High acidity organic waste degradation and the potential to bioremediation of heavy metals in soil by an acid-tolerant Serratia sp.


Journal

Environmental geochemistry and health
ISSN: 1573-2983
Titre abrégé: Environ Geochem Health
Pays: Netherlands
ID NLM: 8903118

Informations de publication

Date de publication:
16 Jul 2024
Historique:
received: 03 04 2024
accepted: 01 07 2024
medline: 16 7 2024
pubmed: 16 7 2024
entrez: 16 7 2024
Statut: epublish

Résumé

Highly acidic citrus pomace (CP) is a byproduct of Pericarpium Citri Reticulatae production and causes significant environmental damage. In this study, a newly isolated acid-tolerant strain of Serratia sp. JS-043 was used to treat CP and evaluate the effect of reduced acid citrus pomace (RACP) in passivating heavy metals. The results showed that biological treatment could remove 97.56% of citric acid in CP, the organic matter in the soil increased by 202.60% and the catalase activity in the soil increased from 0 to 0.117 U g

Identifiants

pubmed: 39012543
doi: 10.1007/s10653-024-02109-w
pii: 10.1007/s10653-024-02109-w
doi:

Substances chimiques

Metals, Heavy 0
Soil Pollutants 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

321

Subventions

Organisme : State Key Laboratory of Applied Microbiology Southern China
ID : SKLAM003-2021
Organisme : Guangdong Special Funds for Science and Technology Innovation Strategy
ID : 2018JK35202003

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

Références

An, X. J., Zhong, B., Chen, G. T., An, W. J., Xia, X., Li, H. G., Lai, F. J., & Zhang, Q. H. (2021). Evaluation of bioremediation and detoxification potentiality for papermaking black liquor by a new isolated thermophilic and alkali-tolerant Serratia sp. AXJ-m. Journal of Hazardous Material, 406, 124285. https://doi.org/10.1016/j.jhazmat.2020.124285
doi: 10.1016/j.jhazmat.2020.124285
Bairoch, A., & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research, 28(1), 45–48. https://doi.org/10.1093/nar/28.1.45
doi: 10.1093/nar/28.1.45
Bergey, D. H., John, G. H., Noel, R. K., & Peter, H. A. (1994). Bergey‘s Manual of Determinative Bacteriology (9th ed.). Lippincott Williams and Wilkins.
Booth, I. R. (1985). Regulation of cytoplasmic pH in bacteria. Microbiological Reviews, 49(4), 359–378. https://doi.org/10.1128/mr.49.4.359-378.1985
doi: 10.1128/mr.49.4.359-378.1985
Butland, G., Peregrín-Alvarez, J. M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B., & Krogan, N. (2005). Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature, 433(7025), 531–537. https://doi.org/10.1038/nature03239
doi: 10.1038/nature03239
Chan, K., Morikawa, K., Shibata, N., & Zinchenko, A. (2021). Adsorptive removal of heavy metal ions, organic dyes, and pharmaceuticals by DNA-Chitosan hydrogels. Gels, 7(3), 112. https://doi.org/10.3390/gels7030112
doi: 10.3390/gels7030112
Chaudhary, S., Sindhu, S. S., Dhanker, R., & Kumari, A. (2023). Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiological Research, 271, 127340. https://doi.org/10.1016/j.micres.2023.127340
doi: 10.1016/j.micres.2023.127340
Chen, Q. Q., Wang, J. P., Zhang, H. F., Shi, H., Liu, G. H., Che, J. M., & Liu, B. (2021a). Microbial community and function in nitrogen transformation of ectopic fermentation bed system for pig manure composting. Bioresource Technology, 319, 124155. https://doi.org/10.1016/j.biortech.2020.124155
doi: 10.1016/j.biortech.2020.124155
Chen, X. H., Yu, W. H., Cai, Y. Y., Zhang, S. W., Muneer, M. A., Zhu, Q. C., Xu, D. H., Ma, C. C., Yan, X. J., Li, Y., Huang, S. Y., Wu, L. Q., Zhou, S. G., & Zhang, F. S. (2021b). How to identify and adopt cleaner strategies to improve the continuous acidification in orchard soils? Journal of Cleaner Production, 330, 129826. https://doi.org/10.1016/j.jclepro.2021.129826
doi: 10.1016/j.jclepro.2021.129826
Dyer, M. D., Neff, C., Dufford, M., Rivera, C. G., Shattuck, D., Bassaganya-Riera, J., Murali, T. M., Sobral, B. W., & Rénia, L. (2010). The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS ONE, 5(8), e12089. https://doi.org/10.1371/journal.pone.0012089
doi: 10.1371/journal.pone.0012089
Gabarrón, M., Faz, A., Martínez-Martínez, S., & Acosta, J. A. (2019). Concentration and chemical distribution of metals and arsenic under different typical Mediterranean cropping systems. Environmental Geochemistry Health, 41, 2845–2857. https://doi.org/10.1007/s10653-019-00349-9
doi: 10.1007/s10653-019-00349-9
Hu, X., Zeng, J. R., Shen, F., Xia, X. S., Tian, X. F., & Wu, Z. Q. (2022). Citrus pomace fermentation with autochthonous probiotics improves its nutrient composition and antioxidant activities. LWT Food Sci Technol., 157, 113076. https://doi.org/10.1016/j.lwt.2022.113076
doi: 10.1016/j.lwt.2022.113076
Hussain, S. B., Guo, L. X., Shi, C. Y., Khan, M. A., Bai, Y. X., Du, W., & Liu, Y. Z. (2020). Assessment of sugar and sugar accumulation-related gene expression profiles reveal new insight into the formation of low sugar accumulation trait in a sweet orange (Citrus sinensis) bud mutant. Molecular Biology Reports, 47(4), 2781–2791. https://doi.org/10.1007/s11033-020-05387-6
doi: 10.1007/s11033-020-05387-6
Jiang, Z. W., Meng, Q. R., Niu, Q. Q., Wang, S. S., Yan, H. L., & Li, Q. L. (2020). Understanding the key regulatory functions of red mud in cellulose breakdown and succession of beta-glucosidase microbial community during composting. Bioresource Technology, 318, 124265. https://doi.org/10.1016/j.biortech.2020.124265
doi: 10.1016/j.biortech.2020.124265
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32(S1), D277–D280. https://doi.org/10.1093/nar/gkh063
doi: 10.1093/nar/gkh063
Katiyar, R., Gurjar, B. R., Kumar, A., Bharti, R. K., Biswas, S., & Pruthi, V. (2019). A novel approach using low-cost Citrus limetta waste for mixotrophic cultivation of oleaginous microalgae to augment automotive quality biodiesel production. Environmental Science and Pollution Research, 26, 16115–16124. https://doi.org/10.1007/s11356-019-04946-0
doi: 10.1007/s11356-019-04946-0
Kulikowska, D., Gusiatin, Z. M., Bulkowska, K., & Klik, B. (2015). Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time. Journal of Hazardous Materials, 300, 882–891. https://doi.org/10.1016/j.jhazmat.2015.08.022
doi: 10.1016/j.jhazmat.2015.08.022
Lawrence, C. L., Botting, C. H., Antrobus, R., & Coote, P. J. (2004). Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: Regulating adaptation to citric acid stress. Molecular and Cellular Biology, 24(8), 3307–3323. https://doi.org/10.1128/MCB.24.8.3307-3323.2004
doi: 10.1128/MCB.24.8.3307-3323.2004
Le, V. S., Herrmann, L., Hudek, L., Nguyen, T. B., Bräu, L., & Lesueur, D. (2022). How application of agricultural waste can enhance soil health in soils acidified by tea cultivation: A review. Environmental Chemistry Letters, 20, 813–839. https://doi.org/10.1007/s10311-021-01313-9
doi: 10.1007/s10311-021-01313-9
Li, G. H., Rao, M. J., Li, Q. A., Peng, Z. W., & Jiang, T. (2011). Extraction of cobalt from laterite ores by citric acid in presence of ammonium bifluoride. Transactions of the Nonferrous Metals Society of China, 20(8), 1517–1520. https://doi.org/10.1016/S1003-6326(09)60331-9
doi: 10.1016/S1003-6326(09)60331-9
Li, M. Y., Qin, J. W., Zhong, B., Hao, F. R., & Wu, Z. Q. (2023). Improving acidity and flavors of citrus juice as well as its antioxidant activity by cofermentation with deacidification bacteria combination. Food Bioscience, 53, 102592. https://doi.org/10.1016/j.fbio.2023.102592
doi: 10.1016/j.fbio.2023.102592
Luo, Y. H. (2019). Study on the repair of heavy metal contaminated soil. IOP Conference Series: Earth Environmental Science, 300, 032076. https://doi.org/10.1088/1755-1315/300/3/032076
doi: 10.1088/1755-1315/300/3/032076
Luo, J. H., Yang, R., Ma, F. F., Jiang, W. M., & Han, C. C. (2023). Recycling utilization of Chinese medicine herbal residues resources: Systematic evaluation on industrializable treatment modes. Environmental Science and Pollution Research, 30, 32153–32167. https://doi.org/10.1007/S11356-023-25614-4
doi: 10.1007/S11356-023-25614-4
Marchuk, S., Tait, S., Sinha, P., Harris, P., Antille, D. L., & McCabe, B. K. (2023). Biosolids-derived fertilisers: A review of challenges and opportunities. Science of the Total Environment, 875, 162555. https://doi.org/10.1016/j.scitotenv.2023.162555
doi: 10.1016/j.scitotenv.2023.162555
Nemati, K., Abu Bakar, N. K., Abas, M. R., & Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor Malaysia. Journal of Hazard Materials, 192(1), 402–410. https://doi.org/10.1016/j.jhazmat.2011.05.039
doi: 10.1016/j.jhazmat.2011.05.039
O’Connor, D., Peng, T. Y., Zhang, J. L., Tsang, D. C. W., Alessi, D. S., Shen, Z. T., Bolan, N. S., & Hou, D. Y. (2018). Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 619, 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132
doi: 10.1016/j.scitotenv.2017.11.132
Racz, L., Datta, T., & Goel, R. (2010). Effect of organic carbon on ammonia oxidizing bacteria in a mixed culture. Bioresource Technology, 101(16), 6454–6460. https://doi.org/10.1016/j.biortech.2010.03.058
doi: 10.1016/j.biortech.2010.03.058
Satapute, P., Britto, S. D., Hadimani, S., Abdelrahman, M., Alarifi, S., Govind, S. R., & Jogaiah, S. (2023). Bacterial chemotaxis of herbicide atrazine provides an insight into the degradation mechanism through intermediates hydroxyatrazine, N-N-isopropylammelide, and cyanuric acid compounds. Environmental Research, 237(2), 117017. https://doi.org/10.1016/j.envres.2023.117017
doi: 10.1016/j.envres.2023.117017
Satapute, P., Nagaraja, G., & Jogaiah, S. (2024). Microbial-based metabolites associated with degradation of imidacloprid and its impact on stress-responsive proteins. Environmental Geochemistry Health, 46, 114. https://doi.org/10.1007/s10653-024-01892-w
doi: 10.1007/s10653-024-01892-w
Sharma, B., & Shukla, P. (2021). A comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26. Bioresource Technology, 320, 124330. https://doi.org/10.1016/j.biortech.2020.124330
doi: 10.1016/j.biortech.2020.124330
Sheng, F. B., Hu, X., Zeng, J. R., Tian, X. F., & Wu, Z. Q. (2023). Citrus pomace co-fermentation improved its protein and amino acids by Bacillus amyloliquefaciens and Candida utilis. Process Biochemistry, 130, 545–554. https://doi.org/10.1016/j.procbio.2023.05.007
doi: 10.1016/j.procbio.2023.05.007
Song, P. P., Ma, W. J., Gao, X. Y., Ai, S. Y., Wang, J., & Liu, W. R. (2022). Remediation mechanism of Cu, Zn, As, Cd, and Pb contaminated soil by biochar-supported nanoscale zero-valent iron and its impact on soil enzyme activity. Journal of Cleaner Production, 378, 134510. https://doi.org/10.1016/j.jclepro.2022.134510
doi: 10.1016/j.jclepro.2022.134510
Wang, Y., Hu, S., Li, W., Gu, J., Yuan, H., Ling, X., & Chen, Y. (2018). Chlorine migration mechanisms during torrefaction of fermentation residue from food waste. Bioresource Technology, 271, 9–15. https://doi.org/10.1016/j.biortech.2018.08.098
doi: 10.1016/j.biortech.2018.08.098
Wang, X. Y., Wang, M. M., Chen, L., Shutes, B., Yan, B. X., Zhang, F. M., Lyu, J., & Zhu, H. (2023). Nitrogen migration and transformation in a saline-alkali paddy ecosystem with application of different nitrogen fertilizers. Environmental Science and Pollution Research, 30, 51665–51678. https://doi.org/10.1007/S11356-023-25984-9
doi: 10.1007/S11356-023-25984-9
Wei, Y. T., Zhao, Z. H., He, J. N., Nie, Y. G., Xu, L. Q., Xu, A., & Wu, L. J. (2023). Connection between health risk and heavy metals in agricultural soils of China: A study based on current field investigations. Environmental Geochemistry and Health, 45(11), 7775–7789. https://doi.org/10.1007/s10653-023-01680-y
doi: 10.1007/s10653-023-01680-y
Worthington, R. J., & Melander, C. (2013). Combination approaches to combat multidrug-resistant bacteria. Trends in Biotechnology, 31(3), 177–184. https://doi.org/10.1016/j.tibtech.2012.12.006
doi: 10.1016/j.tibtech.2012.12.006
Yin, Z. X., Zhang, L., & Li, R. N. (2021). Effects of additives on physical, chemical, and microbiological properties during green waste composting. Bioresource Technology, 340, 125719. https://doi.org/10.1016/j.biortech.2021.125719
doi: 10.1016/j.biortech.2021.125719
Zakaria, Z., Zulkafflee, N. S., Redzuan, N. A. M., Selamat, J., Ismail, M. R., Praveena, S. M., Toth, G., & Razis, A. F. A. (2021). Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks. Plants-Basel, 10(6), 1070. https://doi.org/10.3390/plants10061070
doi: 10.3390/plants10061070
Zarei-Baygi, A., & Smith, A. L. (2020). Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. Bioresource Technology, 319, 124181. https://doi.org/10.1016/j.biortech.2020.124181
doi: 10.1016/j.biortech.2020.124181
Zhao, K. Q., Yang, Y., Peng, H., Zhang, L. H., Zhou, Y. Y., Zhang, J. C., Du, C. Y., Liu, J. W., Lin, X., Wang, N. Y., Huang, H. L., & Luo, L. (2022). Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates. Science of the Total Environment, 822, 153483. https://doi.org/10.1016/j.scitotenv.2022.153483
doi: 10.1016/j.scitotenv.2022.153483
Zhong, W., Chen, T., Yang, H., & Li, E. (2020). Isolation and selection of non-Saccharomyces yeasts being capable of degrading citric acid and evaluation its effect on kiwifruit wine fermentation. Fermentation, 6(1), 25. https://doi.org/10.3390/fermentation6010025
doi: 10.3390/fermentation6010025
Zhong, B., An, X. J., An, W. J., Xiao, X. S., Li, H. G., Xia, X., & Zhang, Q. H. (2021). Effect of bioaugmentation on lignocellulose degradation and antibiotic resistance genes removal during biogas residues composting. Bioresource Technology, 340, 125742. https://doi.org/10.1016/j.biortech.2021.125742
doi: 10.1016/j.biortech.2021.125742
Zhou, Z. H., Wang, C. K., & Luo, Y. Q. (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communication, 11(1), 3072–3081. https://doi.org/10.1038/s41467-020-16881-7
doi: 10.1038/s41467-020-16881-7

Auteurs

Bin Zhong (B)

State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.

Hanyi Xie (H)

School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, 529080, China.

Tao Pan (T)

Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.

Buli Su (B)

State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.

Weijun Xu (W)

School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, 529080, China.

Zhenqiang Wu (Z)

State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China. btzhqwu@scut.edu.cn.
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China. btzhqwu@scut.edu.cn.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Classifications MeSH