Prostate radiotherapy may cause fertility issues: a retrospective analysis of testicular dose following modern radiotherapy techniques.
Humans
Male
Prostatic Neoplasms
/ radiotherapy
Retrospective Studies
Testis
/ radiation effects
Radiotherapy Dosage
Middle Aged
Radiotherapy, Intensity-Modulated
/ adverse effects
Radiotherapy Planning, Computer-Assisted
/ methods
Organs at Risk
/ radiation effects
Aged
Adult
Radiation Injuries
/ etiology
Fertility
/ radiation effects
Dose
Fertility
Prostate cancer
Radiotherapy
Testicles
Journal
Radiation oncology (London, England)
ISSN: 1748-717X
Titre abrégé: Radiat Oncol
Pays: England
ID NLM: 101265111
Informations de publication
Date de publication:
01 Aug 2024
01 Aug 2024
Historique:
received:
17
09
2023
accepted:
26
07
2024
medline:
2
8
2024
pubmed:
2
8
2024
entrez:
1
8
2024
Statut:
epublish
Résumé
Prostate cancer in younger men is rare but not exceptional. Radiotherapy is a cornerstone of prostate cancer treatment and yet, its impact on fertility is scarcely reported in literature. Given the radiosensitivity of testicular tissue, this study aimed to determine the testicular dose using modern radiotherapy techniques for definitive prostate irradiation. One hundred radiotherapy plans were reviewed. Testicles were contoured retrospectively without dosimetric optimization on testicles. The median testicular dose was 0.58 Gy: 0.18 Gy in stereotactic plans, 0.62 Gy in Volumetric Modulated Arc Therapy plans and 1.50 Gy in Tomotherapy plans (p < 0.001). Pelvic nodal irradiation increased the median testicular dose to 1.18 Gy versus 0.26 Gy without nodal irradiation (p < 0.001). Weight and BMI were inversely associated with testicular dose (p < 0.005). 65% of patients reached the theoretical dose threshold for transient azoospermia, and 10% received more than 2 Gy, likely causing definitive azoospermia. Despite being probably lower than doses from older techniques, the testicular dose delivered with modern prostate radiotherapy is not negligible and is often underestimated because the contribution of daily repositioning imaging is not taken into account and most Treatment Planning Systems underestimate the out of field dose. Radiation oncologists should consider the impact on fertility and gonadal endocrine function, counseling men on sperm preservation if they wish to maintain fertility. retrospectively registered.
Sections du résumé
BACKGROUND
BACKGROUND
Prostate cancer in younger men is rare but not exceptional. Radiotherapy is a cornerstone of prostate cancer treatment and yet, its impact on fertility is scarcely reported in literature. Given the radiosensitivity of testicular tissue, this study aimed to determine the testicular dose using modern radiotherapy techniques for definitive prostate irradiation.
METHODS
METHODS
One hundred radiotherapy plans were reviewed. Testicles were contoured retrospectively without dosimetric optimization on testicles.
RESULTS
RESULTS
The median testicular dose was 0.58 Gy: 0.18 Gy in stereotactic plans, 0.62 Gy in Volumetric Modulated Arc Therapy plans and 1.50 Gy in Tomotherapy plans (p < 0.001). Pelvic nodal irradiation increased the median testicular dose to 1.18 Gy versus 0.26 Gy without nodal irradiation (p < 0.001). Weight and BMI were inversely associated with testicular dose (p < 0.005). 65% of patients reached the theoretical dose threshold for transient azoospermia, and 10% received more than 2 Gy, likely causing definitive azoospermia.
CONCLUSION
CONCLUSIONS
Despite being probably lower than doses from older techniques, the testicular dose delivered with modern prostate radiotherapy is not negligible and is often underestimated because the contribution of daily repositioning imaging is not taken into account and most Treatment Planning Systems underestimate the out of field dose. Radiation oncologists should consider the impact on fertility and gonadal endocrine function, counseling men on sperm preservation if they wish to maintain fertility.
TRIAL REGISTRATION
BACKGROUND
retrospectively registered.
Identifiants
pubmed: 39090684
doi: 10.1186/s13014-024-02498-3
pii: 10.1186/s13014-024-02498-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
101Informations de copyright
© 2024. The Author(s).
Références
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
pubmed: 33538338
doi: 10.3322/caac.21660
Le Guevelou J, Zilli T. Prostate cancer radiotherapy and incidental testicular irradiation: Impact on gonadal function. Clin Transl Radiat Oncol. 2023;40:100611.
pubmed: 36942089
pmcid: 10023900
Jacobsen SJ, Katusic SK, Bergstralh EJ, Oesterling JE, Ohrt D, Klee GG, et al. Incidence of prostate cancer diagnosis in the eras before and after serum prostate-specific antigen testing. JAMA. 1995;274(18):1445–9.
pubmed: 7474190
doi: 10.1001/jama.1995.03530180039027
Hamilton BE. Births: Provisional Data for 2022. 2021;
Laopaiboon M, Lumbiganon P, Intarut N, Mori R, Ganchimeg T, Vogel JP, et al. Advanced maternal age and pregnancy outcomes: a multicountry assessment. BJOG Int J Obstet Gynaecol. 2014;121(Suppl 1):49–56.
doi: 10.1111/1471-0528.12659
Mathews TJ, Hamilton BE. Mean age of mother, 1970–2000. Natl Vital Stat Rep Cent Dis Control Prev Natl Cent Health Stat Natl Vital Stat Syst. 2002;51(1):1–13.
Osterman M, Hamilton B, Martin J, Driscoll A, Valenzuela C. Births: Final Data for 2020. National Center for Health Statistics (U.S.); 2021 Feb [cited 2023 Mar 26]. Available from: https://stacks.cdc.gov/view/cdc/112078
Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59(3):665–78.
pubmed: 4428015
doi: 10.2307/3574084
Trottmann M, Becker AJ, Stadler T, Straub J, Soljanik I, Schlenker B, et al. Semen quality in men with malignant diseases before and after therapy and the role of cryopreservation. Eur Urol. 2007;52(2):355–67.
pubmed: 17498866
doi: 10.1016/j.eururo.2007.03.085
Harris VA, Staffurth J, Naismith O, Esmail A, Gulliford S, Khoo V, et al. Consensus guidelines and contouring atlas for pelvic node delineation in prostate and pelvic node intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2015;92(4):874–83.
pubmed: 26104940
doi: 10.1016/j.ijrobp.2015.03.021
Salembier C, Villeirs G, De Bari B, Hoskin P, Pieters BR, Van Vulpen M, et al. ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer. Radiother Oncol. 2018;127(1):49–61.
pubmed: 29496279
doi: 10.1016/j.radonc.2018.01.014
Zelefsky MJ, Kollmeier M, McBride S, Varghese M, Mychalczak B, Gewanter R, et al. Five-year outcomes of a phase 1 dose-escalation study using stereotactic body radiosurgery for patients with low-risk and intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2019;104(1):42–9.
pubmed: 30611838
pmcid: 7525798
doi: 10.1016/j.ijrobp.2018.12.045
Musunuru HB, Davidson M, Cheung P, Vesprini D, Liu S, Chung H, et al. Predictive parameters of symptomatic hematochezia following 5-fraction gantry-based SABR in prostate cancer. Int J Radiat Oncol Biol Phys. 2016;94(5):1043–51.
pubmed: 27026311
doi: 10.1016/j.ijrobp.2015.12.010
Kirisits C, Schmid MP, Nesvacil N, Pötter R. Medical University of Vienna, Vienna, Austria. In: Song WY, Tanderup K, Pieters BR, editors. Series in medical physics and biomedical engineering. CRC Press: Boca Raton; 2017. p. 275–84. https://doi.org/10.1201/9781315120966-20 .
doi: 10.1201/9781315120966-20
Proust-Lima C, Taylor JMG, Sécher S, Sandler H, Kestin L, Pickles T, et al. Confirmation of a low α/β ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics. Int J Radiat Oncol Biol Phys. 2011;79(1):195–201.
pubmed: 20381268
doi: 10.1016/j.ijrobp.2009.10.008
Miralbell R, Roberts SA, Zubizarreta E, Hendry JH. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9–2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82(1):e17-24.
pubmed: 21324610
doi: 10.1016/j.ijrobp.2010.10.075
Dasu A, Toma-Dasu I. Prostate alpha/beta revisited—an analysis of clinical results from 14 168 patients. Acta Oncol Stockh Swed. 2012;51(8):963–74.
doi: 10.3109/0284186X.2012.719635
Ogilvy-Stuart AL, Shalet SM. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101(Suppl 2):109–16.
pubmed: 8243379
pmcid: 1519954
doi: 10.1289/ehp.93101s2109
Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52(1):198–236.
pubmed: 4621362
doi: 10.1152/physrev.1972.52.1.198
Okada K, Fujisawa M. Recovery of spermatogenesis following cancer treatment with cytotoxic chemotherapy and radiotherapy. World J Mens Health. 2019;37(2):166–74.
pubmed: 30588779
doi: 10.5534/wjmh.180043
Hahn EW, Feingold SM, Nisce L. Aspermia and recovery of spermatogenesis in cancer patients following incidental gonadal irradiation during treatment: a progress report. Radiology. 1976;119(1):223–5.
pubmed: 943807
doi: 10.1148/119.1.223
Hahn EW, Feingold SM, Simpson L, Batata M. Recovery from aspermia induced by low-dose radiation in seminoma patients. Cancer. 1982;50(2):337–40.
pubmed: 7083140
doi: 10.1002/1097-0142(19820715)50:2<337::AID-CNCR2820500229>3.0.CO;2-6
Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr. 2005;34:12–7.
doi: 10.1093/jncimonographs/lgi003
Ash P. The influence of radiation on fertility in man. Br J Radiol. 1980;53(628):271–8.
pubmed: 6991051
doi: 10.1259/0007-1285-53-628-271
Sandeman TF. The effects of x irradiation on male human fertility. Br J Radiol. 1966;39(468):901–7.
pubmed: 5954090
doi: 10.1259/0007-1285-39-468-901
Centola GM, Keller JW, Henzler M, Rubin P. Effect of low-dose testicular irradiation on sperm count and fertility in patients with testicular seminoma. J Androl. 1994;15(6):608–13.
pubmed: 7721664
doi: 10.1002/j.1939-4640.1994.tb00507.x
Tomić R, Bergman B, Damber JE, Littbrand B, Löfroth PO. Effects of external radiation therapy for cancer of the prostate on the serum concentrations of testosterone, follicle-stimulating hormone, luteinizing hormone and prolactin. J Urol. 1983;130(2):287–9.
pubmed: 6410084
doi: 10.1016/S0022-5347(17)51110-6
Daniell HW, Clark JC, Pereira SE, Niazi ZA, Ferguson DW, Dunn SR, et al. Hypogonadism following prostate-bed radiation therapy for prostate carcinoma. Cancer. 2001;91(10):1889–95.
pubmed: 11346871
doi: 10.1002/1097-0142(20010515)91:10<1889::AID-CNCR1211>3.0.CO;2-U
Grigsby PW, Perez CA. The effects of external beam radiotherapy on endocrine function in patients with carcinoma of the prostate. J Urol. 1986;135(4):726–7.
pubmed: 3083117
doi: 10.1016/S0022-5347(17)45831-9
Boehmer D, Badakhshi H, Kuschke W, Bohsung J, Budach V. Testicular dose in prostate cancer radiotherapy: impact on impairment of fertility and hormonal function. Strahlenther Onkol Organ Dtsch Rontgengesellschaft Al. 2005;181(3):179–84.
doi: 10.1007/s00066-005-1282-1
Budgell GJ, Cowan RA, Hounsell AR. Prediction of scattered dose to the testes in abdominopelvic radiotherapy. Clin Oncol R Coll Radiol G B. 2001;13(2):120–5.
Katayama S, Haefner MF, Mohr A, Schubert K, Oetzel D, Debus J, et al. Accelerated tomotherapy delivery with TomoEdge technique. J Appl Clin Med Phys. 2015;16(2):33–42.
pmcid: 5690089
doi: 10.1120/jacmp.v16i2.4964
Hoppe BS, Harris S, Rhoton-Vlasak A, Bryant C, Morris CG, Dagan R, et al. Sperm preservation and neutron contamination following proton therapy for prostate cancer study. Acta Oncol Stockh Swed. 2017;56(1):17–20.
doi: 10.1080/0284186X.2016.1205219
Fraass BA, Kinsella TJ, Harrington FS, Glatstein E. Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield. Int J Radiat Oncol Biol Phys. 1985;11(3):609–15.
pubmed: 3972670
doi: 10.1016/0360-3016(85)90196-8
Lieng H, Chung P, Lam T, Warde P, Craig T. Testicular seminoma: Scattered radiation dose to the contralateral testis in the modern era. Pract Radiat Oncol. 2018;8(2):e57-62.
pubmed: 29306641
doi: 10.1016/j.prro.2017.10.003
Mydlo JH, Lebed B. Does brachytherapy of the prostate affect sperm quality and/or fertility in younger men? Scand J Urol Nephrol. 2004;38(3):221–4.
pubmed: 15204375
doi: 10.1080/00365590410025451
Delaunay B, Delannes M, Bachaud JM, Bouaziz M, Salloum A, Thoulouzan M, et al. Fertility after prostate brachytherapy with Iode 125 permanent implants for localized prostate cancer. Progres En Urol J Assoc Francaise Urol Soc Francaise Urol. 2012;22(1):53–7.
Khaksar SJ, Laing RW, Langley SEM. Fertility after prostate brachytherapy. BJU Int. 2005;96(6):915.
pubmed: 16153230
doi: 10.1111/j.1464-410X.2005.05841_1.x
Boyd BG, McCallum SW, Lewis RW, Terris MK. Assessment of patient concern and adequacy of informed consent regarding infertility resulting from prostate cancer treatment. Urology. 2006;68(4):840–4.
pubmed: 17070364
doi: 10.1016/j.urology.2006.04.009
Lambertini M, Peccatori FA, Demeestere I, Amant F, Wyns C, Stukenborg JB, et al. Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2020;S0923753420424482.
Knoester PA, Leonard M, Wood DP, Schuster TG. Fertility issues for men with newly diagnosed prostate cancer. Urology. 2007;69(1):123–5.
pubmed: 17270632
doi: 10.1016/j.urology.2006.09.036
Hall MC, Fritzsch RJ, Sagalowsky AI, Ahrens A, Petty B, Roehrborn CG. Prospective determination of the hormonal response after cessation of luteinizing hormone-releasing hormone agonist treatment in patients with prostate cancer. Urology. 1999;53(5):898–902.
pubmed: 10223480
doi: 10.1016/S0090-4295(99)00061-8
da Silva SM, Anderson RA. Reproductive axis ageing and fertility in men. Rev Endocr Metab Disord. 2022;23(6):1109–21.
doi: 10.1007/s11154-022-09759-0
Wilson LJ, Newhauser WD, Schneider CW, Kamp F, Reiner M, Martins JC, et al. Method to quickly and accurately calculate absorbed dose from therapeutic and stray photon exposures throughout the entire body in individual patients. Med Phys. 2020;47(5):2254–66.
pubmed: 31943237
doi: 10.1002/mp.14018
Sánchez-Nieto B, Medina-Ascanio KN, Rodríguez-Mongua JL, Doerner E, Espinoza I. Study of out-of-field dose in photon radiotherapy: a commercial treatment planning system versus measurements and Monte Carlo simulations. Med Phys. 2020
Joosten A, Matzinger O, Jeanneret-Sozzi W, Bochud F, Moeckli R. Evaluation of organ-specific peripheral doses after 2-dimensional, 3-dimensional and hybrid intensity modulated radiation therapy for breast cancer based on Monte Carlo and convolution/superposition algorithms: implications for secondary cancer risk assessment. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2013;106(1):33–41.
doi: 10.1016/j.radonc.2012.11.012
Schneider U, Hälg RA, Hartmann M, Mack A, Storelli F, Joosten A, et al. Accuracy of out-of-field dose calculation of tomotherapy and cyberknife treatment planning systems: a dosimetric study. Z Med Phys. 2014;24(3):211–5.
pubmed: 24290992
doi: 10.1016/j.zemedi.2013.10.008
Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84(1):125–9.
pubmed: 22330997
doi: 10.1016/j.ijrobp.2011.11.047
Alaei P, Spezi E. Imaging dose from cone beam computed tomography in radiation therapy. Phys Med PM Int J Devoted Appl Phys Med Biol Off J Ital Assoc Biomed Phys AIFB. 2015;31(7):647–58.
Alaei P, Spezi E, Reynolds M. Dose calculation and treatment plan optimization including imaging dose from kilovoltage cone beam computed tomography. Acta Oncol Stockh Swed. 2014;53(6):839–44.
doi: 10.3109/0284186X.2013.875626
Shah AP, Langen KM, Ruchala KJ, Cox A, Kupelian PA, Meeks SL. Patient dose from megavoltage computed tomography imaging. Int J Radiat Oncol Biol Phys. 2008;70(5):1579–87.
pubmed: 18234438
doi: 10.1016/j.ijrobp.2007.11.048