Effectiveness of a suction device for containment of pathogenic aerosols and droplets.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2024
Historique:
received: 21 11 2023
accepted: 05 06 2024
medline: 26 7 2024
pubmed: 26 7 2024
entrez: 24 7 2024
Statut: epublish

Résumé

As the global community begins recovering from the COVID-19 pandemic, the challenges due to its aftermath remain. This health crisis has highlighted challenges associated with airborne pathogens and their capacity for rapid transmission. While many solutions have emerged to tackle this challenge, very few devices exist that are inexpensive, easy to manufacture, and versatile enough for various settings. This paper presents a novel suction device designed to counteract the spread of aerosols and droplets and be cost-effective and adaptable to diverse environments. We also conducted an experimental study to evaluate the device's effectiveness using an artificial cough generator, a particle counter, and a mannequin in an isolated system. We measured droplet removal rates with simulated single and repeated cough incidents. Also, measurements were taken at four distinct areas to compare its effectiveness on direct plume versus indirect particle removal. The device reduced airborne disease transmission risk, as evidenced by its capacity to decrease the half-life of aerosol volume from 23.6 minutes to 15.6 minutes, effectively capturing aerosol-sized droplets known for their extended airborne persistence. The suction device lessened the peak total droplet volume from peak counts. At 22 minutes post peak droplet count, the count had dropped 24% without the suction device and 43% with the suction device. The experiment's findings confirm the suction device's capability to effectively remove droplets from the environment, making it a vital tool in enhancing indoor air quality. Given the sustained performance of the suction device irrespective of single or multiple cough events, this demonstrates its potential utility in reducing the risk of airborne disease transmission. 3D printing for fabrication opens the possibility of a rapid iterative design process, flexibility for different configurations, and rapid global deployment for future pandemics.

Sections du résumé

BACKGROUND BACKGROUND
As the global community begins recovering from the COVID-19 pandemic, the challenges due to its aftermath remain. This health crisis has highlighted challenges associated with airborne pathogens and their capacity for rapid transmission. While many solutions have emerged to tackle this challenge, very few devices exist that are inexpensive, easy to manufacture, and versatile enough for various settings.
METHODS METHODS
This paper presents a novel suction device designed to counteract the spread of aerosols and droplets and be cost-effective and adaptable to diverse environments. We also conducted an experimental study to evaluate the device's effectiveness using an artificial cough generator, a particle counter, and a mannequin in an isolated system. We measured droplet removal rates with simulated single and repeated cough incidents. Also, measurements were taken at four distinct areas to compare its effectiveness on direct plume versus indirect particle removal.
RESULTS RESULTS
The device reduced airborne disease transmission risk, as evidenced by its capacity to decrease the half-life of aerosol volume from 23.6 minutes to 15.6 minutes, effectively capturing aerosol-sized droplets known for their extended airborne persistence. The suction device lessened the peak total droplet volume from peak counts. At 22 minutes post peak droplet count, the count had dropped 24% without the suction device and 43% with the suction device.
CONCLUSIONS CONCLUSIONS
The experiment's findings confirm the suction device's capability to effectively remove droplets from the environment, making it a vital tool in enhancing indoor air quality. Given the sustained performance of the suction device irrespective of single or multiple cough events, this demonstrates its potential utility in reducing the risk of airborne disease transmission. 3D printing for fabrication opens the possibility of a rapid iterative design process, flexibility for different configurations, and rapid global deployment for future pandemics.

Identifiants

pubmed: 39046940
doi: 10.1371/journal.pone.0305842
pii: PONE-D-23-38824
doi:

Substances chimiques

Aerosols 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0305842

Informations de copyright

Copyright: © 2024 Lordly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Auteurs

Kai Lordly (K)

Department of Aerospace Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada.

Ahmet E Karataş (AE)

Department of Aerospace Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada.

Steve Lin (S)

Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
Division of Emergency Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

Karthi Umapathy (K)

Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada.

Rohit Mohindra (R)

Division of Emergency Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Department of Biomedical Engineering, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, Ontario, Canada.
Schwartz Reisman Emergency Medicine Institute, Toronto, Ontario, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH