Heterozygous knockout of Synaptotagmin13 phenocopies ALS features and TP53 activation in human motor neurons.
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
03 Aug 2024
03 Aug 2024
Historique:
received:
19
04
2024
accepted:
26
07
2024
revised:
24
07
2024
medline:
4
8
2024
pubmed:
4
8
2024
entrez:
3
8
2024
Statut:
epublish
Résumé
Spinal motor neurons (MNs) represent a highly vulnerable cellular population, which is affected in fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In this study, we show that the heterozygous loss of SYT13 is sufficient to trigger a neurodegenerative phenotype resembling those observed in ALS and SMA. SYT13
Identifiants
pubmed: 39097602
doi: 10.1038/s41419-024-06957-3
pii: 10.1038/s41419-024-06957-3
doi:
Substances chimiques
Tumor Suppressor Protein p53
0
Synaptotagmins
134193-27-4
TP53 protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
560Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 1506-Project 01
Organisme : Else Kröner-Fresenius-Stiftung (Else Kroner-Fresenius Foundation)
ID : 2019_A111
Informations de copyright
© 2024. The Author(s).
Références
Ghasemi M, Brown RH. Genetics of amyotrophic lateral sclerosis. Cold Spring Harb Perspect Med. 2018;8:a024125.
pubmed: 28270533
pmcid: 5932579
doi: 10.1101/cshperspect.a024125
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet. 2023;68:131–52.
pubmed: 35691950
doi: 10.1038/s10038-022-01055-8
Brenner D, Freischmidt A. Update on genetics of amyotrophic lateral sclerosis. Curr Opin Neurol. 2022;35:672–7.
pubmed: 35942673
doi: 10.1097/WCO.0000000000001093
Megat S, Mora N, Sanogo J, Roman O, Catanese A, Alami NO, et al. Integrative genetic analysis illuminates ALS heritability and identifies risk genes. Nat Commun. 2023;14:342.
pubmed: 36670122
pmcid: 9860017
doi: 10.1038/s41467-022-35724-1
Burke RE, Dum RP, Fleshman JW, Glenn LL, Lev‐Tov A, O’Donovan MJ, et al. An HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J Comp Neurol. 1982;209:17–28.
pubmed: 7119171
doi: 10.1002/cne.902090103
Cullheim S, Fleshman JW, Glenn LL, Burke RE. Membrane area and dendritic structure in type‐identified triceps surae alpha motoneurons. J Comp Neurol. 1987;255:68–81.
pubmed: 3819010
doi: 10.1002/cne.902550106
Kawamura Y, Dyck PJ, Shimono M, Okazaki H, Tateishi J, Doi H. Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1981;40:667–75.
pubmed: 7299423
doi: 10.1097/00005072-198111000-00008
Dengler R, Konstanzer A, Küther G, Hesse S, Wolf W, Strupplerdr A. Amyotrophic lateral sclerosis: Macro–EMG and twitch forces of single motor units. Muscle Nerve. 1990;13:545–50.
pubmed: 2366827
doi: 10.1002/mus.880130612
Saxena S, Roselli F, Singh K, Leptien K, Julien JP, Gros-Louis F, et al. Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival. Neuron. 2013;80:80–96.
pubmed: 24094105
doi: 10.1016/j.neuron.2013.07.027
Martínez-Silva MdeL, Imhoff-Manuel RD, Sharma A, Heckman CJ, Shneider NA, Roselli F, et al. Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. eLife. 2018;7:e30955.
pubmed: 29580378
pmcid: 5922970
doi: 10.7554/eLife.30955
Siklòs L, Engelhardt JI, Alexianu ME, Gurney ME, Siddique T, Appel SH. Intracellular calcium parallels motoneuron degeneration in SOD-1 mutant mice. J Neuropathol Exp Neurol. 1998;57:571–87.
pubmed: 9630237
doi: 10.1097/00005072-199806000-00005
Saxena S, Cabuy E, Caroni P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci. 2009;12:627–36.
pubmed: 19330001
doi: 10.1038/nn.2297
Aly A, Laszlo ZI, Rajkumar S, Demir T, Hindley N, Lamont DJ, et al. Integrative proteomics highlight presynaptic alterations and c-Jun misactivation as convergent pathomechanisms in ALS. Acta Neuropathol. 2023;146:451–75.
pubmed: 37488208
pmcid: 10412488
doi: 10.1007/s00401-023-02611-y
Allodi I, Nijssen J, Benitez JA, Schweingruber C, Fuchs A, Bonvicini G, et al. Modeling motor neuron resilience in ALS using stem cells. Stem Cell Rep. 2019;12:1329–41.
doi: 10.1016/j.stemcr.2019.04.009
Nizzardo M, Taiana M, Rizzo F, Aguila Benitez J, Nijssen J, Allodi I, et al. Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta Neuropathol. 2020;139:837–53.
pubmed: 32065260
pmcid: 7181443
doi: 10.1007/s00401-020-02133-x
Bakhti M, Bastidas-Ponce A, Tritschler S, Czarnecki O, Tarquis-Medina M, Nedvedova E, et al. Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis. Nat Commun. 2022;13:4540.
pubmed: 35927244
pmcid: 9352765
doi: 10.1038/s41467-022-31862-8
von Poser C, Südhof TC. Synaptotagmin 13: structure and expression of a novel synaptotagmin. Eur J Cell Biol. 2001;80:41–7.
doi: 10.1078/0171-9335-00133
Catanese A, Rajkumar S, Sommer D, Freisem D, Wirth A, Aly A, et al. Synaptic disruption and CREB-regulated transcription are restored by K+ channel blockers in ALS. EMBO Mol Med. 2021;13:e13131.
pubmed: 34125498
pmcid: 8261490
doi: 10.15252/emmm.202013131
Ouali Alami N, Schurr C, Olde Heuvel F, Tang L, Li Q, Tasdogan A, et al. NF‐κB activation in astrocytes drives a stage‐specific beneficial neuroimmunological response in ALS. EMBO J. 2018;37:e98697.
pubmed: 29875132
pmcid: 6092622
doi: 10.15252/embj.201798697
Pun S, Santos AF, Saxena S, Xu L, Caroni P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci. 2006;9:408–19.
pubmed: 16474388
doi: 10.1038/nn1653
Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron. 2011;71:35–48.
pubmed: 21745636
doi: 10.1016/j.neuron.2011.06.031
Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46:D380–6.
pubmed: 29087512
doi: 10.1093/nar/gkx1013
Evangelista JE, Clarke DJB, Xie Z, Lachmann A, Jeon M, Chen K, et al. SigCom LINCS: data and metadata search engine for a million gene expression signatures. Nucleic Acids Res. 2022;50:W697–709.
pubmed: 35524556
pmcid: 9252724
doi: 10.1093/nar/gkac328
Baxi EG, Thompson T, Li J, Kaye JA, Lim RG, Wu J, et al. Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines. Nat Neurosci. 2022;25:226–37.
pubmed: 35115730
pmcid: 8825283
doi: 10.1038/s41593-021-01006-0
Wang X, Feng Y, Tong B, Bao J, Ritchie MD, Saykin AJ, et al. Exploring automated machine learning for cognitive outcome prediction from multimodal brain imaging using streamline. AMIA Jt Summits Transl Sci Proc. 2023;2023:544–53.
pubmed: 37350896
pmcid: 10283099
Workman MJ, Lim RG, Wu J, Frank A, Ornelas L, Panther L, et al. Large-scale differentiation of iPSC-derived motor neurons from ALS and control subjects. Neuron. 2023;111:1191–1204.e5.
pubmed: 36764301
pmcid: 10557526
doi: 10.1016/j.neuron.2023.01.010
Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JH. Benchmarking relief-based feature selection methods for bioinformatics data mining. J Biomed Inf. 2018;85:168–88.
doi: 10.1016/j.jbi.2018.07.015
Manuel M. Molecular and electrophysiological properties of mouse motoneuron and motor unit subtypes. Curr Opin Physiol. 2019;8:23–9.
pubmed: 32551406
doi: 10.1016/j.cophys.2018.11.008
Fogarty MJ, Mu EWH, Lavidis NA, Noakes PG, Bellingham MC. Size-dependent vulnerability of lumbar motor neuron dendritic degeneration in SOD1G93A mice. Anat Rec. 2020;303:1455–71.
doi: 10.1002/ar.24255
Blum JA, Klemm S, Shadrach JL, Guttenplan KA, Nakayama L, Kathiria A, et al. Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat Neurosci. 2021;24:572–83.
pubmed: 33589834
pmcid: 8016743
doi: 10.1038/s41593-020-00795-0
Song J, Dikwella N, Sinske D, Roselli F, Knöll B. SRF deletion results in earlier disease onset in a mouse model of amyotrophic lateral sclerosis. JCI Insight. 2023;8:e167694.
pubmed: 37339001
pmcid: 10445689
doi: 10.1172/jci.insight.167694
Catanese A, Rajkumar S, Sommer D, Masrori P, Hersmus N, Van Damme P, et al. Multiomics and machine-learning identify novel transcriptional and mutational signatures in amyotrophic lateral sclerosis. Brain J Neurol. 2023;146:3770–82.
doi: 10.1093/brain/awad075
Maor-Nof M, Shipony Z, Lopez-Gonzalez R, Nakayama L, Zhang YJ, Couthouis J, et al. p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell. 2021;184:689–708.e20.
pubmed: 33482083
pmcid: 7886018
doi: 10.1016/j.cell.2020.12.025
Ziff OJ, Neeves J, Mitchell J, Tyzack G, Martinez-Ruiz C, Luisier R, et al. Integrated transcriptome landscape of ALS identifies genome instability linked to TDP-43 pathology. Nat Commun. 2023;14:2176.
pubmed: 37080969
pmcid: 10119258
doi: 10.1038/s41467-023-37630-6
Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med. 2004;10:S10–7.
pubmed: 15272267
doi: 10.1038/nm1066
Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Tredici KD. Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol. 2013;9:708–14.
pubmed: 24217521
pmcid: 3943211
doi: 10.1038/nrneurol.2013.221
Tsuboguchi S, Nakamura Y, Ishihara T, Kato T, Sato T, Koyama A, et al. TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models. Acta Neuropathol. 2023;146:611–29.
pubmed: 37555859
doi: 10.1007/s00401-023-02615-8
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol. 2017;133:863–85.
pubmed: 28409282
pmcid: 5427160
doi: 10.1007/s00401-017-1708-8
Leroy F, Lamotte d’Incamps B, Imhoff-Manuel RD, Zytnicki D. Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. eLife. 2014;3:e04046.
Bączyk M, Alami NO, Delestrée N, Martinot C, Tang L, Commisso B, et al. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med. 2020;217:e20191734.
pubmed: 32484501
pmcid: 7398175
doi: 10.1084/jem.20191734
Minatohara K, Akiyoshi M, Okuno H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci. 2015;8:78.
pubmed: 26778955
Dombert B, Sivadasan R, Simon CM, Jablonka S, Sendtner M. Presynaptic Localization of Smn and hnRNP R in Axon Terminals of Embryonic and Postnatal Mouse Motoneurons. PLoS ONE. 2014;9:e110846.
pubmed: 25338097
pmcid: 4206449
doi: 10.1371/journal.pone.0110846
Fletcher EV, Simon CM, Pagiazitis JG, Chalif JI, Vukojicic A, Drobac E, et al. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nat Neurosci. 2017;20:905–16.
pubmed: 28504671
pmcid: 5487291
doi: 10.1038/nn.4561
McCombe PA, Henderson RD. Effects of gender in amyotrophic lateral sclerosis. Gend Med. 2010;7:557–70.
pubmed: 21195356
doi: 10.1016/j.genm.2010.11.010
Sun J, on behalf of the TREAT-NMD Global Registry Network for SMA, Harrington MA, Porter B. Sex difference in spinal muscular atrophy patients – are males more vulnerable? J Neuromuscul Dis. 2023;10:847–67.
pubmed: 37393514
pmcid: 10578261
doi: 10.3233/JND-230011
Fukuda M, Mikoshiba K. Characterization of KIAA1427 protein as an atypical synaptotagmin (Syt XIII). Biochem J. 2001;354:249–57.
pubmed: 11171101
pmcid: 1221650
doi: 10.1042/bj3540249
Südhof TC. A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat Med. 2013;19:1227–31.
pubmed: 24100992
doi: 10.1038/nm.3338
Zhang YD, Zhong R, Liu JQ, Sun ZX, Wang T, Liu JT. Role of synaptotagmin 13 (SYT13) in promoting breast cancer and signaling pathways. Clin Transl Oncol. 2023;25:1629–40.
pubmed: 36630025
doi: 10.1007/s12094-022-03058-5
Li Q, Zhang S, Hu M, Xu M, Jiang X. Silencing of synaptotagmin 13 inhibits tumor growth through suppressing proliferation and promoting apoptosis of colorectal cancer cells. Int J Mol Med. 2020;45:234–44.
pubmed: 31939613
Sharma K, Sheng HZ, Lettieri K, Li H, Karavanov A, Potter S, et al. LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell. 1998;95:817–28.
pubmed: 9865699
doi: 10.1016/S0092-8674(00)81704-3
Simon CM, Dai Y, Van Alstyne M, Koutsioumpa C, Pagiazitis JG, Chalif JI, et al. Converging mechanisms of p53 activation drive motor neuron degeneration in spinal muscular atrophy. Cell Rep. 2017;21:3767–80.
pubmed: 29281826
pmcid: 5747328
doi: 10.1016/j.celrep.2017.12.003
Liu H, Shafey D, Moores JN, Kothary R. Neurodevelopmental consequences of Smn depletion in a mouse model of spinal muscular atrophy. J Neurosci Res. 2010;88:111–22.
pubmed: 19642194
doi: 10.1002/jnr.22189
Hendricks E, Quihuis AM, Hung ST, Chang J, Dorjsuren N, Der B, et al. The C9ORF72 repeat expansion alters neurodevelopment. Cell Rep. 2023;42:112983.
pubmed: 37590144
pmcid: 10757587
doi: 10.1016/j.celrep.2023.112983
Oliveira Santos M, Caldeira I, Gromicho M, Pronto-Laborinho A, De Carvalho M. Brain white matter demyelinating lesions and amyotrophic lateral sclerosis in a patient with C9orf72 hexanucleotide repeat expansion. Mult Scler Relat Disord. 2017;17:1–4.
pubmed: 29055436
doi: 10.1016/j.msard.2017.06.010