Comparative analysis of cyanobacterial communities in gypsum outcrops: insights from sites in Israel and Poland.
16S rRNA
Cyanobacteria
Endoliths
Gypsum
Metacommunity
Phototrophs
Journal
Extremophiles : life under extreme conditions
ISSN: 1433-4909
Titre abrégé: Extremophiles
Pays: Germany
ID NLM: 9706854
Informations de publication
Date de publication:
30 Jul 2024
30 Jul 2024
Historique:
received:
04
03
2024
accepted:
16
07
2024
medline:
31
7
2024
pubmed:
31
7
2024
entrez:
30
7
2024
Statut:
epublish
Résumé
Today, the biodiversity of endolithic microbial colonisations are only partly understood. In this study, we used a combination of molecular community metabarcoding using the 16S rRNA gene, light microscopy, CT-scan analysis, and Raman spectroscopy to describe gypsum endolithic communities in 2 sites-southern Poland and northern Israel. The obtained results have shown that despite different geographical areas, climatic conditions, and also physical features of colonized gypsum outcrops, both of these sites have remarkably similar microbial and pigment compositions. Cyanobacteria dominate both of the gypsum habitats, followed by Chloroflexi and Pseudomonadota. Among cyanobacteria, Thermosynechococcaceae were more abundant in Israel while Chroococcidiopsidaceae in Poland. Interestingly, no Gloeobacteraceae sequences have been found in Poland, only in Israel. Some of the obtained 16S rRNA gene sequences of cyanobacteria matched previously detected sequences from endolithic communities in various substrates and geographical regions, supporting the hypothesis of global metacommunity, but more data are still needed. Using Raman spectroscopy, cyanobacterial UV-screening pigments-scytonemin and gloeocapsin have been detected alongside carotenoids, chlorophyll a and melanin. These pigments can serve as potential biomarkers for basic taxonomic identification of cyanobacteria. Overall, this study provides more insight into the diversity of cyanobacterial endolithic colonisations in gypsum across different areas.
Identifiants
pubmed: 39080013
doi: 10.1007/s00792-024-01352-4
pii: 10.1007/s00792-024-01352-4
doi:
Substances chimiques
Calcium Sulfate
WAT0DDB505
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Comparative Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
37Subventions
Organisme : UNCE
ID : Center for Geosphere Dynamics
Organisme : UNCE
ID : UNCE/SCI/006
Organisme : Grantová Agentura České Republiky
ID : 21-03322S
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Japan KK.
Références
Ascaso C, Wierzchos J (2003) The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiol J 20:439–450. https://doi.org/10.1080/713851127
doi: 10.1080/713851127
Bąbel M (2002) Brine paleocurrent analysis based on oriented selenite crystals in the Nida Gypsum deposits (Badenian, southern Poland). Geol Q 46:435–448
Bahl J, Lau MC, Smith GJ, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FK, McKay CP (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. https://doi.org/10.1038/ncomms1167
doi: 10.1038/ncomms1167
pubmed: 21266963
Benison KC, Karmanocky FJ III (2014) Could microorganisms be preserved in Mars gypsum? insights from terrestrial examples. Geology 42:615–618. https://doi.org/10.1130/G35542.1
doi: 10.1130/G35542.1
Billi D, Staibano C, Verseux C, Fagliarone C, Mosca C, Baqué M, Rabbow E, Rettberg P (2019) Dried biofilms of desert strains of chroococcidiopsis survived prolonged exposure to space and Mars-like conditions in low Earth orbit. Astrobiology 19:1008–1017. https://doi.org/10.1089/ast.2018.1900
doi: 10.1089/ast.2018.1900
pubmed: 30741568
Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077. https://doi.org/10.1128/AEM.70.12.7070-7077.2004
doi: 10.1128/AEM.70.12.7070-7077.2004
pubmed: 15574902
pmcid: 535155
Büdel B (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. European J Phycol 34:361–370. https://doi.org/10.1080/09670269910001736422
doi: 10.1080/09670269910001736422
Caiola MG, Billi D, Friedmann EI (1996) Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur J Phycol 31:97–105. https://doi.org/10.1080/09670269600651251a
doi: 10.1080/09670269600651251a
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869
doi: 10.1038/nmeth.3869
pubmed: 27214047
pmcid: 4927377
Casanova Municchia A, Caneva G, Ricci MA, Sodo A (2014) Identification of endolithic traces on stone monuments and natural outcrops: preliminary evidences. J Raman Spectrosc 45:1180–1185. https://doi.org/10.1002/jrs.4517
doi: 10.1002/jrs.4517
Casero MC, Meslier V, DiRuggiero J, Quesada A, Ascaso C, Artieda O, Kowaluk T, Wierzchos J (2021) The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture. Biogeosciences 18:993–1007. https://doi.org/10.5194/bg-18-993-2021
doi: 10.5194/bg-18-993-2021
Crits-Christoph A, Robinson CK, Ma B, Ravel J, Wierzchos J, Ascaso C, Artieda O, Souza-Egipsy V, Casero MC, DiRuggiero J (2016) Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Front Microbiol 7:301. https://doi.org/10.3389/fmicb.2016.00301
doi: 10.3389/fmicb.2016.00301
pubmed: 27014224
pmcid: 4784552
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604
doi: 10.1038/nmeth.2604
pubmed: 23955772
Edwards HG, De Oliveira LF, Cockell CS, Ellis-Evans JC, Wynn-Williams DD (2004) Raman spectroscopy of senescing snow algae: pigmentation changes in an Antarctic cold desert extremophile. Int J Astrobiol 3:125–129. https://doi.org/10.1017/S1473550404002034
doi: 10.1017/S1473550404002034
Edwards HG, Jehlička J, Němečková K, Culka A (2023) Scytonin in gypsum endolithic colonisation: First Raman spectroscopic detection of a new spectral biosignature for terrestrial astrobiological analogues and for exobiological mission database extension. Spectrochim Acta A Mol Biomol Spectrosc 292:122406. https://doi.org/10.1016/j.saa.2023.122406
doi: 10.1016/j.saa.2023.122406
Ertekin E, Meslier V, Browning A, Treadgold J, DiRuggiero J (2020) Rock structure drives the taxonomic and functional diversity of endolithic microbial communities in extreme environments. Environ Microbiol 23:3937–3956. https://doi.org/10.1111/1462-2920.15287
doi: 10.1111/1462-2920.15287
pubmed: 33078515
Ferris F, Lowson E (1997) Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara Escarpment. Can J Microbiol 43:211–219
doi: 10.1139/m97-029
Fishbaugh KE, Poulet F, Chevrier V, Langevin Y, Bibring JP (2007) On the origin of gypsum in the Mars north polar region. J Geophys Res Planets. https://doi.org/10.1029/2006JE002862
doi: 10.1029/2006JE002862
Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the negev (Israel). Phycologia 6:185–200. https://doi.org/10.2216/i0031-8884-6-4-185.1
doi: 10.2216/i0031-8884-6-4-185.1
Gao X (2017) Scytonemin plays a potential role in stabilizing the exopolysaccharidic matrix in terrestrial cyanobacteria. Microb Ecol 73:255–258. https://doi.org/10.1007/s00248-016-0851-4
doi: 10.1007/s00248-016-0851-4
pubmed: 27623964
Golubic S, Friedmann EI, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478
Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631. https://doi.org/10.1111/j.1462-2920.2007.01301.x
doi: 10.1111/j.1462-2920.2007.01301.x
pubmed: 17564597
Hauer T, Bohunicka M, Muehlsteinova R (2013) Calochaete gen. nov. (Cyanobacteria, Nostocales), a new cyanobacterial type from the “páramo” zone in Costa Rica. Phytotaxa 109:36–44. https://doi.org/10.11646/phytotaxa.109.1.4
doi: 10.11646/phytotaxa.109.1.4
Hauer T, Mühlsteinová R, Bohunická M, Kaštovský J, Mareš J (2015) Diversity of cyanobacteria on rock surfaces. Biodivers Conserv 24:759–779. https://doi.org/10.1007/s10531-015-0890-z
doi: 10.1007/s10531-015-0890-z
Horath T, Neu T, Bachofen R (2006) An endolithic microbial community in dolomite rock in central Switzerland: characterization by reflection spectroscopy, pigment analyses, scanning electron microscopy, and laser scanning microscopy. Microb Ecol 51:353–364. https://doi.org/10.1007/s00248-006-9051-y
doi: 10.1007/s00248-006-9051-y
pubmed: 16598629
Jehlička J, Culka A, Mareš J (2019) Raman spectroscopic screening of cyanobacterial chasmoliths from crystalline gypsum—the messinian crisis sediments from Southern Sicily. J Raman Spectrosc 51:1802–1812. https://doi.org/10.1002/jrs.5671
doi: 10.1002/jrs.5671
Jroundi F, Gonzalez-Muñoz MT, Sterflinger K, Pinar G (2015) Molecular tools for monitoring the ecological sustainability of a stone bio-consolidation treatment at the royal chapel. Granada Plos One 10:e0132465. https://doi.org/10.1371/journal.pone.0132465
doi: 10.1371/journal.pone.0132465
pubmed: 26222040
Jung P, Brust K, Schultz M, Büdel B, Donner A, Lakatos M (2021) Opening the gap: Rare lichens with rare cyanobionts–unexpected cyanobiont diversity in cyanobacterial lichens of the order Lichinales. Front Microbio 12:728378. https://doi.org/10.3389/fmicb.2021.728378
doi: 10.3389/fmicb.2021.728378
Kaplan-Levy RN, Hadas O, Summers ML, Rücker J, Sukenik A (2010) Akinetes: dormant cells of cyanobacteria. Dormancy and resistance in harsh environments. topics in current genetics. Springer, Berlin, Heidelberg
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010
doi: 10.1093/molbev/mst010
pubmed: 23329690
pmcid: 3603318
Kejna M, Rudzki M (2021) Spatial diversity of air temperature changes in Poland in 1961–2018. Theor Appl Climatol 143:1361–1379. https://doi.org/10.1007/s00704-020-03487-8
doi: 10.1007/s00704-020-03487-8
Komárek J (2013) Cyanoprokaryota: Teil 3: heterocystous genera. Springer, Berlin, pp 1–1130
Komárek J., Anagnostidis K. (1999). Susswasserflora von Mitteleuropa Band 19/1 Cyanoprokaryota I. Chroococcales: Gustav Fischer Verlag. pp 1–548.
Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2. Teil: Oscillatoriales, München: Elsevier, 1–759.
Kuhlman KR, Venkat P, DucMT La, Kuhlman GM, McKay CP (2008) Evidence of a microbial community associated with rock varnish at Yungay, Atacama Desert, Chile. Geophys Res Biogeosci. https://doi.org/10.1029/2007JG000677
doi: 10.1029/2007JG000677
Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the atacama desert, Chile. Extremophiles 15:31–38. https://doi.org/10.1007/s00792-010-0334-3
doi: 10.1007/s00792-010-0334-3
pubmed: 21069402
Lamprinou V, Hernández-Mariné M, Canals T, Kormas K, Economou-A milli A, Pantazidou A, (2011) Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. Int J Syst Evol Microbiol 61:2907–2915. https://doi.org/10.1099/ijs.0.029223-0
doi: 10.1099/ijs.0.029223-0
pubmed: 21257695
Lara YJ, McCann A, Malherbe C, François C, Demoulin CF, Sforna MC, Eppe G, De Pauw E, Wilmotte A, Jacques P, Javaux EJ (2022) Characterization of the halochromic gloeocapsin pigment, a cyanobacterial biosignature for paleobiology and astrobiology. Astrobiology 22:735–754. https://doi.org/10.1089/ast.2021.0061
doi: 10.1089/ast.2021.0061
pubmed: 35333546
Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x
doi: 10.1111/j.1461-0248.2004.00608.x
Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecký O, Komárek J (2013) The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS ONE 8:e66323. https://doi.org/10.1371/journal.pone.0066323
doi: 10.1371/journal.pone.0066323
pubmed: 23823729
pmcid: 3688883
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217
doi: 10.1371/journal.pone.0061217
pubmed: 23630581
pmcid: 3632530
Meslier V, Casero MC, Dailey M, Wierzchos J, Ascaso C, Artieda O, McCullough PR, DiRuggiero J (2018) Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ Microbiol 20:1765–1781. https://doi.org/10.1111/1462-2920.14106
doi: 10.1111/1462-2920.14106
pubmed: 29573365
Němečková K, Culka A, Němec I, Edwards HG, Mareš J, Jehlička J (2021) Raman spectroscopic search for scytonemin and gloeocapsin in endolithic colonizations in large gypsum crystals. J Raman Spectrosc 52:2633–2647. https://doi.org/10.1002/jrs.6186
doi: 10.1002/jrs.6186
Němečková K, Mareš J, Procházková L, Culka A, Košek F, Wierzchos J, Nedbalová L, Dudák J, Tymlová V, Žemlička J, Kust A (2023) Gypsum endolithic phototrophs under moderate climate (Southern Sicily): their diversity and pigment composition. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1175066
doi: 10.3389/fmicb.2023.1175066
pubmed: 37485515
pmcid: 10359912
Northup DE, Snider JR, Spilde MN, Porter ML, van de Kamp JL, Boston PJ, Nyberg AM, Bargar JR (2010) Diversity of rock varnish bacterial communities from black canyon New Mexico. J Geophys Res Biogeosci. https://doi.org/10.1029/2009JG001107
doi: 10.1029/2009JG001107
Oksanen J (2009) Vegan: community ecology package. R package version 1. 15–4.
Oren A, Garrity GM (2021) Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 71:005056. https://doi.org/10.1099/ijsem.0.005056
doi: 10.1099/ijsem.0.005056
Parnell J, Lee P, Cockell C, Osinski G (2004) Microbial colonization in impact-generated hydrothermal sulphate deposits, haughton impact structure, and implications for sulphates on Mars. Int J Astrobiology 3:247–256. https://doi.org/10.1017/S1473550404001995
doi: 10.1017/S1473550404001995
Perez-Fernandez CA, Wilburn P, Davila A, DiRuggiero J (2022) Adaptations of endolithic communities to abrupt environmental changes in a hyper-arid desert. Sci Rep 12:20022. https://doi.org/10.1038/s41598-022-23437-w
doi: 10.1038/s41598-022-23437-w
pubmed: 36414646
pmcid: 9681764
R Core Team (2021) R: a language and environment for statistical computing. Vienna, Austria. Available at: http://www.R-project.org/
Robinson CK, Wierzchos J, Black C, Crits-Christoph A, Ma B, Ravel J, Ascaso C, Artieda O, Valea S, Roldán M, Gómez-Silva B (2015) Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ Microbiol 17:299–315. https://doi.org/10.1111/1462-2920.12364
doi: 10.1111/1462-2920.12364
pubmed: 24372972
Rostkier-Edelstein D, Kunin P, Hopson TM, Liu Y, Givati A (2016) Statistical downscaling of seasonal precipitation in Israel. Int J Climatol 36:590–606. https://doi.org/10.1002/joc.4368
doi: 10.1002/joc.4368
Rozenbaum AG, Sandler A, Stein M, Zilberman E (2019) The sedimentary and environmental history of Tortonian-Messinian lakes at the east mediterranean margins (northern Israel). Sediment Geol 383:268–292. https://doi.org/10.1016/j.sedgeo.2018.12.005
doi: 10.1016/j.sedgeo.2018.12.005
Singh H (2018) Desiccation and radiation stress tolerance in cyanobacteria. J Basic Microbiol. 58:813–26. https://doi.org/10.1002/jobm.201800216
doi: 10.1002/jobm.201800216
pubmed: 30080267
Smith HD, Baqué M, Duncan AG, Lloyd CR, McKay CP, Billi D (2014) Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the mojave desert: a Mars terrestrial analogue. Int J Astrobiology 13:271–277. https://doi.org/10.1017/S1473550414000056
doi: 10.1017/S1473550414000056
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
doi: 10.1093/bioinformatics/btu033
pubmed: 24451623
pmcid: 3998144
Storme JY, Golubic S, Wilmotte A, Kleinteich J, Velázquez D, Javaux EJ (2015) Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15:843–857. https://doi.org/10.1089/ast.2015.1292
doi: 10.1089/ast.2015.1292
pubmed: 26406539
Strunecký O, Ivanova AP, Mareš J (2023) An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J Phycol 59:12–51. https://doi.org/10.1111/jpy.13304
doi: 10.1111/jpy.13304
pubmed: 36443823
Tamre E, Fournier GP (2022) Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation. Geobiology 20:764–775. https://doi.org/10.1111/gbi.12514
doi: 10.1111/gbi.12514
pubmed: 35851984
pmcid: 9796282
Urrejola C, Alcorta J, Salas L, Vásquez M, Polz MF, Vicuña R, Díez B (2019) Genomic features for desiccation tolerance and sugar biosynthesis in the extremophile Gloeocapsopsis sp. UTEX B3054. Front Microbiol 10:950. https://doi.org/10.3389/fmicb.2019.00950
doi: 10.3389/fmicb.2019.00950
pubmed: 31134010
pmcid: 6513891
Vítek P, Edwards HG, Jehlička J, Ascaso C, De los Ríos A, Valea S, Jorge-Villar SE, Davila AF, Wierzchos J, (2010) Microbial colonization of halite from the hyper-arid Atacama Desert studied by raman spectroscopy. Philos Trans Royal Soc A 368:3205–3221. https://doi.org/10.1098/rsta.2010.0059
doi: 10.1098/rsta.2010.0059
Walker JJ, Pace NR (2007a) Endolithic microbial ecosystems. Annu Rev Microbiol 61:331–347. https://doi.org/10.1146/annurev.micro.61.080706.093302
doi: 10.1146/annurev.micro.61.080706.093302
pubmed: 17506683
Walker JJ, Pace NR (2007b) Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504. https://doi.org/10.1128/AEM.02656-06
doi: 10.1128/AEM.02656-06
pubmed: 17416689
pmcid: 1932665
Wang YI, Cai F, Jia NA, Li R (2019) Description of a novel coccoid cyanobacterial genus and species Sinocapsa zengkensis gen. nov. sp. nov.Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsidales. Phytotaxa 409:146–160. https://doi.org/10.11646/phytotaxa.409.3.3
doi: 10.11646/phytotaxa.409.3.3
Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–422. https://doi.org/10.1089/ast.2006.6.415
doi: 10.1089/ast.2006.6.415
pubmed: 16805697
Wierzchos J, Cámara B, de Los RA, Davila AF, Sánchez Almazo IM, Artieda O, Wierzchos K, Gómez-Silva B, McKay C, Ascaso C (2011) Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9:44–60. https://doi.org/10.1111/j.1472-4669.2010.00254.x
doi: 10.1111/j.1472-4669.2010.00254.x
pubmed: 20726901
Wierzchos J, Davila AF, Artieda O, Cámara-Gallego B, de los Ríos A, Nealson KH, Valea S, García-González MT, Ascaso C. (2013) Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: implications for the search for life on Mars. Icarus 224:334–346. https://doi.org/10.1016/j.icarus.2012.06.009
doi: 10.1016/j.icarus.2012.06.009
Wierzchos J, Cámara B, de Los Ríos A, Davila AF, Sánchez Almazo IM, Artieda O, Souza-Egipsy V, Škaloud P, Tisza M, Davila AF, Vílchez C, Garbayo I, Ascaso C (2015) Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol 6:934. https://doi.org/10.3389/fmicb.2015.00934
doi: 10.3389/fmicb.2015.00934
pubmed: 26441871
pmcid: 4564735
Wierzchos J, Casero MC, Artieda O, Ascaso C (2018) Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr Opin Microbiol 43:124–131. https://doi.org/10.1016/j.mib.2018.01.003
doi: 10.1016/j.mib.2018.01.003
pubmed: 29414443
Zhou J, Ning D (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol 81:10–128. https://doi.org/10.1128/mmbr.00002-00017
doi: 10.1128/mmbr.00002-00017
Ziolkowski LA, Mykytczuk NC, Omelon CR, Johnson H, Whyte LG, Slater GF (2013) Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community. Biogeosciences 10:7661–7675. https://doi.org/10.5194/bg-10-7661-2013
doi: 10.5194/bg-10-7661-2013