed: 32298389 pmcid: 7161946 doi: 10.1371/journal.ppat.1008384
Connor, R. J., Kawaoka, Y., Webster, R. G. & Paulson, J. C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205, 17–23 (1994).
pubmed: 7975212 doi: 10.1006/viro.1994.1615
Han, J. et al. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Rep. 23, 596–607 (2018).
pubmed: 29642015 pmcid: 5939577 doi: 10.1016/j.celrep.2018.03.045
Murakami, S. et al. Enhanced growth of influenza vaccine seed viruses in Vero cells mediated by broadening the optimal pH range for virus membrane fusion. J. Virol. 86, 1405–1410 (2012).
pubmed: 22090129 pmcid: 3264368 doi: 10.1128/JVI.06009-11
Olajide, O. M. et al. Evolutionarily conserved amino acids in MHC-II mediate bat influenza A virus entry into human cells. PLoS Biol. 21, e3002182 (2023).
pubmed: 37410798 pmcid: 10325068 doi: 10.1371/journal.pbio.3002182
Jones, J. C. et al. Risk assessment of H2N2 influenza viruses from the avian reservoir. J. Virol. 88, 1175–1188 (2014).
pubmed: 24227848 pmcid: 3911670 doi: 10.1128/JVI.02526-13
Krause, J. C. et al. Human monoclonal antibodies to pandemic 1957 H2N2 and pandemic 1968 H3N2 influenza viruses. J. Virol. 86, 6334–6340 (2012).
pubmed: 22457520 pmcid: 3372199 doi: 10.1128/JVI.07158-11
Cline, T. D., Karlsson, E. A., Seufzer, B. J. & Schultz-Cherry, S. The hemagglutinin protein of highly pathogenic H5N1 influenza viruses overcomes an early block in the replication cycle to promote productive replication in macrophages. J. Virol. 87, 1411–1419 (2013).
pubmed: 23152519 pmcid: 3554171 doi: 10.1128/JVI.02682-12
Riser, B. L. & Maassab, H. F. Differential interaction of virulent and attenuated influenza virus strains with ferret alveolar macrophages: possible role in pathogenicity. J. Infect. Dis. 161, 699–705 (1990).
pubmed: 2181032 doi: 10.1093/infdis/161.4.699
Forrester, M. A. et al. Similarities and differences in surface receptor expression by THP-1 monocytes and differentiated macrophages polarized using seven different conditioning regimens. Cell Immunol. 332, 58–76 (2018).
pubmed: 30077333 pmcid: 7611637 doi: 10.1016/j.cellimm.2018.07.008
Genin, M., Clement, F., Fattaccioli, A., Raes, M. & Michiels, C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15, 577 (2015).
pubmed: 26253167 pmcid: 4545815 doi: 10.1186/s12885-015-1546-9
Karakus, U. et al. H19 influenza A virus exhibits species-specific MHC class II receptor usage. Cell Host Microbe https://doi.org/10.1016/j.chom.2024.05.018 (2024).
Pappas, C. et al. Assessment of transmission, pathogenesis and adaptation of H2 subtype influenza viruses in ferrets. Virology 477, 61–71 (2015).
pubmed: 25659818 doi: 10.1016/j.virol.2015.01.002
Lenny, B. J. et al. Evaluation of multivalent H2 influenza pandemic vaccines in mice. Vaccine 35, 1455–1463 (2017).
pubmed: 28189402 pmcid: 5336516 doi: 10.1016/j.vaccine.2017.01.026
Martínez-Sobrido, L. & García-Sastre, A. Generation of recombinant influenza virus from plasmid DNA. J. Vis. Exp. https://doi.org/10.3791/2057 (2010).
doi: 10.3791/2057 pubmed: 20729804 pmcid: 3156010
Hai, R. et al. Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nat. Commun. 4, 2854 (2013).
pubmed: 24326875 doi: 10.1038/ncomms3854
Steel, J. et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J. Virol. 83, 1742–1753 (2009).
pubmed: 19073731 doi: 10.1128/JVI.01920-08
Pugach, P. et al. HIV-1 clones resistant to a small molecule CCR5 inhibitor use the inhibitor-bound form of CCR5 for entry. Virology 361, 212–228 (2007).
pubmed: 17166540 doi: 10.1016/j.virol.2006.11.004
Tscherne, D. M., Manicassamy, B. & Garcia-Sastre, A. An enzymatic virus-like particle assay for sensitive detection of virus entry. J. Virol. Methods 163, 336–343 (2010).
pubmed: 19879300 doi: 10.1016/j.jviromet.2009.10.020
Whitt, M. A. Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J. Virol. Methods 169, 365–374 (2010).
pubmed: 20709108 pmcid: 2956192 doi: 10.1016/j.jviromet.2010.08.006
Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
pubmed: 30976793 pmcid: 6602479 doi: 10.1093/nar/gkz268
Khare, S. et al. GISAID’s role in pandemic response. China CDC Wkly 3, 1049–1051 (2021).
pubmed: 34934514 pmcid: 8668406 doi: 10.46234/ccdcw2021.255
de Castro, E. et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34, W362–W365 (2006).
pubmed: 16845026 pmcid: 1538847 doi: 10.1093/nar/gkl124
Prescott, R. A. et al. A comparative study of in vitro air-liquid interface culture models of the human airway epithelium evaluating cellular heterogeneity and gene expression at single cell resolution. Respir. Res. 24, 213 (2023).
pubmed: 37635251 pmcid: 10464153 doi: 10.1186/s12931-023-02514-2
Zepp, J. A. & Morrisey, E. E. Cellular crosstalk in the development and regeneration of the respiratory system. Nat. Rev. Mol. Cell Biol. 20, 551–566 (2019).
pubmed: 31217577 pmcid: 7254499 doi: 10.1038/s41580-019-0141-3
Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).
pubmed: 33208946 pmcid: 7704697 doi: 10.1038/s41586-020-2922-4
Bonser, L. R. et al. Flow-cytometric analysis and purification of airway epithelial-cell subsets. Am. J. Respir. Cell Mol. Biol. 64, 308–317 (2021).
pubmed: 33196316 pmcid: 7909335 doi: 10.1165/rcmb.2020-0149MA
Wyrzucki, A., Bianchi, M., Kohler, I., Steck, M. & Hangartner, L. Heterosubtypic antibodies to influenza A virus have limited activity against cell-bound virus but are not impaired by strain-specific serum antibodies. J. Virol. 89, 3136–3144 (2015).
pubmed: 25552718 doi: 10.1128/JVI.03069-14
Hurskainen, M. et al. Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat. Commun. 12, 1565 (2021).
pubmed: 33692365 pmcid: 7946947 doi: 10.1038/s41467-021-21865-2
Xu, R., McBride, R., Paulson, J. C., Basler, C. F. & Wilson, I. A. Structure, receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957 H2N2 pandemic. J. Virol. 84, 1715–1721 (2010).
pubmed: 20007271 doi: 10.1128/JVI.02162-09

Auteurs

Umut Karakus (U)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Milagros Sempere Borau (M)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.

Patricia Martínez-Barragán (P)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.

Josephine von Kempis (J)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.

Soner Yildiz (S)

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Laura M Arroyo-Fernández (LM)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.

Marie O Pohl (MO)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.

Julia A Steiger (JA)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.

Irina Glas (I)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.

Annika Hunziker (A)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.

Adolfo García-Sastre (A)

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Silke Stertz (S)

Institute of Medical Virology, University of Zurich, Zurich, Switzerland. stertz.silke@virology.uzh.ch.

Classifications MeSH